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1. IntroduCtIon

Web services are self-contained, self-describing, 
and loosely-coupled computational components 
designed to support machine-to-machine in-
teraction by programmatic Web method calls, 
which allow structured data to be exchanged 
with remote resource. In the environment of 
service-oriented computing (Zhang et al., 2007), 
complex service-oriented systems are usually 
dynamically and automatically composed by 
distributed Web service components. Since the 
Web service components are usually provided 
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experiments are conducted to illustrate the advantages of the evaluation framework. In these experiments, 
users from six different locations perform evaluation of Web services distributed in six countries, where over 
1,000,000 test cases are executed in a collaborative manner to demonstrate the effectiveness of this approach.

by different organizations and may easily be-
come unavailable in the unpredictable Internet 
environment, it is difficult to build highly 
reliable service-oriented systems employing 
distributed Web services. However, reliability 
is a major issue when applying service-oriented 
systems to critical domains, such as e-commerce 
and e-government. There is thus an urgent need 
for practical reliability enhancement techniques 
for the service-oriented systems.

By tolerating component faults, software 
fault tolerance is an important approach for 
building reliable systems and reducing the 
expensive roll-back operations in the long-
running business processes. One approach of DOI: 10.4018/jwsr.2010100102
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software fault tolerance, also known as design 
diversity, is to employ functionally equivalent 
yet independently designed program versions 
for tolerating faults (Lyu, 1995). This used-to-
be expensive approach now becomes a viable 
solution to the fast-growing service-oriented 
computing arena, since the distributed Web 
services with overlapping or equivalent func-
tionalities are usually independently developed 
by different organizations. These alternative 
Web services can be obtained from the Internet 
and employed for the construction of diversity-
based fault tolerant service-oriented systems. 
By fault tolerance techniques, long-running 
business process roll-backs can be reduced since 
failures of the components can be tolerated by 
employing alternative candidates (other Web 
services). Although a number of fault tolerance 
strategies have been proposed for establishing 
reliable traditional systems (Lyu, 1995), in the 
fast-growing field of service computing, sys-
tematic and comprehensive studies on software 
fault tolerance techniques to transactional Web 
services are still missing.

When applying fault tolerance techniques 
to the service-oriented systems, several chal-
lenges need to be addressed:

• The commonly-used fault tolerance 
strategies should be identified and their 
performance needs to be investigated and 
compared extensively by theoretical analy-
sis and real-world experiments.

• Quality-of-service (QoS) values of the 
Web services are needed for determining 
the optimal fault tolerance strategy. How-
ever, some nonfunctional performance of 
the Web services (e.g., response-time and 
failure-rate) is location-dependent and 
difficult to obtain.

• Feasible optimal fault tolerance strategy 
selection approaches are needed since 
the Internet is highly-dynamic and the 
performance of Web services are chang-
ing frequently. However, the optimal fault 
tolerance strategy is application dependent 
subject to the user preference.

In this paper, we present a distributed fault 
tolerance strategy evaluation and selection 
framework for Web services, which is designed 
and implemented as WS-DREAM (Distributed 
REliability Assessment Mechanism for Web 
Ser-vice) (Zheng & Lyu, 2008b, a). In WS-
DREAM, the QoS performance of Web services 
can be obtained via user-collaboration and the 
optimal fault tolerance strategy is determined 
in such a way to optimize the performance of 
the service-oriented system with a given set 
of user requirements. The contributions of the 
paper are threefold:

• Identify various commonly-used fault tol-
erance strategies and design a distributed 
evaluation framework for Web services.

• Propose a dynamic optimal fault tolerance 
strategy selection algorithm, which can 
be automatically reconfigured at runtime.

• Implement a working prototype and con-
duct large-scale real-world experiments. 
More than 1,000,000 Web service invoca-
tions are executed by 6 distributed service 
users different locations on 8 Web services 
located in different countries.

Let’s consider motivating example that 
user named Ben plans to build reliable service-
oriented application using available fault toler-
ance strategies. He faces several challenges:

(1)  What are the commonly-used fault toler-
ance strategies?

(2)  How to know the performance of the remote 
Web services?

(3)  How to select the optimal fault tolerance 
strategy based on the user preference?

(4)  How to dynamically reconfigure the fault 
tolerance strategy when the performance 
of remote Web services is changed?

To address these challenges, this paper 
first identifies the commonly-used fault toler-
ance strategies with systematic mathematical 
formulas in Section 2. Then, a user-collaborated 
evaluation framework is proposed for obtain-
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ing QoS values of Web services efficiently in 
Section 3. A dynamic optimal fault tolerance 
selection algorithm with user-requirement mod-
els is subsequently proposed in Section 4. To 
illustrate the evaluation framework and to study 
the performance of various fault tolerance strate-
gies, a prototype is designed and implemented 
in Section 5, and detailed experimental results 
are presented in Section 6. Finally, related-work 
is introduced in Section 7 and conclusion is 
provided in Section 8.

