
International Journal of Web Services Research, 7(4), 21-40, October-December 2010 21

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: Fault Tolerance, QoS, Service-Oriented Systems, Service Selection, Web Services

1. IntroduCtIon

Web services are self-contained, self-describing,
and loosely-coupled computational components
designed to support machine-to-machine in-
teraction by programmatic Web method calls,
which allow structured data to be exchanged
with remote resource. In the environment of
service-oriented computing (Zhang et al., 2007),
complex service-oriented systems are usually
dynamically and automatically composed by
distributed Web service components. Since the
Web service components are usually provided

optimal fault tolerance Strategy
Selection for Web Services

Zibin Zheng, The Chinese University of Hong Kong, China

Michael R. Lyu, The Chinese University of Hong Kong, China

ABStrACt
Service-oriented systems are usually composed by heterogeneous Web services, which are distributed across
the Internet and provided by organizations. Building highly reliable service-oriented systems is a challenge
due to the highly dynamic nature of Web services. In this paper, the authors apply software fault tolerance
techniques for Web services, where the component failures are handled by fault tolerance strategies. In this
paper, a distributed fault tolerance strategy evaluation and selection framework is proposed based on versatile
fault tolerance techniques. The authors provide a systematic comparison of various fault tolerance strategies
by theoretical formulas, as well as real-world experiments. This paper also presents the optimal fault tolerance
strategy selection algorithm, which employs both the QoS performance of Web services and the requirements
of service users for selecting optimal fault tolerance strategy. A prototype is implemented and real-world
experiments are conducted to illustrate the advantages of the evaluation framework. In these experiments,
users from six different locations perform evaluation of Web services distributed in six countries, where over
1,000,000 test cases are executed in a collaborative manner to demonstrate the effectiveness of this approach.

by different organizations and may easily be-
come unavailable in the unpredictable Internet
environment, it is difficult to build highly
reliable service-oriented systems employing
distributed Web services. However, reliability
is a major issue when applying service-oriented
systems to critical domains, such as e-commerce
and e-government. There is thus an urgent need
for practical reliability enhancement techniques
for the service-oriented systems.

By tolerating component faults, software
fault tolerance is an important approach for
building reliable systems and reducing the
expensive roll-back operations in the long-
running business processes. One approach of DOI: 10.4018/jwsr.2010100102

22 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

software fault tolerance, also known as design
diversity, is to employ functionally equivalent
yet independently designed program versions
for tolerating faults (Lyu, 1995). This used-to-
be expensive approach now becomes a viable
solution to the fast-growing service-oriented
computing arena, since the distributed Web
services with overlapping or equivalent func-
tionalities are usually independently developed
by different organizations. These alternative
Web services can be obtained from the Internet
and employed for the construction of diversity-
based fault tolerant service-oriented systems.
By fault tolerance techniques, long-running
business process roll-backs can be reduced since
failures of the components can be tolerated by
employing alternative candidates (other Web
services). Although a number of fault tolerance
strategies have been proposed for establishing
reliable traditional systems (Lyu, 1995), in the
fast-growing field of service computing, sys-
tematic and comprehensive studies on software
fault tolerance techniques to transactional Web
services are still missing.

When applying fault tolerance techniques
to the service-oriented systems, several chal-
lenges need to be addressed:

• The commonly-used fault tolerance
strategies should be identified and their
performance needs to be investigated and
compared extensively by theoretical analy-
sis and real-world experiments.

• Quality-of-service (QoS) values of the
Web services are needed for determining
the optimal fault tolerance strategy. How-
ever, some nonfunctional performance of
the Web services (e.g., response-time and
failure-rate) is location-dependent and
difficult to obtain.

• Feasible optimal fault tolerance strategy
selection approaches are needed since
the Internet is highly-dynamic and the
performance of Web services are chang-
ing frequently. However, the optimal fault
tolerance strategy is application dependent
subject to the user preference.

In this paper, we present a distributed fault
tolerance strategy evaluation and selection
framework for Web services, which is designed
and implemented as WS-DREAM (Distributed
REliability Assessment Mechanism for Web
Ser-vice) (Zheng & Lyu, 2008b, a). In WS-
DREAM, the QoS performance of Web services
can be obtained via user-collaboration and the
optimal fault tolerance strategy is determined
in such a way to optimize the performance of
the service-oriented system with a given set
of user requirements. The contributions of the
paper are threefold:

• Identify various commonly-used fault tol-
erance strategies and design a distributed
evaluation framework for Web services.

• Propose a dynamic optimal fault tolerance
strategy selection algorithm, which can
be automatically reconfigured at runtime.

• Implement a working prototype and con-
duct large-scale real-world experiments.
More than 1,000,000 Web service invoca-
tions are executed by 6 distributed service
users different locations on 8 Web services
located in different countries.

Let’s consider motivating example that
user named Ben plans to build reliable service-
oriented application using available fault toler-
ance strategies. He faces several challenges:

(1) What are the commonly-used fault toler-
ance strategies?

(2) How to know the performance of the remote
Web services?

(3) How to select the optimal fault tolerance
strategy based on the user preference?

(4) How to dynamically reconfigure the fault
tolerance strategy when the performance
of remote Web services is changed?

To address these challenges, this paper
first identifies the commonly-used fault toler-
ance strategies with systematic mathematical
formulas in Section 2. Then, a user-collaborated
evaluation framework is proposed for obtain-

International Journal of Web Services Research, 7(4), 21-40, October-December 2010 23

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ing QoS values of Web services efficiently in
Section 3. A dynamic optimal fault tolerance
selection algorithm with user-requirement mod-
els is subsequently proposed in Section 4. To
illustrate the evaluation framework and to study
the performance of various fault tolerance strate-
gies, a prototype is designed and implemented
in Section 5, and detailed experimental results
are presented in Section 6. Finally, related-work
is introduced in Section 7 and conclusion is
provided in Section 8.

2. fAuLt toLerAnCe
StrAtegIeS

Due to the compositional nature of Web services,
reliability of the service-oriented systems be-
comes a formidable challenge. Software fault
tolerance by design diversity (Lyu, 1995) is a
feasible approach for building reliable service-
oriented systems. The major fault tolerance
strategies can be divided into time-redundancy
and space-redundancy (Leu et al., 1990; Salatge
& Fabre, 2007), where time-redundancy uses
extra computation/communication time to
tolerate faults, and space-redundancy employs
extra resources, such as hardware or software,
to mask faults.

