

1

How Should Software Reliability
Engineering (SRE) Be Taught?

Mario Garzia
Microsoft

mariogar@microsoft.com

John Hudepohl

Will Snipes
Nortel

Hudepohl@nortel.com, wbsnipes@ieee.org

Michael Lyu
Chinese University of Hong Kong

lyu@cse.cuhk.edu.hk

John Musa
 Independent Consultant

j.musa@ieee.org

Carol Smidts
University of Maryland

csmidts@glue.umd.edu

Laurie Williams
North Carolina State University

williams@csc.ncsu.edu

Abstract

This article on teaching software reliability engineering (SRE)
represents a consensus of views of experienced software reliability
engineering leaders from diverse backgrounds but with ties to
education: directors of software reliability and software reliability
training in industry, a consultant who teaches SRE practice to
industry, and university professors. The first topic covered is how
to attract participants to SRE courses. We then analyze the job-
related educational needs of current and future (those now
university students) software practitioners, SRE practitioners,
researchers, and nonsoftware professionals. Special needs relating
to backgrounds, limited proficiency in the course language, and
work conflicts are outlined. We discuss how the needs presented
should influence course content and structure, teaching methods,
and teaching materials. Finally, we cover our experiences with
distance learning and its special needs. Some of this article applies
to any course and is not SRE-specific.

1. Attracting participants

Unfortunately, there has been some difficulty in attracting
participants to SRE courses in both universities and in practitioner
environments. A cursory review of the general press and the
technical literature indicates that potential participants are

generally aware of the impact of software failures on our society.
For example, there has been a continuing series of articles on this
topic in ACM’s Software Engineering Notes. However, it appears
that there is much less awareness of the existence of SRE as one of
the solutions to this problem. This would indicate a need for
overview feature articles in the press and in general computing
magazines. The latter should include not just those of the
professional societies, but also those with a commercial flavor.
These articles need to convey the true importance and value of
SRE, and need to present case studies that emphasize its benefits.
They need to catch the eye of readers, by showing how this
practice can benefit them and their company.

"In addition to a lack of awareness, there appears to be
a perception (not necessarily backed by facts) among some
university students that SRE courses are not very interesting and
are not “cool.” This is not universal; SRE is among the most
popular courses at some universities, which indicates a need to
find out why this difference exists. It is not totally clear what
makes a new practice attractive from a fashion viewpoint, but
maybe we should not just dismiss this factor. Perhaps we should
look at what areas are attractive (for example, agile methods) and
why. One possible problem is that SRE is more intangible. There
seems to be a significant difference in level of “coolness” between
the relatively concrete and hence definitely learnable methods that
are used to create code and the vaguer and hence difficult to learn
methods that are being used to assess code. Perhaps we need to do
a better job of highlighting the “cool” problems that SRE can solve
and their importance to industry. And we need to make sure we are
approaching the entire pool of candidates for these courses: not
just the computer science area, but also statistics, reliability, and
other engineering disciplines.

We should emphasize course activities that are appealing to
participants: working cooperatively as teams in workshops,
practically applying what they have learned, and chances to ask
questions and present their own experiences and ideas.
Cooperative work builds important social and communication
skills that are not traditional engineering subjects, but are
increasingly vital to successful careers. Also, in this age of
globalization and international competition, many participants are
concerned about their careers: they need to see how SRE is very
business-oriented and thus closely related to increasing their
competitivity.

2. Job-related needs of course participants

We can group the needs of course participants in four broad
categories: SRE practitioners, software practitioners, nonsoftware
professionals, and researchers. The needs are largely the same for
people currently working and students in training. SRE
practitioners must understand SRE practice in detail so that they
can direct and guide its application as resident experts. Software
practitioners need to understand enough about SRE to apply it
intelligently in developing and testing software. What a software
practitioner needs to know may vary from organization to
organization, depending on how software development work is
divided in the organization. Nonsoftware professionals need to
understand enough about SRE to understand how it affects their
work, and even to apply it to a limited extent. Researchers must
understand not only the practice but also the theory on which it is

ACM SIGSOFT Software Engineering Notes Page 1 July 2006 Volume 31 Number 4

2

based so that they can advance the field.