2. fAuLt toLerAnCe 
StrAtegIeS

Due to the compositional nature of Web services, 
reliability of the service-oriented systems be-
comes a formidable challenge. Software fault 
tolerance by design diversity (Lyu, 1995) is a 
feasible approach for building reliable service-
oriented systems. The major fault tolerance 
strategies can be divided into time-redundancy 
and space-redundancy (Leu et al., 1990; Salatge 
& Fabre, 2007), where time-redundancy uses 
extra computation/communication time to 
tolerate faults, and space-redundancy employs 
extra resources, such as hardware or software, 
to mask faults.

Space-redundancy includes active-replica-
tion and passive-replication. Active-replication 
is performed by invoking all service candidates 
at the same time to process the same request, 
and employing the first returned response as 
the final outcome (Chan et al., 2007). Passive-
replication invokes a primary candidate to 
process the request first. Backup candidates will 
be invoked only when the primary candidate 
fails. The time-redundancy, active-replication, 

and passive-replication are named Time, Active, 
and Passive, respectively, in this paper.

As shown in Table 1, combining the basic 
strategies (Time, Active, and Passive) can pro-
duce more feasible fault tolerance strategies. As 
shown in Figure 1, a strategy named A(B) means 
that Strategy B is employed at the lower level 
and Strategy A at the higher level. As discussed 
in the work (Leu et al., 1990), we assume the 
remote Web services are failed in a fixed rate, 
and the Web service candidates are independent 
with each other.

In the following, we provide detailed in-
troduction and the mathematical formulas for 
calculating the failure-rate and response-time 
of these fault tolerance strategies. Failure-rate 
(f) is the probability that a service request is 
incorrectly responded within the maximum 
expected time, and response-time (t) is the time 
duration between sending a request and receiv-
ing a response of a service user.

1.  Active: All the n Web service candidates 
are invoked in parallel and the first success-
fully returned response will be selected as 
final result. The formulas for calculating 
the failure-rate (f) and response-time (t) of 
this strategy are defined as:

f fi
i

n

=
=
∏
1

;  (1)

where n  is the number of candidates, Tc  is a 
set of Round-Trip Times (RTT) of the success-
ful invocations, and Tf  is a set of RTT of the 
unsuccessful invocations. When all the parallel 

Table 1. Combination of the basic fault tolerance strategies 

Active Time Passive

Active 1. Active 5. Active(Time) 7. Active(Passive)

Time 4. Time(Active) 2. Time 9. Time(Passive)

Passive 6. Passive(Active) 8. Passive(Time) 3. Passive
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invocations are failed ( | |Tc = 0 ), the maximal 
RTT value is employed as the response-time.

2.  Time: The original Web service will be 
retried for a certain times if it fails. The 
formulas for calculating failure-rate and 
response-time are defined as:

f f m= ( ) ;1  (2)

where m  is the retried times, f
1

 is the failure-
rate of the remote Web service, and ti  is the 
response-time of the ith  Web service invocation.

3.  Passive: Another backup Web service will 
be tried sequentially if the primary Web 
service fails. The formulas for calculating 
failure-rate and response-time are defined 
as:

f fi
i

m

=
=
∏
1

;  (3)

where m  is the recovery times, ti  is the invo-
cation response-time of the ith  Web service, 
and fi  is the failure-rate of the ith  Web service.

4.  Time(Active): As shown in Figure 1 (4), 
the first v best performing candidates are 
invoked in parallel. The whole parallel 
block will be retried if all parallel invoca-
tions fail. The formulas for failure-rate and 
response-time are defined as:

f fi
m

i

v

=
=
∏( ) ;
1

 (4)

where v is the parallel invocation number, m  
is the retry times, ti¢  is the response-time of 
the ith  time of invoking the whole parallel 
b l o c k .  ti¢  c a n  b e  c a l c u l a t e d  b y 

′=
>
=
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5.  Active(Time): As shown in Figure 1 (5), the 
v best performing candidates are invoked 
in parallel. The candidates will be retried 
individually if they fail. The formulas are 
defined as:

f fi
m

i

v

=
=
∏( ) ;
1

 (5)

Figure 1. Fault tolerance strategies
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where m is the retried times, T T tc f i i
v∪ = ′
={ } 1 , 

and ′ = −

=
∑t t fi ij i

j

j

m

( ) 1

1

.

6.  Passive(Active): As shown in Figure 1 
(6), another set of backup candidates will 
be tried if all of the primary v candidates 
fail. The formulas are defined as:

f fij
j

v

i

m

=
==
∏∏
11

;  (6)

where m  is the recovery times and 
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7.  Active(Passive): As shown in Figure 1 
(7), the best performing v candidates are 
invoked in parallel. Each individual can-
didate in the primary v candidates will try 
another backup candidate sequentially if 
it fails. The formulas are defined as:

f fij
i

m

j

v

=
==
∏∏
11

;  (7)

where m is the recovery times, 

T T tc f i i
v∪ = ′
={ } 1 , and ′ =

=

−

=
∏∑t t fi ij ik
k

j

j

m

( )
1

1

1

.