Space-redundancy includes active-replica-
tion and passive-replication. Active-replication
is performed by invoking all service candidates
at the same time to process the same request,
and employing the first returned response as
the final outcome (Chan et al., 2007). Passive-
replication invokes a primary candidate to
process the request first. Backup candidates will
be invoked only when the primary candidate
fails. The time-redundancy, active-replication,

and passive-replication are named Time, Active,
and Passive, respectively, in this paper.

As shown in Table 1, combining the basic
strategies (Time, Active, and Passive) can pro-
duce more feasible fault tolerance strategies. As
shown in Figure 1, a strategy named A(B) means
that Strategy B is employed at the lower level
and Strategy A at the higher level. As discussed
in the work (Leu et al., 1990), we assume the
remote Web services are failed in a fixed rate,
and the Web service candidates are independent
with each other.

In the following, we provide detailed in-
troduction and the mathematical formulas for
calculating the failure-rate and response-time
of these fault tolerance strategies. Failure-rate
(f) is the probability that a service request is
incorrectly responded within the maximum
expected time, and response-time (t) is the time
duration between sending a request and receiv-
ing a response of a service user.

1. Active: All the n Web service candidates
are invoked in parallel and the first success-
fully returned response will be selected as
final result. The formulas for calculating
the failure-rate (f) and response-time (t) of
this strategy are defined as:

f fi
i

n

=
=
∏
1

; (1)

where n is the number of candidates, Tc is a
set of Round-Trip Times (RTT) of the success-
ful invocations, and Tf is a set of RTT of the
unsuccessful invocations. When all the parallel

Table 1. Combination of the basic fault tolerance strategies

Active Time Passive

Active 1. Active 5. Active(Time) 7. Active(Passive)

Time 4. Time(Active) 2. Time 9. Time(Passive)

Passive 6. Passive(Active) 8. Passive(Time) 3. Passive

24 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

invocations are failed (| |Tc = 0), the maximal
RTT value is employed as the response-time.

2. Time: The original Web service will be
retried for a certain times if it fails. The
formulas for calculating failure-rate and
response-time are defined as:

f f m= () ;1 (2)

where m is the retried times, f
1

 is the failure-
rate of the remote Web service, and ti is the
response-time of the ith Web service invocation.

3. Passive: Another backup Web service will
be tried sequentially if the primary Web
service fails. The formulas for calculating
failure-rate and response-time are defined
as:

f fi
i

m

=
=
∏
1

; (3)

where m is the recovery times, ti is the invo-
cation response-time of the ith Web service,
and fi is the failure-rate of the ith Web service.

4. Time(Active): As shown in Figure 1 (4),
the first v best performing candidates are
invoked in parallel. The whole parallel
block will be retried if all parallel invoca-
tions fail. The formulas for failure-rate and
response-time are defined as:

f fi
m

i

v

=
=
∏() ;
1

 (4)

where v is the parallel invocation number, m
is the retry times, ti¢ is the response-time of
the ith time of invoking the whole parallel
b l o c k . ti¢ c a n b e c a l c u l a t e d b y

′=
>
=

t
T T

T T
c
i

c
i

f
i

c
ii

min{ } :| |

max{ } :| |
,
0

0
 w h e r e

T T tc
i

f
i

i i
v∪ = ={ } 1 .

5. Active(Time): As shown in Figure 1 (5), the
v best performing candidates are invoked
in parallel. The candidates will be retried
individually if they fail. The formulas are
defined as:

f fi
m

i

v

=
=
∏() ;
1

 (5)

Figure 1. Fault tolerance strategies

International Journal of Web Services Research, 7(4), 21-40, October-December 2010 25

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

where m is the retried times, T T tc f i i
v∪ = ′
={ } 1 ,

and ′ = −

=
∑t t fi ij i

j

j

m

() 1

1

.

6. Passive(Active): As shown in Figure 1
(6), another set of backup candidates will
be tried if all of the primary v candidates
fail. The formulas are defined as:

f fij
j

v

i

m

=
==
∏∏
11

; (6)

where m is the recovery times and

′=
>
=

t
T T

T T
c
i

c
i

f
i

c
ii

min{ } :| |

max{ } :| |

0

0
.

7. Active(Passive): As shown in Figure 1
(7), the best performing v candidates are
invoked in parallel. Each individual can-
didate in the primary v candidates will try
another backup candidate sequentially if
it fails. The formulas are defined as:

f fij
i

m

j

v

=
==
∏∏
11

; (7)

where m is the recovery times,

T T tc f i i
v∪ = ′
={ } 1 , and ′ =

=

−

=
∏∑t t fi ij ik
k

j

j

m

()
1

1

1

.

8. Passive(Time): As shown in Figure 1
(8), the primary candidate will retry itself
for m times before trying other backup
candidates. Only a set of u best perform-
ing candidates are employed as backup
candidates among all the n replicas. The
formulas are defined as:

f fi
m

i

u

=
=
∏() ;
1

 (8)

where ′ = −

=
∑t t fi i i

j

j

m
1

1

.

9. Time(Passive): As shown in Figure 1 (9),
a replica will try another backup candidate
first if it fails. After trying u candidate
without success, all the u candidates will
be retried sequentially. The formulas are
as:

f fi
m

i

u

=
=
∏() ;
1

 (9)

where m is the retried times and ′ =
=

−

=
∏∑t t fi j k
k

j

j

u

()
1

1

1

.
These fault tolerance strategies can be

divided into three types:

• Parallel (Strategy 1): All Web service
candidates are invoked at the same time.
Parallel type strategies can be employed to
obtain good response-time performance, al-
though it consumes a considerable amount
of computing and networking resources.

• Sequential (Strategies 2, 3, 8 and 9):
The Web service candidates are invoked
sequentially. Sequential strategies con-
sume fewer resources, but suffer from bad
response-time performance in erroneous
environments.

• Hybrid (Strategies 4, 5, 6 and 7): A subset
of the Web service candidates are invoked in
parallel. Hybrid strategies consume fewer
resources than parallel strategies and have
better response time performance than the
sequential strategy.