Just to give a very rough picture, the education of software
practitioners and nonsoftware professionals requires perhaps two
days and the education of SRE practitioners requires perhaps
several weeks. The education of SRE researchers usually requires
many months, plus years of active supervised research. These
numbers include both formal coursework and practice. Thus, it is
likely that not all needs can be met in one course, although it
would be highly desirable for as many as possible to share a
common basic SRE course. Since the number of SRE practitioners
will be considerably smaller than the numbers of software
practitioners and nonsoftware professionals, it may be practical to
educate this smaller category primarily through reading and guided
experience, once they have taken a basic course. Although
researchers can start with a common basic SRE course, it will
probably be desirable to develop a theory-based course for them if
their numbers warrant (such a course is beyond the scope of this
article).

An SRE course must have content that is applicable to large
software development projects, large and varied customer bases,
and frequent revisions and updates. Many commercial software
organizations distribute SRE functions among different software
practitioner roles in the organization. Efficiency requires that each
software practitioner focus on the practice assigned to that role.
However, software practitioners also need to understand the
overall landscape of the application of SRE to software
development to be effective. The instructor must communicate the
big picture of software reliability in simple terms and relate it to
the software practitioner’s sphere of influence over reliability
outcomes.

Accuracy in setting reliability objectives and in measuring
reliability achieved is required to assure customer satisfaction, as
reliability can be a key software differentiator. Accuracy depends
on several important factors: addressing the variety of customer
operational profiles and reliability needs, assessing reliability prior
to release with limited run times, and evaluating reliability against
competing products. Efficiency in development is required to
assure that the work can be done within available time, resources,
and budget. We need to predict expected reliability early in
development when code is not yet available and measure
reliability achieved as the code is developed and tested.

Developing operational profiles is greatly complicated for
mass-market products where the number of different types of
customers can be very large. Flexible methods for developing the
right set of operational profiles in this environment are critical to
meeting customer reliability expectations.

A fast-changing development environment is another factor
that one must take into account. Assessing software reliability
prior to release is more complicated when there are frequent
deployments. For example, web-based software deployments can
be just weeks apart. In large and complex development projects,
the multiplicity of components and dependencies means that the
software is in almost constant flux. To address these situations,
SRE tools and techniques are needed to estimate the failure
intensity of the software, even though there is only time to
experience just a small sample of failures, due to the short release
cycles or constant changes and additions before deployment.

Once reliability is established, one must assess the results
against the product’s competitors. This provides information on

areas for improvement, allows product customers to evaluate their
options, and provides results for product marketing. SRE
techniques for developing and assessing software against
reliability benchmarks, as is done for performance, can be very
valuable and serve as a standard.

The SRE practitioner designs the SRE process a project will
use. The process must work within the structure of the software
development and release process. In some cases, the process is
related to the Capability Maturity Model Integration (CMMI) or
one of its derivatives. SRE should influence production, release,
and process improvement decisions. The SRE practitioner must
first understand the roles of all software practitioners in the
organization and what it is important for them to contribute to
SRE. Thus, the SRE practitioner requires a thorough knowledge of
basic SRE and practice in its application to projects.

By understanding the project organization’s software
development process, the SRE practitioner can better define a set
of SRE program practices that influence reliability at key leverage
points. For instance, in the software design phase of the life cycle,
the SRE practitioner could define a practice for software Failure
Modes and Effects Analysis (FMEA). The software verification
phase could incorporate a practice for enhanced code inspections
that both removes defects and provides data for reliability
estimates. Automating the practices with suitable tools provides a
structure to the process, a means to incorporate it into existing
software practitioner responsibilities, and a more consistent source
of reliability data. It is important that initial application of
practices by the software practitioners be carefully monitored by
the SRE practitioner to tune them to the needs of the product, and
to make sure that the software practitioners have learned and are
applying them properly. Hence, the education of the SRE
practitioner must include not only the basic SRE course but also
general knowledge of software development and testing practices
plus practical experience.