8.  Passive(Time): As shown in Figure 1 
(8), the primary candidate will retry itself 
for m times before trying other backup 
candidates. Only a set of u best perform-
ing candidates are employed as backup 
candidates among all the n replicas. The 
formulas are defined as:

f fi
m

i

u

=
=
∏( ) ;
1

 (8)

where ′ = −

=
∑t t fi i i

j

j

m
1

1

.

9.  Time(Passive): As shown in Figure 1 (9), 
a replica will try another backup candidate 
first if it fails. After trying u candidate 
without success, all the u candidates will 
be retried sequentially. The formulas are 
as:

f fi
m

i

u

=
=
∏( ) ;
1

 (9)

where m is the retried times and ′ =
=

−

=
∏∑t t fi j k
k

j

j

u

( )
1

1

1

.
These fault tolerance strategies can be 

divided into three types:

• Parallel (Strategy 1): All Web service 
candidates are invoked at the same time. 
Parallel type strategies can be employed to 
obtain good response-time performance, al-
though it consumes a considerable amount 
of computing and networking resources.

• Sequential (Strategies 2, 3, 8 and 9): 
The Web service candidates are invoked 
sequentially. Sequential strategies con-
sume fewer resources, but suffer from bad 
response-time performance in erroneous 
environments.

• Hybrid (Strategies 4, 5, 6 and 7): A subset 
of the Web service candidates are invoked in 
parallel. Hybrid strategies consume fewer 
resources than parallel strategies and have 
better response time performance than the 
sequential strategy.

3. dIStrIButed evALuAtIon 
frAMeWork

For calculating the response-time and failure-
rate of various fault tolerance strategies, the QoS 
performance (response-time and failure-rate) 
of target Web services are needed. Without 
accurate QoS values of the Web services, it is 
really difficult to calculate the performance of 
different fault tolerance strategies and make 
optimal fault tolerance strategy selection.
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Since the service providers may not deliver 
the QoS they declared and some QoS properties 
(e.g., response-time and failure-rate) are highly 
related to the locations and network conditions 
of service users, Web service evaluation can be 
performed at the client-side to obtain more accu-
rate QoS performance (Wu et al., 2007; Zeng et 
al., 2004). However, several challenges have to 
be solved when conducting Web service evalu-
ation at the client-side: (1) It is difficult for the 
service users to make professional evaluation on 
the Web services themselves, since the service 
users are usually not experts on the Web service 
evaluation, which includes WSDL file analysis, 
test case generation, evaluation mechanism 
implementation, test result interpretation and 
so on; (2) It is time-consuming and resource-
consuming for the service users to conduct a 
long-duration evaluation on many Web service 
candidates themselves; and (3) The common 
time-to-market constraints limit an in-depth and 
accurate evaluation of the target Web services.

To address these challenges, we propose 
a distributed evaluation framework for Web 
services, together with its prototyping system 
WS-DREAM (Zheng & Lyu, 2008b, a), as 

shown in Figure 2. This framework employs 
the concept of user-collaboration, which has 
contributed to the recent success of BitTorrent 
(Bram, 2003) and Wikipedia (www.wikipedia.
org). In this framework, users in different 
geographic locations share their observed QoS 
performance of Web services by contributing 
them to a centralized server. Historical evalu-
ation results saved in a data center are avail-
able for other service users. In this way, QoS 
performance of Web services becomes easy to 
be obtained for the service users.

As shown in Figure 2, the proposed dis-
tributed evaluation framework includes a 
centralized server with a number of distributed 
clients. The overall procedures can be explained 
as follows.

1.  Registration: Service users submit evalu-
ation requests with related information, 
such as the target Web service addresses, 
to the WS-DREAM server.

2.  Client-side application loading: A client-
side evaluation application is loaded to the 
service user’s computer.

Figure 2. Distributed evaluation framework
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3.  Test case generation: The TestCase Gen-
erator in the server automatically creates 
test cases based on the interface of the 
target Web Services (WSDL files).

4.  Test coordination: Test tasks are scheduled 
based on the number of current users and 
test cases.

5.  Test cases retrieval: The distributed client-
side evaluation applications get test cases 
from the centralized server.

6.  Test cases execution: The distributed 
client-side applications execute the test 
cases to conduct testing on the target Web 
services.

7.  Test result collection: The distributed 
client-side applications send back the test 
results to the server, and repeat the steps 
5, 6 and 7 to retrieval and execute more 
test cases.

8.  Test result analysis: The TestResult 
Analyzer in the server-side is engaged to 
process the collected data and send back 
the detailed evaluation results to the service 
user.

The advantages of this user-collaborated 
evaluation framework include:

1.  This framework can be implemented and 
launched by a trust-worthy third-party to 
help service users conduct accurate and 
efficient Web service evaluation in an 
easy way, without requiring service users 
to have professional knowledge on evalu-
ation design, test case generation, test result 
interpretation, and so on.