3. dIStrIButed evALuAtIon
frAMeWork

For calculating the response-time and failure-
rate of various fault tolerance strategies, the QoS
performance (response-time and failure-rate)
of target Web services are needed. Without
accurate QoS values of the Web services, it is
really difficult to calculate the performance of
different fault tolerance strategies and make
optimal fault tolerance strategy selection.

26 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Since the service providers may not deliver
the QoS they declared and some QoS properties
(e.g., response-time and failure-rate) are highly
related to the locations and network conditions
of service users, Web service evaluation can be
performed at the client-side to obtain more accu-
rate QoS performance (Wu et al., 2007; Zeng et
al., 2004). However, several challenges have to
be solved when conducting Web service evalu-
ation at the client-side: (1) It is difficult for the
service users to make professional evaluation on
the Web services themselves, since the service
users are usually not experts on the Web service
evaluation, which includes WSDL file analysis,
test case generation, evaluation mechanism
implementation, test result interpretation and
so on; (2) It is time-consuming and resource-
consuming for the service users to conduct a
long-duration evaluation on many Web service
candidates themselves; and (3) The common
time-to-market constraints limit an in-depth and
accurate evaluation of the target Web services.

To address these challenges, we propose
a distributed evaluation framework for Web
services, together with its prototyping system
WS-DREAM (Zheng & Lyu, 2008b, a), as

shown in Figure 2. This framework employs
the concept of user-collaboration, which has
contributed to the recent success of BitTorrent
(Bram, 2003) and Wikipedia (www.wikipedia.
org). In this framework, users in different
geographic locations share their observed QoS
performance of Web services by contributing
them to a centralized server. Historical evalu-
ation results saved in a data center are avail-
able for other service users. In this way, QoS
performance of Web services becomes easy to
be obtained for the service users.

As shown in Figure 2, the proposed dis-
tributed evaluation framework includes a
centralized server with a number of distributed
clients. The overall procedures can be explained
as follows.

1. Registration: Service users submit evalu-
ation requests with related information,
such as the target Web service addresses,
to the WS-DREAM server.

2. Client-side application loading: A client-
side evaluation application is loaded to the
service user’s computer.

Figure 2. Distributed evaluation framework

International Journal of Web Services Research, 7(4), 21-40, October-December 2010 27

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

3. Test case generation: The TestCase Gen-
erator in the server automatically creates
test cases based on the interface of the
target Web Services (WSDL files).

4. Test coordination: Test tasks are scheduled
based on the number of current users and
test cases.

5. Test cases retrieval: The distributed client-
side evaluation applications get test cases
from the centralized server.

6. Test cases execution: The distributed
client-side applications execute the test
cases to conduct testing on the target Web
services.

7. Test result collection: The distributed
client-side applications send back the test
results to the server, and repeat the steps
5, 6 and 7 to retrieval and execute more
test cases.

8. Test result analysis: The TestResult
Analyzer in the server-side is engaged to
process the collected data and send back
the detailed evaluation results to the service
user.

The advantages of this user-collaborated
evaluation framework include:

1. This framework can be implemented and
launched by a trust-worthy third-party to
help service users conduct accurate and
efficient Web service evaluation in an
easy way, without requiring service users
to have professional knowledge on evalu-
ation design, test case generation, test result
interpretation, and so on.

2. The historical evaluation results on the
same Web services can be reused, mak-
ing the evaluation more efficient and save
resource for both the service users and
service providers.

3. The overall evaluation results from differ-
ent service users can be used as useful infor-
mation for optimal Web service selection.
The assumption is that the Web service,
which has good historical performance
observed by most of the service users, has

higher probability to provide good service
to the new service users.

By this framework, evaluation on Web ser-
vices becomes accurate, efficient and effective.

4. fAuLt toLerAnCe
SeLeCtIon

In this section, we propose an algorithm for dy-
namic optimal fault tolerance strategy selection.

4.1 notations and utility function

The notations used in the remainder of this
paper are defined in Table 2, where t is an ab-
stract task and { }ws i

n
=1 is a set of Web service

candidates for t; q1 , q2 , and q 3 are three QoS
properties which present response-time, failure-
rate, and parallel-invocation-number, respec-
tively. All of these three QoS properties are
negative, where smaller value stands for better
quality. Q1 , Q2 , and Q 3 are the user require-
ments on these three QoS properties, respec-
tively. The values of Q1 , Q2 , and Q 3 are set
by the service users. For example, Q1 = 1000ms
means that the task t must be finished within
one second. As a result, the Web service can-
didates with response-time (q1) larger than 1
second will not be selected. Q 3 presents the
user-requirement on the parallel-invocations-
number. For example, the parallel Web service
invocation can be disabled by setting Q 3 to be
1 when the Web service invocations are pay-
ment-oriented.

To quantize performance of different
Web service candidates, a utility function is
defined as:

u w
q
Qj

j

j
j

m

= ×
=
∑
1

 (10)

where wj is the user-defined weights for setting
the priorities of QoS properties, m is the num-

28 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ber of QoS properties, and a smaller value of
utility value u means better performance. The
value of m is three in this paper, since we con-
sider three quality properties in our selection
algorithm. More QoS properties can be added
to our algorithm easily in the future without
fundamental changes.

The design consideration of the utility func-
tion is that response-time performance (q1) of
a particular Web service is related to the cor-
responding user requirement (Q1). For example,
100 ms is a large latency for the latency-sensi-
tive applications, while it is neglectable for the
non-latency-sensitive applications. By using
q
Q

1

1
, we have a more personalized representa-

tion of the response-time performance of Web
services. Failure-rate (q2) and parallel invoca-
tion number (q 3) are similarly considered.

4.2 Selection Algorithm

The target of the selection algorithm is to find
out the optimal fault tolerance strategy for
an abstract task t based on the objective QoS
performance of Web service candidates as well
as subjective requirements of service users. To
determine the optimal fault tolerance strategy,
we first rank the Web service candidates based
on their QoS performance using the utility
function. Then, the optimal parallel invocation
number is determined by solving an optimiza-
tion problem. Finally, the optimal fault tolerance
strategy is determined.

