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Abstract—Feature selection has attracted a huge amount of
interest in both research and application communities of data
mining. We consider the problem of semi-supervised feature
selection, where we are given a small amount of labeled examples
and a large amount of unlabeled examples. Since a small number
of labeled samples are usually insufficient for identifying the rel-
evant features, the critical problem arising from semi-supervised
feature selection is how to take advantage of the information un-
derneath the unlabeled data. To address this problem, we propose
a novel discriminative semi-supervised feature selection method
based on the idea of manifold regularization. The proposed
approach selects features through maximizing the classification
margin between different classes and simultaneously exploiting
the geometry of the probability distribution that generates both
labeled and unlabeled data. In comparison with previous semi-
supervised feature selection algorithms, our proposed semi-
supervised feature selection method is an embedded feature
selection method and is able to find more discriminative features.
We formulate the proposed feature selection method into a
convex-concave optimization problem, where the saddle point cor-
responds to the optimal solution. To find the optimal solution, the
level method, a fairly recent optimization method, is employed.
We also present a theoretic proof of the convergence rate for the
application of the level method to our problem. Empirical evalu-
ation on several benchmark data sets demonstrates the effective-
ness of the proposed semi-supervised feature selection method.

Index Terms—Feature selection, level method, manifold regu-
larization, multiple kernel learning, semi-supervised learning.

I. Introduction

W ITH THE development of information technology,
abundant features are produced to describe larger and

more complex tasks, evolving in text processing, computer
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vision, bioinformatics, sensor networks, and so on. Extracting
relevant information from a potentially overwhelming quantity
of data becomes more and more important. Moreover, the
abundance of features requires high computational ability and
storage capability. Feature selection, which is known as a
process of selecting relevant features and reducing dimension-
ality, has been playing an important role in both research
and application [7], [21], [26]. It has been employed in a
variety of real-world applications, such as natural language
processing, image processing, and bioinformatics, where high
dimensionality of data is usually observed. It is also used
in distributed communication systems and sensor networks,
where each mobile equipment or sensor has very limited com-
putational power. Overall, feature selection is a very important
method that is often applied to reduce the computational
cost or to save storage space, for problems with either high
dimensionality or limited resources.

Feature selection can be conducted in a supervised or unsu-
pervised manner, in terms of whether the label information
is utilized to guide the selection of relevant features [36].
Generally, supervised feature selection methods require a large
amount of labeled training data. It, however, could fail to
identify the relevant features that are discriminative to different
classes, provided the number of labeled samples is small. On
the other hand, while unsupervised feature selection methods
could work well with unlabeled training data, they ignore the
label information and therefore are often unable to identify
the discriminative features. Given the high cost in manually
labeling data, and at the same time abundant unlabeled data
is often easily accessible, it is desirable to develop feature
selection methods that are capable of exploiting both labeled
and unlabeled data. This motivates us to introduce semi-
supervised learning [9], [68] into the feature selection process.

Semi-supervised learning approaches can be roughly cate-
gorized into two major groups. The first group is based on
the clustering assumption that most data examples, including
both the labeled ones and the unlabeled ones, should be far
away from the decision boundary of the target classes. The
representative approaches in this category include tranductive
support vector machine (SVM) and semi-supervised SVM
[11], [12], [27], [54], [59], [60]. The second group is based
on the manifold assumption that most data examples lie on a
low-dimensional manifold in the input space. The well-known
algorithms in this category include label propagation [67],
harmonic function [69], graph cuts [6], spectral graph trans-
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ducer [28], and manifold regularization [3]. A comprehensive
study of semi-supervised learning techniques can be found
in [9], [68]. Among these semi-supervised learning algorithms,
the method of semi-supervised SVM with manifold regular-
ization has demonstrated good performance [3], [45]. In this
paper, we try to employ the idea of manifold regularization to
semi-supervised feature selection.

Semi-supervised feature selection studies how to better
identify the relevant features that are discriminative to
different classes by effectively exploring the information
underlying the huge amount of unlabeled data. In [65],
a filter-based semi-supervised feature selection method
was proposed, which ranks features via some information
measure. As argued in [21], the filter-based feature selection
could discard important features that are less informative by
themselves but are informative when combined with other
features. Moreover, it can also ignore the underlying learning
algorithm that is used to train classifiers from labeled data.
Therefore, it is hard to find features that are particularly
useful to a given learning algorithm.

To avoid these disadvantages, we discuss in detail a novel
semi-supervised feature selection method based on the idea
of manifold regularization [57]. In the proposed method,
an optimal subset of features is identified by maximizing a
performance measure that combines classification margin with
manifold regularization. Experiments on several benchmark
data sets indicate the promising results of the proposed
method in comparison with the state-of-the-art approaches
for feature selection. We summarize the contributions of this
paper in the following.