2.  The historical evaluation results on the 
same Web services can be reused, mak-
ing the evaluation more efficient and save 
resource for both the service users and 
service providers.

3.  The overall evaluation results from differ-
ent service users can be used as useful infor-
mation for optimal Web service selection. 
The assumption is that the Web service, 
which has good historical performance 
observed by most of the service users, has 

higher probability to provide good service 
to the new service users.

By this framework, evaluation on Web ser-
vices becomes accurate, efficient and effective.

4. fAuLt toLerAnCe 
SeLeCtIon

In this section, we propose an algorithm for dy-
namic optimal fault tolerance strategy selection.

4.1 notations and utility function

The notations used in the remainder of this 
paper are defined in Table 2, where t is an ab-
stract task and { }ws i

n
=1  is a set of Web service 

candidates for t; q1 , q2 , and q 3  are three QoS 
properties which present response-time, failure-
rate, and parallel-invocation-number, respec-
tively. All of these three QoS properties are 
negative, where smaller value stands for better 
quality. Q1 , Q2 , and Q 3  are the user require-
ments on these three QoS properties, respec-
tively. The values of Q1 , Q2 , and Q 3  are set 
by the service users. For example, Q1  = 1000ms 
means that the task t must be finished within 
one second. As a result, the Web service can-
didates with response-time (q1 ) larger than 1 
second will not be selected. Q 3  presents the 
user-requirement on the parallel-invocations-
number. For example, the parallel Web service 
invocation can be disabled by setting Q 3  to be 
1 when the Web service invocations are pay-
ment-oriented.

To quantize performance of different 
Web service candidates, a utility function is 
defined as:

u w
q
Qj

j

j
j

m

= ×
=
∑
1

 (10)

where wj  is the user-defined weights for setting 
the priorities of QoS properties, m is the num-
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ber of QoS properties, and a smaller value of 
utility value u means better performance. The 
value of m is three in this paper, since we con-
sider three quality properties in our selection 
algorithm. More QoS properties can be added 
to our algorithm easily in the future without 
fundamental changes.

The design consideration of the utility func-
tion is that response-time performance (q1 ) of 
a particular Web service is related to the cor-
responding user requirement (Q1 ). For example, 
100 ms is a large latency for the latency-sensi-
tive applications, while it is neglectable for the 
non-latency-sensitive applications. By using 
q
Q

1

1
, we have a more personalized representa-

tion of the response-time performance of Web 
services. Failure-rate (q2 ) and parallel invoca-
tion number (q 3 ) are similarly considered.

4.2 Selection Algorithm

The target of the selection algorithm is to find 
out the optimal fault tolerance strategy for 
an abstract task t based on the objective QoS 
performance of Web service candidates as well 
as subjective requirements of service users. To 
determine the optimal fault tolerance strategy, 
we first rank the Web service candidates based 
on their QoS performance using the utility 
function. Then, the optimal parallel invocation 
number is determined by solving an optimiza-
tion problem. Finally, the optimal fault tolerance 
strategy is determined.

4.2.1 Web Service 
Candidate Ranking

The Web service candidates { }ws i
n
=1  for the 

task t are ranked by their utility values, which 

can be calculated by u w
q

Qi j
i
j

jj
= ×

=∑ 1

3 , 

where ui  is the utility value of the ith  candidate, 
qi
j  is the j th  quality property of the candidate, 

and qi
3 1=  since there are no parallel invoca-

tions when ranking the candidates. After the 

ranking, { }�ws i
n
=1  is a set of ranked Web service 

candidates, where �ws
1

 is the best performing 
Web service with the smallest utility value.

4.2.2 Parallel Invocation 
Number Determination

By finding out the optimal parallel invocation 
number v, the optimal fault tolerance strategy 
type can be determined as: Sequential (v = 1), 
Hybrid (1 < v < n) and Parallel (v = n). The 
value of v can be obtained by solving the fol-
lowing optimization problem:

Problem 1
Minimize:

�u xi i
i

n

=
∑
1

 (11)

Subject to:

�q x Q ki
k
i

i

n
k

=
∑ ≤ =
1

1 2 3( , , )  (12)

xi
i

n

=
∑ =
1

1  (13)

xi Î { , }0 1  (14)

In Problem 1, Equation 11 is the objective 
function, where �ui  is the utility value of invok-
ing the first i best performing Web service 
candidates in parallel ({ }�ws j

i
=1 ). There are 

totally n solutions to this problem, which are i 
= 1, …, i = n. Equation 12 is the constraint 
function which makes sure the QoS performance 
of the solution meets the requirements of service 
users. In Equation 12, �qi

1  and �qi
2  is the overall 

response-time performance and overall failure-
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rate performance of invoking the first i Web 
service candidates in parallel, which can be 
calculated by employing the Equation 1 in 
Section 2, �qi

3  is the parallel invocation number 
( �q ii
3 = ) and Qk  is the user requirements. 