4.2.1 Web Service
Candidate Ranking

The Web service candidates { }ws i
n
=1 for the

task t are ranked by their utility values, which

can be calculated by u w
q

Qi j
i
j

jj
= ×

=∑ 1

3 ,

where ui is the utility value of the ith candidate,
qi
j is the j th quality property of the candidate,

and qi
3 1= since there are no parallel invoca-

tions when ranking the candidates. After the

ranking, { }�ws i
n
=1 is a set of ranked Web service

candidates, where �ws
1

 is the best performing
Web service with the smallest utility value.

4.2.2 Parallel Invocation
Number Determination

By finding out the optimal parallel invocation
number v, the optimal fault tolerance strategy
type can be determined as: Sequential (v = 1),
Hybrid (1 < v < n) and Parallel (v = n). The
value of v can be obtained by solving the fol-
lowing optimization problem:

Problem 1
Minimize:

�u xi i
i

n

=
∑
1

 (11)

Subject to:

�q x Q ki
k
i

i

n
k

=
∑ ≤ =
1

1 2 3(, ,) (12)

xi
i

n

=
∑ =
1

1 (13)

xi Î { , }0 1 (14)

In Problem 1, Equation 11 is the objective
function, where �ui is the utility value of invok-
ing the first i best performing Web service
candidates in parallel ({ }�ws j

i
=1). There are

totally n solutions to this problem, which are i
= 1, …, i = n. Equation 12 is the constraint
function which makes sure the QoS performance
of the solution meets the requirements of service
users. In Equation 12, �qi

1 and �qi
2 is the overall

response-time performance and overall failure-

International Journal of Web Services Research, 7(4), 21-40, October-December 2010 29

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

rate performance of invoking the first i Web
service candidates in parallel, which can be
calculated by employing the Equation 1 in
Section 2, �qi

3 is the parallel invocation number
(�q ii
3 =) and Qk is the user requirements.

Equation 13 and Equation 14 are to make sure
that only one solution will be selected for the
task, where xi is set to 1 if the first i service
candidates are invoked in parallel and 0 other-
wise. Algorithm 1 is designed to solve Problem
1. For each potential solution, we first use
Equation 1 in Section 2 to calculate the overall
QoS values. Then the solutions which cannot
meet the user-requirements are excluded. After
that, the utility values of the remanding solu-
tions are calculated by using the utility function
in Equation 10. Finally, the solution with small-
est utility value ux will be selected as the final
solution for Problem 1 by setting v = x.

4.2.3 Sequential Fault Tolerance
Strategy Determination

If v = 1, sequential strategies (Strategies 2,
3, 8 and 9) will be selected. To determine the
optimal sequential strategy, the poor perform-
ing candidates, which will greatly influence the
response-time performance of sequential strate-
gies, will be excluded. A set of good performing
candidates W will be selected out by using:

W ws u a i ni i= ≤ ≤ ≤{ | , }� 1 (15)

where a is the threshold on candidate perfor-
mance and ui is the utility value of the candi-
date �wsi . If there is no candidate meet the
performance threshold (| |W = 0), the service
user needs to provide more candidates or de-
value the performance threshold a. When
| |W = 1 , strategy 2 (Time) is employed, since
all other strategies need redundant candidates.
When | |W n= , strategy 3 (Passive) is em-
ployed. Otherwise, strategy 8 (Passive(Time))
or strategy 9 (Time(Passive)) will be employed.
p u u1 2 1= − , which is the performance

degradation between �ws
1

 and �ws
2
, is employed

to find out the optimal strategy between strat-
egy 8 and strategy 9. When the performance
degradation is large (p b

1
³ , where b is the

threshold of performance degradation), retrying
the original Web service (�ws

1
) first is more

likely to obtain better performance (strategy 8)
than invoking the backup candidate (strategy
9).

4.2.4 Hybrid Fault Tolerance
Strategy Determination

If 1 < v < n, hybrid fault tolerance strategies
will be selected. p

2
 represents the performance

Figure 3. Algorithm 1- parallel invocation number calculation

30 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

difference between the primary v candidates
and the secondary v candidates. p

2
can be

calculated by

p
v

u ui v i
i

v

2
1

1
= −+

=
∑() (16)

where v is the parallel invocation number. If
the performance difference is large (p b

2
³),

retrying the original parallel candidates first is
more likely to obtain better performance (Strat-
egies 4 and 5) than invoking the secondary v
backup candidates (Strategies 6 and 7).
p
3
is the failure frequency of the first v

candidates, which can be calculated by

p
v

qi
i

v

3
2

1

1
=

=
∑ (17)

where q2 is the failure-rate of the ith candidate.
In the erroneous environment (p c

3
³), strat-

egy 5 and strategy 7 will be selected, since
strategy 4 and strategy 6 need to wait for all
responses of the parallel candidates before
retrying/recovering, which will greatly degrade
the response-time performance.

4.2.5 Parallel Fault Tolerance
Strategy Determination

If v = n, strategy 1 (Active) will be selected.
Strategy Active invokes all the candidates in
parallel. Figure 4 shows the whole fault toler-
ance strategy selection procedures discussed
above. First, the sequential, hybrid, and paral-
lel types are determined based on the parallel
invocation number v. Then, the detailed strat-
egy will be determined based on the values of
W , p

1
, p

2
, and p

3
.

4.3 dynamic fault tolerance
Strategy reconfiguration

The performance of Web services may change
dramatically or the services may even become
unavailable in the unpredictable Internet en-

vironment. Moreover, the user-requirements
of the optimal fault tolerance strategy may
change from time to time. To enable dynamic
reconfiguration of the optimal fault tolerance
strategy, we propose a dynamic reconfiguration
approach as shown in Figure 5. The reconfigu-
ration procedures are as follows: (1) the initial
optimal fault tolerance strategy is calculated
by employing the selection algorithm in Sec-
tion 4.2. (2) The service-oriented application
invokes the remote Web services with the
selected fault tolerance strategy, and records
the QoS performance (e.g., response-time,
failure-rate) of the invoked Web services. (3) If
the performance of the fault tolerance strategy
is unacceptable or the renewal time is come,
the service-oriented application will update the
user requirements and employed the updated
information for recalculating the new optimal
fault tolerance strategy.