University professors generally feel that professional software
practitioners should understand the principles behind software
reliability and testing. They feel that such knowledge will aid
practitioners in building solid, testable code, in validating and
verifying this code, and in engineering reliability into their
projects. Industrial organizations want software practitioners to
acquire skill in applying SRE inexpensively, and may differ from
universities in sacrificing background to attain immediate
proficiency in a limited area.

Practitioners feel that there is very little testing training in
universities, with the result that all graduates want to be
developers and very few, if any, want to be testers. This may be
due to a preponderance of general courses in universities that
emphasize design and programming techniques in various
applications (e.g., OO, Java, CORBA, web services, etc.). Testing
and SRE courses do exist, but there are far too few of them. It is
most important that the emphasis change.

Researchers must acquire a thorough grounding in the
theoretical underpinnings of SRE. They need to understand the
diversity of existing approaches, when to apply which approach or
model, and the likelihood of success of a particular approach. They
must know the important open research areas and questions. They
also need hands-on experience through a real-life project to
acquire judgment in evaluating the importance of new questions
and new results.

ACM SIGSOFT Software Engineering Notes Page 2 July 2006 Volume 31 Number 4

3

3. Special needs

Course participants may have either pure academic
background or may be more practically oriented. Some of the
participants may have no prior software engineering knowledge
and require a short prerequisite course to address this issue.

In both university and industrial environments, some
audiences have participants of limited proficiency in the course
language. The extent of this problem is generally greater for public
(open to all individuals) courses, courses at international
conferences, and courses in nonanglophone countries (since
English is the most common course language).

In industry, the most important environmental constraint for a
basic SRE course is the high-pressure demands of work in a
competitive environment, making semester length courses
impractical. In fact, two intensive days is the practical limit.
Registrations fall off drastically for longer courses, so one must
organize the material to fit within this limit. In a university
environment, learning can be spaced over time, typically a
semester, and participants have the motivation of working for a
degree.

Conflicts with work, urgent situations, meetings, etc. mean
that, even with a two-day class, a large percentage of the
participants (often 20% to 30%) will miss some class hours (often
10% to 25%). Teaching methods must adapt to this situation.

Industrial organizations expect participants to bring back and
implement new ideas at work; in classes for industrial
professionals, you need to increase the likelihood that this will
happen. As we mention later, one way to maximize this and
increase attendance and attention is for participants to work on
specific problems from their projects as part of the class. Another
is to offer ready-to-use tools and procedures.

4. Course content and structure

Course feedback strongly indicates that practitioners prefer to
learn an organized, tested process rather than a collection of
techniques and tools. References to SRE users, especially those
who have written up their experiences, is important. The two-day
course constraint noted in the previous section requires that you
present a process that works for, say, 80% of but not all projects.
Separate the material for special situations, and consider letting
students access it on their own.

The basic course should cover the six principal activities of
SRE: defining the product, implementing the operational profiles,
engineering the “just right” reliability, preparing for test, executing
test, and guiding test. Guiding test includes determining when to
deliver software, and it presents the methods used for evaluating
field reliability, so that feedback can be provided to the next
release cycle. Defining the course based on individual activities
provides a focus for specific roles, indicating the relative
importance of different activities for those roles. An overview of
all the activities should be given separately for management
personnel. Deemphasize theory, as most practitioners have little
interest in it, except to know of its existence.

It is important that the structure of the course be highly
interactive, so that the course can accommodate to the different
backgrounds and prospective roles of the participants. This

approach also makes the course more attractive to prospective
participants. Another requirement for the structure is the use of
workshops. These are also attractive to potential participants. They
also teach implicitly the social and communication skills that are
indispensable in today’s development environment.

Experience with SRE courses in software development
organizations has shown that scheduling attendance by product
development groups is much more effective than by individuals.
The workshops can then focus on the particular products and the
techniques that are most relevant to them.

To help convince an organization to apply SRE in the
workplace, the course should provide information on how to
accomplish technology transfer. Conduct a final workshop that
addresses how the participants will apply what they have learned
on the job, setting up action items, persons responsible, and target
completion dates. References to users of SRE who have published
their experiences are helpful.