Equation 13 and Equation 14 are to make sure 
that only one solution will be selected for the 
task, where xi  is set to 1 if the first i service 
candidates are invoked in parallel and 0 other-
wise. Algorithm 1 is designed to solve Problem 
1. For each potential solution, we first use 
Equation 1 in Section 2 to calculate the overall 
QoS values. Then the solutions which cannot 
meet the user-requirements are excluded. After 
that, the utility values of the remanding solu-
tions are calculated by using the utility function 
in Equation 10. Finally, the solution with small-
est utility value ux  will be selected as the final 
solution for Problem 1 by setting v = x.

4.2.3 Sequential Fault Tolerance 
Strategy Determination

If v = 1, sequential strategies (Strategies 2, 
3, 8 and 9) will be selected. To determine the 
optimal sequential strategy, the poor perform-
ing candidates, which will greatly influence the 
response-time performance of sequential strate-
gies, will be excluded. A set of good performing 
candidates W will be selected out by using:

W ws u a i ni i= ≤ ≤ ≤{ | , }� 1  (15)

where a is the threshold on candidate perfor-
mance and ui  is the utility value of the candi-
date �wsi . If there is no candidate meet the 
performance threshold ( | |W = 0 ), the service 
user needs to provide more candidates or de-
value the performance threshold a. When
| |W = 1 , strategy 2 (Time) is employed, since 
all other strategies need redundant candidates. 
When | |W n= , strategy 3 (Passive) is em-
ployed. Otherwise, strategy 8 (Passive(Time)) 
or strategy 9 (Time(Passive)) will be employed.
p u u1 2 1= − , which is the performance 

degradation between �ws
1

 and �ws
2
, is employed 

to find out the optimal strategy between strat-
egy 8 and strategy 9. When the performance 
degradation is large ( p b

1
³ , where b is the 

threshold of performance degradation), retrying 
the original Web service ( �ws

1
) first is more 

likely to obtain better performance (strategy 8) 
than invoking the backup candidate (strategy 
9).

4.2.4 Hybrid Fault Tolerance 
Strategy Determination

If 1 < v < n, hybrid fault tolerance strategies 
will be selected. p

2
 represents the performance 

Figure 3. Algorithm 1- parallel invocation number calculation
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difference between the primary v candidates 
and the secondary v candidates. p

2
can be 

calculated by

p
v

u ui v i
i

v

2
1

1
= −+

=
∑( )  (16)

where v is the parallel invocation number. If 
the performance difference is large ( p b

2
³ ), 

retrying the original parallel candidates first is 
more likely to obtain better performance (Strat-
egies 4 and 5) than invoking the secondary v 
backup candidates (Strategies 6 and 7).
p
3
is the failure frequency of the first v 

candidates, which can be calculated by

p
v

qi
i

v

3
2

1

1
=

=
∑  (17)

where q2  is the failure-rate of the ith  candidate. 
In the erroneous environment ( p c

3
³ ), strat-

egy 5 and strategy 7 will be selected, since 
strategy 4 and strategy 6 need to wait for all 
responses of the parallel candidates before 
retrying/recovering, which will greatly degrade 
the response-time performance.

4.2.5 Parallel Fault Tolerance 
Strategy Determination

If v = n, strategy 1 (Active) will be selected. 
Strategy Active invokes all the candidates in 
parallel. Figure 4 shows the whole fault toler-
ance strategy selection procedures discussed 
above. First, the sequential, hybrid, and paral-
lel types are determined based on the parallel 
invocation number v. Then, the detailed strat-
egy will be determined based on the values of 
W , p

1
, p

2
, and p

3
.

4.3 dynamic fault tolerance 
Strategy reconfiguration

The performance of Web services may change 
dramatically or the services may even become 
unavailable in the unpredictable Internet en-

vironment. Moreover, the user-requirements 
of the optimal fault tolerance strategy may 
change from time to time. To enable dynamic 
reconfiguration of the optimal fault tolerance 
strategy, we propose a dynamic reconfiguration 
approach as shown in Figure 5. The reconfigu-
ration procedures are as follows: (1) the initial 
optimal fault tolerance strategy is calculated 
by employing the selection algorithm in Sec-
tion 4.2. (2) The service-oriented application 
invokes the remote Web services with the 
selected fault tolerance strategy, and records 
the QoS performance (e.g., response-time, 
failure-rate) of the invoked Web services. (3) If 
the performance of the fault tolerance strategy 
is unacceptable or the renewal time is come, 
the service-oriented application will update the 
user requirements and employed the updated 
information for recalculating the new optimal 
fault tolerance strategy.

By the above reconfiguration approach, 
service users can handle the frequently context 
information changes by recalculating optimal 
fault tolerance strategy using updated QoS 
performance of the target Web services as well 
as updated user-requirements. The recalculation 
frequency is application-dependent and con-
trolled by the service users based on their 
preference, which is out of the scope of this 
paper.