By the above reconfiguration approach,
service users can handle the frequently context
information changes by recalculating optimal
fault tolerance strategy using updated QoS
performance of the target Web services as well
as updated user-requirements. The recalculation
frequency is application-dependent and con-
trolled by the service users based on their
preference, which is out of the scope of this
paper.

5. IMPLeMentAtIon

To illustrate the distributed evaluation frame-
work and the fault tolerance strategy selection
algorithm, a prototype (www.wsdream.net) is
implemented. The client-side of WS-DREAM
is realized as a Java Applet, which can be
loaded and run automatically by the Internet
browsers of the service users. The server-side
of WS-DREAM is implemented as several
components, including a HTML Web site (www.
wsdream.net), a TestCaseGenerator (Java ap-
plication), a TestCoodinator (Java Servlet), and
a data center for recording evaluation results
and test-cases (MySQL).

To study the performance of the nine fault
tolerance strategies presented in Section 2 and

International Journal of Web Services Research, 7(4), 21-40, October-December 2010 31

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the strategy selection algorithm proposed in
Section 4, a large-scale real-world experiment
is conducted. In the experiment, a set of 8 real-
world Web services are employed. As shown in
Table 3, these Web services include 6 function-
ally equivalent Amazon Web services located
in 6 countries, a GlobalWeather Web service
located in US and a IPService located in US.
More than 1,000,000 Web service invocations
are executed by these service users and the
detailed experimental results will be reported
in Section 6.

6. exPerIMentS

6.1 Individual Web Services

Figure 6 and Figure 7 show the experiment re-
sults from the six distributed service users (US,
HK, SG, CN, TW and AU) on the six Amazon
Web services (a1–a6). In Figure 6, under the
Location column, U stands for user-locations
and WS presents the Web services. cn, tw, au, sg,
hk, us present the six user-locations conducting
the evaluation. As shown in Table 3, a1, a2, a3,

Figure 4. Fault tolerance strategy selection procedure

Figure 5. Optimal fault tolerance strategy reconfiguration procedures

32 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

a4, a5 and a6 stand for the six Amazon Web
Services, which are located in US, Japan, Ger-
many, Canada, France, and UK, respectively.
The Cases column shows the failure-rate (F%),
which is the number of failed invocations (Fail)
divided by the number of all invocations (All).
The RTT column shows the average (Avg) and
standard deviation (Std) of the response-time/
Round-Trip-Time (RTT) performance. The
ProT column shows the average (Avg) and
standard deviation (Std) of the process-time
(ProT), which is the time consumed by the
Web service server for processing the request
(time duration between the Web service sever
receives and request and sends out the corre-
sponding response).

The experimental results in Figure 6 and
Figure 7 show:

• As shown in Figure 7 (a), the response-
time (RTT) performance of the target Web
services change dramatically from user
to user. For example, invoking a-us only
needs 74 milliseconds on average from
the user location of us, while it requires
4184 milliseconds on average from the
user-location of cn.

• As indicated by the Std values in Figure 6,
even in the same location, the RTT perfor-
mance vary drastically from time to time.
For example, in the user-location of cn, the
RTT values of invoking a1 vary from 562
milliseconds to 9906 milliseconds in our

experiment. The unstable RTT performance
degrades service quality and makes the
latency-sensitive applications easy to fail.

• The ProT values in Figure 6 indicate that
the response-times of the Amazon Web ser-
vices are mainly consist of network-latency
rather than server processing-time. Since
the average process-times of all the six
Amazon Web services are all less than 50
milliseconds, which is very small compared
with the RTT values shown in Figure 6.

• Users under poor network conditions
are more likely to suffer from unreliable
service, since unstable RT T performance
degrades service quality and even leads
to timeout failures. Figure 7 (b), which
illustrates the failure-rates of the Web
services, shows that the service user with
the worst RTT performance (cn) has the
highest failure rate, while the service user
with the best RTT performance (us) has
the lowest failure-rate.

Figure 8 and Figure 9 show the experi-
mental results of the GlobalWeather and GeoIP
Web services. The same as Figure 6, Figure 8
and Figure 9 shows that performance of the
Web services is quite different from location to
location. Comparing with the GlobalWeahter
and GeoIP Web services, the ECommerceSer-
vice Web services provide better failure-rate
performance. This may related to the fact that
the ECommerceService Web services are pro-

Table 2. Locations of the web services

WS Names Providers Locations

ECommerceService Amazon US

ECommerceService Amazon Japan

ECommerceService Amazon Germany

ECommerceService Amazon Canada

ECommerceService Amazon France

ECommerceService Amazon UK

GlobalWeather WebserviceX.net US

GeoIP WebserviceX.net US

International Journal of Web Services Research, 7(4), 21-40, October-December 2010 33

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

vided by big company (Amazon) and are built
for e-business purpose.

6.2 fault tolerance Strategies

Real-world experiments are conducted to study
the performance of different fault tolerance
strategies. Figure 10 shows the experimental
results of various fault tolerance strategies em-
ploying the six functionally equivalent Amazon
Web services (a1,...,a6) as redundant service
candidates. Figure 10 shows that Strategy 1
(Active) has the best RTT performance. This

is reasonable, since Strategy 1 invokes all the
six candidates at the same time and employs
the first returned response as the final result.
However, its failure-rate is high compared
with other strategies, which may be caused by
opening too many connections simultaneously.
Nevertheless, the failure rate of 0.027% is
relatively small compared with the failure rate
incurred without employing any fault tolerance
strategies, as shown in Figure 6. RTT perfor-
mance of sequential type strategies (Strategies
2, 3, 8 and 9) is worse than other strategies,
because they invoke candidates one by one.

Figure 6. Experimental results of the Amazon web services

34 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The reliability performance of these strategies
is the best (without any failure). Hybrid type
strategies (Strategies 4, 5, 6 and 7) achieve good
RTT performance, although not the best. The
reliability performance is also in the middle,
better than parallel type strategy but worse than
sequential type strategies. All the 15 failures
shown in Figure 10 are due to timeout of all
the six Web service candidates, which may be
caused by client-side network problems.