1) We propose a novel discriminative semi-supervised fea-
ture method based on the maximum margin principle
and the manifold regularization. The feature selection
process is embedded with the semi-supervised classifier,
which distinguishes itself from the existing filter-based
methods for semi-supervised feature selection methods.
The maximum margin principle guarantees the discrim-
inative ability of the selected features. We have theoret-
ically shown that the proposed method is equivalent to
the optimization over an mixed norm related to L2 and
L0 regularization, which ensures the sparsity of selected
features.

2) The manifold regularization in the proposed feature
selection method assures that the decision function is
smooth on the manifold constructed by the selected
features of the unlabeled data. This, therefore, better
exploits the underlying structural information of the
unlabeled data.

3) We successfully formulate the presented semi-
supervised feature selection method into a concave-
convex problem, where the saddle point corresponds to
the optimal solution. We then derive an extended level
method [34], [56] for semi-supervised feature selection
in order to efficiently find the optimal solution of the
concave-convex problem. The proof of the convergence
rate is also presented in this paper.

The rest of this paper is organized as follows. In Section
II, we review the previous paper on feature selection. In Sec-

tion III, we derive the discriminative semi-supervised feature
selection model. We then employ the level method to solve the
optimization problem for semi-supervised feature selection in
Section IV. Section V presents the experimental evaluation of
the proposed semi-supervised feature selection method on digit
images and text data sets, under both of the transductive setting
and the semi-supervised setting, followed by the conclusion in
Section VI.

II. Related Work

Feature selection has been a fundamental research topic
in data mining. The goal of feature selection is to choose
from the input data a subset of features that maximizes a
generalized performance criterion. Thus, it is different from
feature extraction [2], [24], [30], [43], [44], [62], which maps
the input data into a reduced representation set of features.
Comparing with feature extraction, feature selection keeps the
same space as the input data and thus has better interpretability
for some specific applications. We focus on the review of
recent paper for feature selection.

A number of performance criteria have been proposed for
feature selection, including mutual information [19], [31],
maximum margin [22], [52], kernel alignment [15], [37],
graph-spectrum based measures [53], [66], construction errors
in neural network [35], [42], worst case probability [4], [61],
and so on. Among them, the maximum-margin-based criterion
is probably one of the most widely used criteria for feature
selection, due to its outstanding performance.

Generally, supervised feature selection algorithms can be
classified into three categories: filters, wrappers, and embed-
ded approaches, according to the degrees of the interaction
between the feature selection method and the corresponding
classification model [7], [21]. Among these feature selection
methods, embedded feature selection methods based on the
maximum margin principle have attracted a lot of research
focus recently. A typical method is SVM-recursive feature
elimination [22] where features with the smallest weights
were removed iteratively. In [20], [38], L1-norm of weights in
SVM was suggested to replace L2-norm for feature selection
when learning an SVM model. Another feature selection
model related to L1-norm is lasso [50], which selects features
by constraining the L1-norm of weights. By varying L1-
norm of weights, a unique path of selected features can
be obtained. A similar model is least angle regression [18],
which can be regarded as unconstrained version of lasso. In
addition, several studies [8], [51] explored L0-norm when
computing the weights of features. In [8], the authors proposed
feature selection concave method that uses an approximate
L0-norm of the weights. It was improved in [37], [51] via
an additional regularizer or a different approximation of L0-
norm. In [58], a non-monotonic feature selection method via
direct optimization of feature indicators in the framework of
multiple kernel learning can be regarded as a primal-form
approximation of L0-norm. Compared with supervised feature
selection, unsupervised feature selection is more challenging
in that there is no categorical information available. Indeed,
the goal of unsupervised feature selection is to find a small
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feature subset that best keeps the intrinsic clusters from data
according to the specified clustering criterion [17], [53].

Extended from supervised feature selection and unsu-
pervised feature selection, semi-supervised feature selection
works on both the labeled data and the unlabeled data. In [65],
the score obtained by combining the spectral and the mutual
information is used to rank features in the semi-supervised
setting. However, it suffers from both the weak interaction
among features, and the weak interaction between the feature
selection heuristics and the corresponding classifier. Some
other heuristics, including Fisher score [64], forward search
[41], and genetic search [23], suffer from the same problem
when applied for feature selection. Instead, our proposed semi-
supervised feature selection method works in an embedded
way: the feature selection process is integrated to the semi-
supervised classifier by taking advantage of manifold regu-
larization. This, therefore, takes good care of the correlation
among features and the integration between the features and
the semi-supervised classifiers. Furthermore, the manifold
regularization assists our proposed method to select the subset
of features that captures the structural information underneath
the unlabeled data.