A course that is directed to future researchers will require
background in statistics. However, this will in general not be
necessary for future software or SRE practitioners.

Let’s consider two specific examples of course content, a
course at North Carolina State University (NCSU) and an in-house
only course at Nortel.

Since three of the six principal SRE activities are intimately
connected with testing, NCSU combines SRE with a testing
course. Course participants apply the testing and reliability theory
learned in the class in several ways. First, the course takes place in
the NCSU Laboratory for Collaborative System Development.
Therefore, the twice-weekly classes are intermingled between
lecture-style instruction and hands-on exercises on the computers.
For example, instruction is provided on unit testing, coverage
principles, and the JUnit testing framework. Then, a short exercise
for developing JUnit with high coverage is completed.

Additionally, the students apply their software reliability and
testing knowledge via a semester-long project. In five iterations,
students develop the project. Code is synchronously developed
with automated and “strategized” black and white box test cases
and through manual test plans. The programs are written such that
the operations are logged, enabling a retrospective analysis of the
actual operational profile. In the final phase of the project, students
choose a subset of their manual tests that they can run in one 70-
minute class period, based upon an estimated operational profile.
During two class periods, student teams swap completed projects
and run their 70-minute test on other teams’ projects. Test failures
are documented to provide feedback to student teams on defects
that have escaped all testing.

Nortel breaks down SRE activities into reliability practices for
software practitioners, using the guideline that each reliability
practice should be trainable in two hours of instruction and hands-
on training. Training for each practice is tailored to the role of the
software practitioner and focuses on the information needed to
perform the practice and how it contributes to the overall
reliability of the software. A business case for each practice can
show how it contributes to the product reliability and improves
development and maintenance costs. With the brief period for
training, some practices will require a mentoring period as the
software practitioners begin to perform them in everyday work. A
support system provides mentoring as needed to the trained
software practitioners in the organization. The data collection

ACM SIGSOFT Software Engineering Notes Page 3 July 2006 Volume 31 Number 4

4

aspects of each activity provide the SRE practitioner with
performance results and data for updating reliability predictions.
The practices support each other through their modeled influences
on reliability and business outcomes.

The Nortel approach requires centralized planning for the
application of SRE, and probably for other practices as well. This
approach has many advantages, but the majority of companies take
a decentralized approach of letting each project apply SRE as it
sees fit, although they do base their application on the six principal
activities of SRE described above.

5. Teaching methods

When a class is given for industry, do so locally but off-site if
possible to discourage interruptions. Try to minimize class time
missed due to work conflicts by consulting with the class at the
start about any necessary adjustments in start, stop, lunch, and
break times. However, since some missed time is unavoidable and
since some participants may have difficulty with the course
language, alternate means of receiving the course material are
essential. It is important that all lecture material be based on a
detailed set of slides. The level of detail must be such that
someone who has missed class time can review the slides at any
point and catch up to the class. A book that is carefully correlated
with the course is essential here. The instructor should encourage
participants to interrupt the class at any time to clarify issues of
general interest. Suggest deferring individual issues (for example,
from those who missed part of class) for one-on-one discussions at
break periods.

Workshops have proved to be very effective in reinforcing
what has been learned. Although it is possible to create canned
workshops, participants have shown a strong preference for
applying SRE to their own projects. These have the most meaning
for them. This applies to university settings as well; students
usually have some project they are working on, even if it is in
another course.

If most participants have limited proficiency in the course
language, slow the course’s pace and avoid humor and slang.
Allow workshops in the participants’ native language, but have all
decisions written in your language on flip charts so you can guide
the workshops.

In analyzing teaching experience, some lessons learned are
SRE-specific. Participants usually find the engineering just right
reliability and preparing for test activities the most difficult to
learn. Teaching how to use the software reliability estimation
program CASRE in a computer classroom is usually not worth the
time, since there is a good user manual in the book Musa, Software
Reliability Engineering – Second Edition, Author House, 2004.
CASRE is easily learned from the manual, and the time can be put
to better use. In application, the importance of carefully defining
product, customers, and users is usually grossly underestimated. In
developing operational profiles, the difficulty of determining
occurrence rates for operations is usually overestimated.