5. IMPLeMentAtIon

To illustrate the distributed evaluation frame-
work and the fault tolerance strategy selection 
algorithm, a prototype (www.wsdream.net) is 
implemented. The client-side of WS-DREAM 
is realized as a Java Applet, which can be 
loaded and run automatically by the Internet 
browsers of the service users. The server-side 
of WS-DREAM is implemented as several 
components, including a HTML Web site (www.
wsdream.net), a TestCaseGenerator (Java ap-
plication), a TestCoodinator (Java Servlet), and 
a data center for recording evaluation results 
and test-cases (MySQL).

To study the performance of the nine fault 
tolerance strategies presented in Section 2 and 



International Journal of Web Services Research, 7(4), 21-40, October-December 2010   31

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the strategy selection algorithm proposed in 
Section 4, a large-scale real-world experiment 
is conducted. In the experiment, a set of 8 real-
world Web services are employed. As shown in 
Table 3, these Web services include 6 function-
ally equivalent Amazon Web services located 
in 6 countries, a GlobalWeather Web service 
located in US and a IPService located in US. 
More than 1,000,000 Web service invocations 
are executed by these service users and the 
detailed experimental results will be reported 
in Section 6.

6. exPerIMentS

6.1 Individual Web Services

Figure 6 and Figure 7 show the experiment re-
sults from the six distributed service users (US, 
HK, SG, CN, TW and AU) on the six Amazon 
Web services (a1–a6). In Figure 6, under the 
Location column, U stands for user-locations 
and WS presents the Web services. cn, tw, au, sg, 
hk, us present the six user-locations conducting 
the evaluation. As shown in Table 3, a1, a2, a3, 

Figure 4. Fault tolerance strategy selection procedure

Figure 5. Optimal fault tolerance strategy reconfiguration procedures
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a4, a5 and a6 stand for the six Amazon Web 
Services, which are located in US, Japan, Ger-
many, Canada, France, and UK, respectively. 
The Cases column shows the failure-rate (F%), 
which is the number of failed invocations (Fail) 
divided by the number of all invocations (All). 
The RTT column shows the average (Avg) and 
standard deviation (Std) of the response-time/
Round-Trip-Time (RTT) performance. The 
ProT column shows the average (Avg) and 
standard deviation (Std) of the process-time 
(ProT), which is the time consumed by the 
Web service server for processing the request 
(time duration between the Web service sever 
receives and request and sends out the corre-
sponding response).

The experimental results in Figure 6 and 
Figure 7 show:

• As shown in Figure 7 (a), the response-
time (RTT) performance of the target Web 
services change dramatically from user 
to user. For example, invoking a-us only 
needs 74 milliseconds on average from 
the user location of us, while it requires 
4184 milliseconds on average from the 
user-location of cn.

• As indicated by the Std values in Figure 6, 
even in the same location, the RTT perfor-
mance vary drastically from time to time. 
For example, in the user-location of cn, the 
RTT values of invoking a1 vary from 562 
milliseconds to 9906 milliseconds in our 

experiment. The unstable RTT performance 
degrades service quality and makes the 
latency-sensitive applications easy to fail.

• The ProT values in Figure 6 indicate that 
the response-times of the Amazon Web ser-
vices are mainly consist of network-latency 
rather than server processing-time. Since 
the average process-times of all the six 
Amazon Web services are all less than 50 
milliseconds, which is very small compared 
with the RTT values shown in Figure 6.

• Users under poor network conditions 
are more likely to suffer from unreliable 
service, since unstable RT T performance 
degrades service quality and even leads 
to timeout failures. Figure 7 (b), which 
illustrates the failure-rates of the Web 
services, shows that the service user with 
the worst RTT performance (cn) has the 
highest failure rate, while the service user 
with the best RTT performance (us) has 
the lowest failure-rate.

Figure 8 and Figure 9 show the experi-
mental results of the GlobalWeather and GeoIP 
Web services. The same as Figure 6, Figure 8 
and Figure 9 shows that performance of the 
Web services is quite different from location to 
location. Comparing with the GlobalWeahter 
and GeoIP Web services, the ECommerceSer-
vice Web services provide better failure-rate 
performance. This may related to the fact that 
the ECommerceService Web services are pro-

Table 2. Locations of the web services 

WS Names Providers Locations

ECommerceService Amazon US

ECommerceService Amazon Japan

ECommerceService Amazon Germany

ECommerceService Amazon Canada

ECommerceService Amazon France

ECommerceService Amazon UK

GlobalWeather WebserviceX.net US

GeoIP WebserviceX.net US
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vided by big company (Amazon) and are built 
for e-business purpose.