6.3 optimal ft Strategy Selection
Scenarios

6.3.1 Scenario 1:
Commercial Application

In Section 1, we present a scenario that a ser-
vice user named Ben plans to build a reliable
service-oriented application and faces several
challenges. More specifically, we assume that
Ben’s service-oriented application will be

Figure 7. Response-time and failure-rate performance

Figure 8. Experimental results of the GlobalWeather web services

Figure 9. Experimental results of the GeoIP web services

International Journal of Web Services Research, 7(4), 21-40, October-December 2010 35

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

deployed in Hong Kong and the Amazon Web
services will be invoked for book displaying
and selling in this commercial Web application.
The followings are the performance require-
ments of Ben:

1) Response-time. Ben sets the requirement
on response-time Q1 as 500 ms, since too
large response latency will lead to loss of
business. .

2) Failure-rate. Since the application is com-
mercial, the failure-rate requirement Q2
is set to be 0.5% by Ben.

3) Parallel invocation number. Invoking too
many parallel candidates will consume
significant computing and networking
resources. Therefore, Ben sets Q 3 to be 3.

Employing the optimal fault tolerance
strategy selection algorithm proposed in Section
4.2 and the QoS performance of the Amazon
Web services shown in Figure 6, the selection
procedures are shown in Figure 11. In Figure
11, for ease of discussion, we set
w w w1 2 3 1 3= = = / , which are the weights
for different quality properties. The values of
the thresholds a, b, and c are set as a = 2; b =
1; c = 1% empirically. Q1 , Q2 and Q 3 are set
based on the user-requirements. { }wsi i=1

6 is a
set of Web service candidates. The response-
time (q1) and failure-rate (q2) of these candi-

dates are shown in Figure 6. After calculating
the utility values of these candidates using
Equation 10, the candidates are ranked as
{ }�wsi i=1

6 . For determining the optimal parallel
invocation number (v), Algorithm 1 is em-
ployed. The utility values of invoking different
number of parallel candidates are shown in
{ }�ui i=1

6 . The smallest utility value is selected
out and v is set to be 1 accordingly.

Since v = 1, sequential type strategy will
be selected (Strategy 2, 3, 8, and 9). Because
| |W = 3 (only the top three best performing
candidates are selected), and p

1
1< (the dif-

ference between the primary candidate and
secondary candidate is not significant), Strat-
egy 9 (Time(Passive)) is selected (backup
candidates will be invoked if the primary can-
didate fails, and all the three candidate will be
retried if all of them fail).

As shown in Figure 6, from the location
of Hong Kong, network condition is good and
the failure-rate is low. The response-time im-
provement of invoking candidates in parallel
is limited. Therefore, sequential strategies for
this scenario are reasonable.

6.3.1 Scenario 2:
Noncommercial Web Page

In scenario 2, we assume another service user
named Tom in the location of cn also plans to
employ the Amazon Web services to provide

Figure 10. QoS performance of the fault tolerance strategies

36 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

book information query service in his personal
home page. The performance requirements of
Tom are as follows:

1) Response-time. Since the Web page of Tom
is noncommercial, the response-time re-
quirement Q1 is set to be 3000
milliseconds.

2) Failure-rate. Since the Web page of Tom
is not for critical purposes, the failure-rate
Q2 is set to be 5%.

3) Parallel invocation number. Q 3 is set to
be 3.

After conducting the selection procedures
shown in Figure 12, Strategy 7 (Active(Passive))
with three parallel invocations is selected as
the optimal strategy for Tom. In this scenario,
the failure-rates of individual Web services are
high. Hybrid strategy with suitable number
of parallel invocations can be employed to
improve the failure-rate performance as well
as response-time performance. Our algorithm
provides suitable fault tolerance strategy selec-
tion result for this scenario.

7. reLAted Work And
dISCuSSIon

A number of fault tolerance strategies for Web
services have been proposed in the recent
literature (Salatge & Fabre, 2007; Chan et al.,
2007; Foster et al., 2003; Moritsu et al., 2006;
Vieira et al., 2007). The major approaches
can be divided into sequential strategies and
parallel strategies. Sequential strategies invoke
a primary service to process the request. The
backup services are invoked only when the
primary service fails. Sequential strategies
have been employed in FT-SOAP (Fang et
al., 2007) and FT-CORBA (Sheu et al., 1997).
Parallel strategies invoke all the candidates at
the same time, which have been employed in
FTWeb (Santos et al., 2005), Thema (Merideth
et al., 2005) and WS-Replication (Salas et al.,
2006). In this paper, we provide systematic
introduction on the commonly-used fault tol-
erance strategies. Moreover, we present the
hybrid fault tolerance strategies, which are the
combination of the basic strategies.

A great deal of research effects have been
performed in the area of Web service evalua-

Figure 11. Selection procedures of scenario 1

International Journal of Web Services Research, 7(4), 21-40, October-December 2010 37

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

tion. Various approaches, such as Qos-aware
middleware (Zeng et al., 2004), reputation
conceptual model (Maximilien & Singh, 2002),
and Bayesian network based assessment model
(Wu et al, 2007), have been proposed. Some
recent work (Rosario et al., 2008; Zeng et al.,
2004; Wu et al., 2007; Deora et al., 2003) also
take subjective information, such as provider
reputation, user rating and user requirement,
into consideration to make evaluation more
accurate. For presenting the non-functional
characteristics of the Web services, QoS
models of Web services have been discussed
in a number of recent literature (Ardagna &
Pernici, 2007; Jaeger et al., 2004; O’Sullivan
et al., 2002; Ouzzani & Bouguettaya, 2004;
Thio & Karunasekera, 2005). The QoS data of
Web services can be measured from either the
service user’s perspective (e.g., response-time,
success-rate, etc.) or the service provider’s
perspective (e.g., price, availability, etc.). In
this paper, we consider the most representative
QoS properties (response-time, failure-rate,
and parallel-invocation-number). QoS mea-
surement of Web services has been used in the
Service Level Agreement (SLA) (Ludwig et al.,
2003), such as IBMs WSLA framework (Keller

& Ludwig, 2002) and the work from HP (Sahai
et al., 2002). In SLA, the QoS data are mainly
for the service providers to maintain a certain
level of service to their clients and the QoS
data are not available to others. In this paper,
we introduce the concept of user-collaboration
and provide a framework to enable the service
users to share their individually-obtained Web
service QoS values for the best fault tolerance
strategy. The experimental prototype is shown
to make Web service evaluation and selection
effcient, effective and optimal.