6. Teaching materials

As noted in the previous section, detailed slides are essential,

with copies provided to all participants. Reinforce the material

presented by applying it in workshops related to the participants’
projects.

A book that is closely coordinated with the course serves
many purposes. Course participants can use it for review and
reinforcement of what they have learned. It is very important in an
industrial setting, where participants often miss parts of the course.
The book is often needed during workshops as participants
practice applying what they have learned. And it is a valuable
familiar reference when they apply SRE on the job. A book is also
very helpful to practitioners whose native language is not that of
the course.

An appropriate book can include material that SRE
practitioners need beyond the basic course. For example, it can be
used to provide for treatment of special situations, since there is
not time to cover them in the basic course proper. It can include
FAQs collected from former course participants; they resolve the
difficulties participants most commonly encounter. It can also
provide theory for those who may be interested in it, but theory
should be well separated from the core material.

The software reliability portion of the course taught at NCSU
uses Musa, Software Reliability Engineering - Second Edition,
Author House, 2004 (ISBN 1-4184-9387-2). Lecture slides
coordinated with this book and other resources are posted on the
OpenSeminar in Software Engineering
(http://openseminar.org/se/courses/41/modules/206/index/sc
reen.do).

The book is also used in many other universities worldwide as
well as in a widely taught two-day intensive course by Musa in
industry, both on site and by distance learning. A semester length
course at the University of Maryland uses Musa, John D., et al,
Software Reliability: Measurement, Prediction, Application,
McGraw-Hill, New York, 1990. (ISBN 007044093-X) and Lyu,
Michael R., The Handbook of Software Reliability Engineering,
McGraw-Hill, New York, 1996 (ISBN 0-07-039400-8). At the
Chinese University of Hong Kong the SRE component of an
undergraduate level software engineering course and a graduate
level SRE course use The Handbook of Software Reliability
Engineering.

There is a resource center for SRE available at
http://members.aol.com/JohnDMusa/. It contains or links to a great
deal of material that is of interest to professors, practitioners, and
researchers.

7. Distance learning

Some course participants cannot attend standard classes and
require distance learning. Distance learning can be either
scheduled in a virtual classroom setting or self-paced. The virtual
classroom setting, often web-based, has the advantage of real time
interaction with the instructor and the class. Complex questions
can be better handled in such a situation and group workshops are
feasible, although the latter do not work as well as in a live setting.
Virtual classes may provide discipline for participants who need it.

On the other hand, self-paced courses are very advantageous
for most industrial professionals since they can take them
anywhere at any time; for example, during travel. You never miss
a class or part of a class due to conflicting work demands.

Both require development of detailed slides, a means for
participants to ask questions, and a means for participants to apply

ACM SIGSOFT Software Engineering Notes Page 4 July 2006 Volume 31 Number 4

5

SRE and receive critique and feedback from instructors. A book
that is closely coordinated with the course is particularly important
for distance learning participants. Although questions, critique,
and feedback by telephone are possible, experience indicates that
email is usually superior. This eliminates the problem of
scheduling a time when both instructor and participant are
available. It gives each party time to reflect in formulating
focused, unambiguous, precise questions and answers.

Distance learning instructors need to give attention to the
danger of participants becoming isolated, especially if there are
classroom participants taking the same course.

8. Summary

The extensive experience of the authors with the teaching of
SRE indicates that a course should be practically oriented and
highly interactive. Participants require chances to ask questions
and present their own experiences and ideas. Lecture material
needs to be applied in workshops, with participants working
cooperatively in teams. If the teams are product development
groups and they are applying SRE to their own products (even if
simplified), the course will be particularly effective. Workshops
make it possible for the course to be sufficiently flexible to meet
widely differing participant needs. Course interruptions are
common, and teaching methods must adapt to this situation. As a
result, requiring a good textbook that is carefully correlated with
the course is absolutely essential.

ACM SIGSOFT Software Engineering Notes Page 5 July 2006 Volume 31 Number 4

