
1

Test Selection for Result Inspection
via Mining Predicate Rules

Wujie Zheng, Michael R. Lyu
The Chinese University of Hong Kong

Tao Xie
NC State University

2

Test Selection for Result Inspection

Test result inspection
A main step in software testing, especially in automatic testing
Labor-intensive without test oracles

Test selection for result inspection
Select a small subset of tests that are likely to reveal faults

Hey! Check only these tests!

3

Mine invariants from passing tests (Daikon, DIDUCE)

Select tests that violate the existing invariants (Jov,
Eclat, DIDUCE)

Previous Work: Mining Operational Models
from Passing Tests

4

Limitations
The number of existing passing tests is often limited.
The mined operational models could be noisy and
thus many violations could be false positives.

Previous Work: Mining Operational Models
from Passing Tests

5

Existing passing tests -> unverified tests
Dynamic invariants -> common operational
models

Our Approach: Mining Operational Models
from Unverified Tests

6

Why mining unverified tests can help?
A program that is not of poor quality should pass most
of the tests
Common operational models mined from a large set
of unverified tests could be good approximations of
the real model

Our Approach: Mining Operational Models
from Unverified Tests

7

How to mine common operational models?
Cannot discard an operational model when it is violated
Collect the evaluations of all of them for postmortem
analysis? May incur high runtime overhead
Our solution

Collect values of simple predicates at runtime (use CBI-tools)
Generate and evaluate predicate rules as potential
operational models after running all the tests

A predicate rule is an implication relationship between predicates

Our Approach: Mining Operational Models
from Unverified Tests

8

Our Approach: Mining Operational Models
from Unverified Tests

The real operational model
The program would fail if
In passing tests, the program should satisfy
a precondition

corresponds to a precondition

The simple predicates
Their violations cannot predict the failures
accurately

This is similar to and weaker than the real
operational model. Its violation should also
lead to the violation of the real operational
model and indicate a failure, such as Test 5.

The predicate rules

9

The preliminary algorithm
Collect values of simple predicates at runtime
Mine predicate rules

x=>y, where x and y are simple predicates
For each predicate y, select rule x=>y with the highest
confidence

Select tests for result inspection
Sort the selected predicate rules in the descending
order of confidence.
Select tests that violate the rules from the top to bottom

Our Approach: Mining Operational Models
from Unverified Tests

10

Preliminary Results
Subject 1: the Siemens suite

130 faulty versions of 7 programs that range in size from 170 to
540 lines
On average, 1.5% (45/2945) tests, detect 75% (97/130) faults
Random Sampling: 1.5% (45/2945) tests, 45% (59/130) faults

11

Preliminary Results
Subject 2: the grep program

13,358 lines of C code; 3 buggy versions that fail
3, 4, and 132 times running the 470 tests,
respectively.
Our approach selects 82, 86, and 89 tests that
reveal all the 3 faults.
For each version, there is at least one failing test
ranked in top 20.
Randomly select 20 tests for 5 times: never reveal
the first two faults but always reveal the third fault

12

Future work

Combine with automatic test generation tools

Mine more general operational models
Incorporate non-binary information

Study the characteristics of mined common
operational models

Present them to the programmers

13

Thank you!