Recently, dynamic Web service composi-
tion has attracted great interests, where complex
applications are specified as service plans and
the optimal service candidates are dynamically
determined at runtime by solving optimization
problems. Although the problem of dynamic
Web service selection has been studied by a
number of research tasks (Ardagna & Pernici,
2007; Bonatti & Festa, 2005; Yu et al., 2007;
Zeng et al., 2004; Sheng et al., 2009), very
few previous work focuses on the problem of
dynamic optimal fault tolerance strategy selec-
tion. In this paper, we address this problem by
proposing an optimal fault tolerance strategy
selection algorithm, which can dynamically up-

Figure 12. Selection procedures of scenario 2

38 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

date the optimal fault tolerance strategy to deal
with the frequent context information changes.

The WS-Reliability (OASIS, 2005) can be
employed in our overall Web services frame-
work for enabling reliable communication.
The proposed WSDREAM framework can be
integrated into the SOA runtime governance
framework (Kavianpour, 2007) and applied to
industry projects.

9. ConCLuSIon

This paper proposes a distributed fault tolerance
strategy evaluation and selection framework
for Web services. Based on this framework,
we study and compare various fault tolerance
strategies by theoretical formulas as well as
experimental results. Based on both objective
QoS performance of Web services as well as
subjective user requirements, an optimal strat-
egy selection algorithm is designed. Motivated
by the lack of large-scale real-world experiments
in the field of service-oriented computing, a
prototype (WS-DREAM) is implemented and
comprehensive real-world experiments are con-
ducted by distributed service users all over the
world. The experimental results are employed
for performance study of the individual Web
services, the fault tolerance strategies, and the
proposed strategy selection algorithm. With the
facility of the proposed framework, accurate
evaluation of Web services and fault tolerance
strategies can be acquired effectively through
user-collaboration, and optimal fault tolerance
strategy can be obtained dynamically at runtime.

Currently, this distributed evaluation
framework can only work on stateless Web
services. More investigations are needed to
apply it to stateful Web services. Our future
work will also include the tuning of the selection
algorithm (e.g., the values of the thresholds a, b
and c), the investigation of more QoS proper-
ties, and better use of historical Web service
evaluation results.

ACknoWLedgMent

The work described in this paper was fully sup-
ported by Microsoft Research Asia Research
Grant FY09-RES-OPP-103, and a grant from
the Research Grants Council of the Hong Kong
Special Administrative Region, China (Project
No. CUHK4158/08E).

referenCeS

Ardagna, D., & Pernici, B. (2007). Adaptive service
composition in flexible processes. IEEE Transactions
on Software Engineering, 369–384. doi:10.1109/
TSE.2007.1011

Bonatti, P. A., & Festa, P. (2005). On optimal service
selection. In Proceedings of the WWW (pp. 530-538).

Bram, C. (2003). Incentives build robustness in bit-
torrent. In Proceedings of the First Workshop on the
Economics of Peer-to-Peer Systems.

Chan, P. P., Lyu, M. R., & Malek, M. (2007). Reli-
able web services: Methodology, experiment and
modeling. In Proceedings of the ICWS (pp. 679-686).

Deora, V., Shao, J., Gray, W. A., & Fiddian, N. J.
(2003). A quality of service management framework
based on user expectations. In Proceedings of the
ICSOC.

Fang, C. L., Liang, D., Lin, F., & Lin, C. C. (2007).
Fault tolerant web services. Journal of Systems
Architecture, 53(1), 21–38. doi:10.1016/j.sys-
arc.2006.06.001

Foster, H., Uchitel, S., Magee, J., & Kramer, J.
(2003). Model-based verification of web service
compositions. In Proceedings of the ASE.

Jaeger, M. C., Rojec-Goldmann, G., & Muhl, G.
(2004). Qos aggregation for web service composi-
tion using workflow patterns. In Proceedings of the
EDOC (pp. 149-159).

Kavianpour, M. (2007). Soa and large scale and
complex enterprise transformation. In Proceedings
of the ICSOC (pp. 530-545).

Keller, A., & Ludwig, H. (2002). The wsla frame-
work: Specifying and monitoring service level
agreements for web services. In Proceedings of the
IBM Research Division.

International Journal of Web Services Research, 7(4), 21-40, October-December 2010 39

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Leu, D., Bastani, F., & Leiss, E. (1990). The effect of
statically and dynamically replicated components on
system reliability. IEEE Transactions on Reliability,
39(2), 209–216. doi:10.1109/24.55884

Ludwig, H., Keller, A., Dan, A., King, R., &
Franck, R. (2003). A service level agreement
language for dynamic electronic services. Elec-
tronic Commerce Research, 3(1-2), 43–59.
doi:10.1023/A:1021525310424

Lyu, M. R. (1995). Software Fault Tolerance. Trends
in Software. New York: Wiley.

Maximilien, E., & Singh, M. (2002). Conceptual
model of web service reputation. SIGMOD Record,
31(4), 36–41. doi:10.1145/637411.637417

Merideth, M. G., Iyengar, A., Mikalsen, T., Tai, S.,
Rouvellou, I., & Narasimhan, P. (2005). Thema:
Byzantine-fault-tolerant middleware forweb-service
applications. In Proceedings of the SRDS (pp. 131-
142).

Moritsu, T., Hiltunen, M. A., Schlichting, R. D.,
Toyouchi, J., & Namba, Y. (2006). Using web ser-
vice transformations to implement cooperative fault
tolerance. In Proceedings of the ISAS (pp. 76-91).

O’Sullivan, J., Edmond, D., & ter Hofstede,
A. H. M. (2002). What’s in a service? Distrib-
uted and Parallel Databases, 12(2/3), 117–133.
doi:10.1023/A:1016547000822

OASIS. (2005). Web services reliable messaging. Re-
trieved from http://specs.xmlsoap.org/ws/2005/02/
rm/ws-reliablemessaging.pdf

Ouzzani, M., & Bouguettaya, A. (2004). Efficient
access to web services. IEEE Internet Computing,
8(2), 34–44. doi:10.1109/MIC.2004.1273484

Rosario, S., Benveniste, A., Haar, S., & Jard, C.
(2008). Probabilistic qos and soft contracts for
transaction-based web services orchestrations.
IEEE Trans on Services Computing, 1(4), 187–200.
doi:10.1109/TSC.2008.17

Sahai, A., Durante, A., & Machiraju, V. (2002). To-
wards automated sla management for web services.
In Proceedings of the HP Laboratory.