6.2 fault tolerance Strategies

Real-world experiments are conducted to study 
the performance of different fault tolerance 
strategies. Figure 10 shows the experimental 
results of various fault tolerance strategies em-
ploying the six functionally equivalent Amazon 
Web services (a1,...,a6) as redundant service 
candidates. Figure 10 shows that Strategy 1 
(Active) has the best RTT performance. This 

is reasonable, since Strategy 1 invokes all the 
six candidates at the same time and employs 
the first returned response as the final result. 
However, its failure-rate is high compared 
with other strategies, which may be caused by 
opening too many connections simultaneously. 
Nevertheless, the failure rate of 0.027% is 
relatively small compared with the failure rate 
incurred without employing any fault tolerance 
strategies, as shown in Figure 6. RTT perfor-
mance of sequential type strategies (Strategies 
2, 3, 8 and 9) is worse than other strategies, 
because they invoke candidates one by one. 

Figure 6. Experimental results of the Amazon web services
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The reliability performance of these strategies 
is the best (without any failure). Hybrid type 
strategies (Strategies 4, 5, 6 and 7) achieve good 
RTT performance, although not the best. The 
reliability performance is also in the middle, 
better than parallel type strategy but worse than 
sequential type strategies. All the 15 failures 
shown in Figure 10 are due to timeout of all 
the six Web service candidates, which may be 
caused by client-side network problems.

6.3 optimal ft Strategy Selection 
Scenarios

6.3.1 Scenario 1: 
Commercial Application

In Section 1, we present a scenario that a ser-
vice user named Ben plans to build a reliable 
service-oriented application and faces several 
challenges. More specifically, we assume that 
Ben’s service-oriented application will be 

Figure 7. Response-time and failure-rate performance

Figure 8. Experimental results of the GlobalWeather web services

Figure 9. Experimental results of the GeoIP web services
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deployed in Hong Kong and the Amazon Web 
services will be invoked for book displaying 
and selling in this commercial Web application. 
The followings are the performance require-
ments of Ben:

1)  Response-time. Ben sets the requirement 
on response-time Q1  as 500 ms, since too 
large response latency will lead to loss of 
business. .

2)  Failure-rate. Since the application is com-
mercial, the failure-rate requirement Q2  
is set to be 0.5% by Ben.

3)  Parallel invocation number. Invoking too 
many parallel candidates will consume 
significant computing and networking 
resources. Therefore, Ben sets Q 3  to be 3.

Employing the optimal fault tolerance 
strategy selection algorithm proposed in Section 
4.2 and the QoS performance of the Amazon 
Web services shown in Figure 6, the selection 
procedures are shown in Figure 11. In Figure 
11,  for ease of discussion,  we set 
w w w1 2 3 1 3= = = / , which are the weights 
for different quality properties. The values of 
the thresholds a, b, and c are set as a = 2; b = 
1; c = 1% empirically. Q1 , Q2  and Q 3  are set 
based on the user-requirements. { }wsi i=1

6  is a 
set of Web service candidates. The response-
time (q1 ) and failure-rate (q2 ) of these candi-

dates are shown in Figure 6. After calculating 
the utility values of these candidates using 
Equation 10, the candidates are ranked as 
{ }�wsi i=1

6 . For determining the optimal parallel 
invocation number (v), Algorithm 1 is em-
ployed. The utility values of invoking different 
number of parallel candidates are shown in 
{ }�ui i=1

6 . The smallest utility value is selected 
out and v is set to be 1 accordingly.

Since v = 1, sequential type strategy will 
be selected (Strategy 2, 3, 8, and 9). Because 
| |W = 3  (only the top three best performing 
candidates are selected), and p

1
1<  (the dif-

ference between the primary candidate and 
secondary candidate is not significant), Strat-
egy 9 (Time(Passive)) is selected (backup 
candidates will be invoked if the primary can-
didate fails, and all the three candidate will be 
retried if all of them fail).

As shown in Figure 6, from the location 
of Hong Kong, network condition is good and 
the failure-rate is low. The response-time im-
provement of invoking candidates in parallel 
is limited. Therefore, sequential strategies for 
this scenario are reasonable.

6.3.1 Scenario 2: 
Noncommercial Web Page

In scenario 2, we assume another service user 
named Tom in the location of cn also plans to 
employ the Amazon Web services to provide 

Figure 10. QoS performance of the fault tolerance strategies
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book information query service in his personal 
home page. The performance requirements of 
Tom are as follows:

1)  Response-time. Since the Web page of Tom 
is noncommercial, the response-time re-
quirement Q1  is set to be 3000 
milliseconds.

2)  Failure-rate. Since the Web page of Tom 
is not for critical purposes, the failure-rate 
Q2  is set to be 5%.

3)  Parallel invocation number. Q 3  is set to 
be 3.

After conducting the selection procedures 
shown in Figure 12, Strategy 7 (Active(Passive)) 
with three parallel invocations is selected as 
the optimal strategy for Tom. In this scenario, 
the failure-rates of individual Web services are 
high. Hybrid strategy with suitable number 
of parallel invocations can be employed to 
improve the failure-rate performance as well 
as response-time performance. Our algorithm 
provides suitable fault tolerance strategy selec-
tion result for this scenario.