Salas, J., Perez-Sorrosal, F., Marta Pati, M., &
Jim’enez-Peris, R. (2006). Wsreplication: a frame-
work for highly available web services. In Proceed-
ings of the WWW (pp. 357-366).

Salatge, N., & Fabre, J. C. (2007). Fault tolerance
connectors for unreliable web services. In Proceed-
ings of the DSN (pp. 51-60). DOI http://dx.doi.
org/10.1109/DSN.2007.48

Santos, G. T., Lung, L. C., & Montez, C. (2005).
Ftweb: A fault tolerant infrastructure for web services.
In Proceedings of the EDOC (pp. 95-105).

Sheng, Q. Z., Benatallah, B., Maamar, Z., & Ngu, A.
H. (2009). Configurable composition and adaptive
provisioning of web services. IEEE Trans on Services
Computing, 2(1), 34–49. doi:10.1109/TSC.2009.1

Sheu, G. W., Chang, Y. S., Liang, D., Yuan, S. M.,
& Lo, W. (1997). A fault-tolerant object service on
corba. In Proceedings of the ICDCS (p. 393).

Thio, N., & Karunasekera, S. (2005). Automatic
measurement of a qos metric for web service rec-
ommendation. In Proceedings of the ASWEC (pp.
202-211).

Vieira, M., Laranjeiro, N., & Madeira, H. (2007).
Assessing robustness of web-services infrastructures.
In Proceedings of the DSN (pp. 131-136). doi: http://
dx.doi.org/10.1109/DSN.2007.16

Wu, G., Wei, J., Qiao, X., & Li, L. (2007). A bayes-
ian network based qos assessment model for web
services. In Proceedings of the SCC.

Yu, T., Zhang, Y., & Lin, K. J. (2007). Efficient al-
gorithms for web services selection with end-to-end
qos constraints. ACM Trans Web, 1(1), 6. doi: http://
doi.acm.org/10.1145/1232722.1232728

Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M.,
Kalagnanam, J., & Chang, H. (2004). Qos-aware
middleware for web services composition. IEEE
Trans Softw Eng, 30(5), 311-327. doi: http://dx.doi.
org/10.1109/TSE.2004.11

Zhang, L. J., Zhang, J., & Cai, H. (2007). Services
Computing. New York: Springer.

Zheng, Z., & Lyu, M. R. (2008a). A distributed rep-
lication strategy evaluation and selection framework
for fault tolerant web services. In Proceedings of the
ICWS (pp 145-152).

Zheng, Z., & Lyu, M. R. (2008b). Ws-dream: A
distributed reliability assessment mechanism for web
services. In Proceedings of the DSN (pp. 392-397).

40 International Journal of Web Services Research, 7(4), 21-40, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Zibin Zheng received his B.Eng. degree and M.Phil. degree in Computer Science from the Sun
Yat-sen University, Guangzhou, China, in 2005 and 2007, respectively. He is currently a Ph.D.
candidate in the department of Computer Science and Engineering, The Chinese University of
Hong Kong. He received SIGSOFT Distringuish Paper Award at ICSE’2010, Best Student Pa-
per Award at ICWS’2010, and IBM Ph.D. Fellowship Award 2010-2011. He served as program
committee member of IEEE CLOUD’2009 and CLOUDCOMPUTING’2010. He also served
as reviewer for international journal and conferences, including TSE, TPDS, TSC, JSS, DSN,
ICEBE, ISSRE, KDD, SCC, WSDM, WWW, etc. His research interests include service comput-
ing, software reliability engineering, and cloud computing.

Michael R. Lyu received the B.S. degree in electrical engineering from National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C., in 1981; the M.S. degree in computer engineering from University
of California, Santa Barbara, in 1985; and the Ph.D. degree in computer science from the
University of California, Los Angeles, in 1988. He is currently a Professor in the Department
of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong, China.
He is also Director of the Video over Internet andWireless (VIEW) Technologies Laboratory. He
was with the Jet Propulsion Laboratory as a Technical Staff Member from 1988 to 1990. From
1990 to 1992, he was with the Department of Electrical and Computer Engineering, University
of Iowa, Iowa City, as an Assistant Professor. From 1992 to 1995, he was a Member of Techni-
cal Staff in the applied research area of Bell Communications Research (Bellcore), Morristown,
NJ. From 1995 to 1997, he was a Research Member of Technical Staff at Bell Laboratories,
Murray Hill, NJ. His research interests include software reliability engineering, distributed
systems, fault-tolerant computing, mobile networks, Web technologies, multimedia information
processing, and E-commerce systems. He has published over 270 refereed journal and confer-
ence papers in these areas. He has participated in more than 30 industrial projects and helped
to develop many commercial systems and software tools. He was the editor of two book volumes:
Software Fault Tolerance (New York: Wiley, 1995) and The Handbook of Software Reliability
Engineering (New York: IEEE and New McGraw-Hill, 1996). Dr. Lyu received Best Paper
Awards at ISSRE’98 and ISSRE’2003. Dr. Lyu initiated the First International Symposium on
Software Reliability Engineering (ISSRE) in 1990. He was the Program Chair for ISSRE’96 and
General Chair for ISSRE’2001. He was also PRDC’99 Program Co-Chair, WWW10 Program
Co-Chair, SRDS’2005 Program Co-Chair, PRDC’2005 General Co-Chair, and ICEBE’2007
Program Co-Chair, and served in program committees for many other conferences including
HASE, ICECCS, ISIT, FTCS, DSN, ICDSN, EUROMICRO, APSEC, PRDC, PSAM, ICCCN,
ISESE, and WI. He has been frequently invited as a keynote or tutorial speaker to conferences
and workshops in the U.S., Europe, and Asia. He has been on the Editorial Board of the IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, the IEEE TRANSAC-
TIONS ON RELIABILITY, the Journal of Information Science and Engineering, and Software
Testing, Verification & Reliability Journal. Dr. Lyu is an IEEE Fellow and AAAS Fellow for his
contributions to software reliability engineering and software fault tolerance. He was also named
Croucher Senior Research Fellow in 2008.