7. reLAted Work And 
dISCuSSIon

A number of fault tolerance strategies for Web 
services have been proposed in the recent 
literature (Salatge & Fabre, 2007; Chan et al., 
2007; Foster et al., 2003; Moritsu et al., 2006; 
Vieira et al., 2007). The major approaches 
can be divided into sequential strategies and 
parallel strategies. Sequential strategies invoke 
a primary service to process the request. The 
backup services are invoked only when the 
primary service fails. Sequential strategies 
have been employed in FT-SOAP (Fang et 
al., 2007) and FT-CORBA (Sheu et al., 1997). 
Parallel strategies invoke all the candidates at 
the same time, which have been employed in 
FTWeb (Santos et al., 2005), Thema (Merideth 
et al., 2005) and WS-Replication (Salas et al., 
2006). In this paper, we provide systematic 
introduction on the commonly-used fault tol-
erance strategies. Moreover, we present the 
hybrid fault tolerance strategies, which are the 
combination of the basic strategies.

A great deal of research effects have been 
performed in the area of Web service evalua-

Figure 11. Selection procedures of scenario 1
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tion. Various approaches, such as Qos-aware 
middleware (Zeng et al., 2004), reputation 
conceptual model (Maximilien & Singh, 2002), 
and Bayesian network based assessment model 
(Wu et al, 2007), have been proposed. Some 
recent work (Rosario et al., 2008; Zeng et al., 
2004; Wu et al., 2007; Deora et al., 2003) also 
take subjective information, such as provider 
reputation, user rating and user requirement, 
into consideration to make evaluation more 
accurate. For presenting the non-functional 
characteristics of the Web services, QoS 
models of Web services have been discussed 
in a number of recent literature (Ardagna & 
Pernici, 2007; Jaeger et al., 2004; O’Sullivan 
et al., 2002; Ouzzani & Bouguettaya, 2004; 
Thio & Karunasekera, 2005). The QoS data of 
Web services can be measured from either the 
service user’s perspective (e.g., response-time, 
success-rate, etc.) or the service provider’s 
perspective (e.g., price, availability, etc.). In 
this paper, we consider the most representative 
QoS properties (response-time, failure-rate, 
and parallel-invocation-number). QoS mea-
surement of Web services has been used in the 
Service Level Agreement (SLA) (Ludwig et al., 
2003), such as IBMs WSLA framework (Keller 

& Ludwig, 2002) and the work from HP (Sahai 
et al., 2002). In SLA, the QoS data are mainly 
for the service providers to maintain a certain 
level of service to their clients and the QoS 
data are not available to others. In this paper, 
we introduce the concept of user-collaboration 
and provide a framework to enable the service 
users to share their individually-obtained Web 
service QoS values for the best fault tolerance 
strategy. The experimental prototype is shown 
to make Web service evaluation and selection 
effcient, effective and optimal.

Recently, dynamic Web service composi-
tion has attracted great interests, where complex 
applications are specified as service plans and 
the optimal service candidates are dynamically 
determined at runtime by solving optimization 
problems. Although the problem of dynamic 
Web service selection has been studied by a 
number of research tasks (Ardagna & Pernici, 
2007; Bonatti & Festa, 2005; Yu et al., 2007; 
Zeng et al., 2004; Sheng et al., 2009), very 
few previous work focuses on the problem of 
dynamic optimal fault tolerance strategy selec-
tion. In this paper, we address this problem by 
proposing an optimal fault tolerance strategy 
selection algorithm, which can dynamically up-

Figure 12. Selection procedures of scenario 2
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date the optimal fault tolerance strategy to deal 
with the frequent context information changes.

The WS-Reliability (OASIS, 2005) can be 
employed in our overall Web services frame-
work for enabling reliable communication. 
The proposed WSDREAM framework can be 
integrated into the SOA runtime governance 
framework (Kavianpour, 2007) and applied to 
industry projects.

9. ConCLuSIon

This paper proposes a distributed fault tolerance 
strategy evaluation and selection framework 
for Web services. Based on this framework, 
we study and compare various fault tolerance 
strategies by theoretical formulas as well as 
experimental results. Based on both objective 
QoS performance of Web services as well as 
subjective user requirements, an optimal strat-
egy selection algorithm is designed. Motivated 
by the lack of large-scale real-world experiments 
in the field of service-oriented computing, a 
prototype (WS-DREAM) is implemented and 
comprehensive real-world experiments are con-
ducted by distributed service users all over the 
world. The experimental results are employed 
for performance study of the individual Web 
services, the fault tolerance strategies, and the 
proposed strategy selection algorithm. With the 
facility of the proposed framework, accurate 
evaluation of Web services and fault tolerance 
strategies can be acquired effectively through 
user-collaboration, and optimal fault tolerance 
strategy can be obtained dynamically at runtime.

Currently, this distributed evaluation 
framework can only work on stateless Web 
services. More investigations are needed to 
apply it to stateful Web services. Our future 
work will also include the tuning of the selection 
algorithm (e.g., the values of the thresholds a, b 
and c), the investigation of more QoS proper-
ties, and better use of historical Web service 
evaluation results.
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