III. Semi-Supervised Feature Selection Model

In this section, we present the semi-supervised feature
selection model that is based on the maximum margin prin-
ciple and the manifold regularization principle. The former
principle guarantees that the selected features have a good
discriminative ability, while the latter assures that the decision
function is smooth on the manifold constructed from the
unlabeled data. Before presenting the semi-supervised feature
selection model, we first introduce the notations that will be
used throughout this paper.

Let X = (x1, . . . , xn) ∈ Rn×d denote the entire data set,
which consists of n data points in d-dimensional space. The
data set includes both the labeled examples and the unlabeled
ones. We assume that the first l examples within X are labeled
by y = (y1, y2, . . . , yl), where yi ∈ {−1, +1} represents the
binary class label assigned to xi. For convenience, we also
denote the collection of labeled examples by X� = (x1, . . . , xl),
and the unlabeled examples by Xu, such that X = (X�, Xu).

The goal of semi-supervised feature selection is to find a set
of m relevant features by using both the labeled examples and
the unlabeled ones. It is important to note that determining
the number of selected features is a model selection problem,
which is beyond the scope of this paper. Following [48], we
assume that the number of selected features, i.e., m, has been
decided by an external oracle. It should also be noted that
the number of required features usually is dependent on the
objective of the task, and there is no single number of features
that are optimal for all tasks.

A. Semi-Supervised SVM Based on Manifold Regularization

Following the framework of manifold regularization [3],
a semi-supervised SVM can be obtained by penalizing a

regularization term defined as

‖f‖2
I =

n∑
i=1

n∑
j=1

(f (xi) − f (xj))2Wij = f�Lf

where Wij are the edge weights defined on a pair of nodes
(xi, xj) of the adjacency graph. f = [f (x1), . . . , f (xn)] denotes
the decision function values over all data examples. The graph
Laplacian L is defined as L = D − W, where D is a diagonal
matrix and Dii =

∑n
j=1 Wij . According to [3], ‖f‖2

I indeed
reflects the smoothness of the decision function with respect
to the marginal distribution of X.

Considering a linear SVM where the decision function can
be represented as f (xi) = w�xi−b, the manifold regularization
term ‖f‖2

I is equal to w�X�LXw. Note that the bias term b

has no effect on calculating the regularization term. Then, the
semi-supervised SVM can be represented as follows:

min
w,b,ξ

1

2
‖w‖2

2 + C

l∑
i=1

ξi +
ρ

2
w�X�LXw (1)

s.t. yi(w�xi − b) ≥ 1 − ξi i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l

where τ denotes the margin error and ρ is a tradeoff parameter
between the two regularization terms of w satisfying ρ ≥ 0.

In order to efficiently solve the optimization problem (1),
we calculate its dual. We, therefore, introduce the following
lemma.

Lemma 1: The dual problem of (1) can be written as

max
α

α�e − 1

2
(α ◦ y)�X�(I + ρX�LX)−1X�

� (α ◦ y)

s.t. α�y = 0

0 ≤ α ≤ C

where α ∈ Rn is the dual variable, I ∈ Rn×n is the identity
matrix, and ◦ is an operator of the element-wise product.

Lemma 1 can be easily verified using the Lagrange theory.

B. Semi-Supervised Feature Selection Model Based on Mani-
fold Regularization

In the following, we will show how to derive the model of
semi-supervised feature selection via manifold regularization.

First, we introduce the indicator variable p, where p =
(p1, . . . , pd)� and pi ∈ {0, 1}, i = 1, . . . , d, to represent
which features are selected. We further introduce a diagonal
matrix D(p) = diag(p1, . . . , pd). Then the input data are now
represented as XD(p). In order to indicate that m features are
selected, we will have p�e = m. We then have Proposition 1 to
describe the optimization problem with respect to the feature
indicator and the decision function.

Proposition 1: The optimal feature subset for the optimiza-
tion problem in (1) can be obtained by solving the following
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combinatorial problem:

min
w,b,ξ,p∈{0,1}d

1

2
‖w‖2

2 + C

l∑
i=1

ξi

+
ρ

2
w�D(p)X�LXD(p)w (2)

s.t. yi(w�D(p)xi − b) ≥ 1 − ξi i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l

p�e = m.

To simplify the presentation, we introduce a matrix Z as
follows:

Z = X�LX. (3)

For the convenience of discussion, we assume matrix Z is non-
singular, although the derivation that follows can be easily
extended to the singular case by simply replacing matrix
inverse with matrix pseudo inverse.

The following proposition reveals that the feature selection
approach stated in (2) is equivalent to a mixture of L2 and L0

regularization. This, therefore, guarantees the sparsity of the
obtained solution.

Proposition 2: The problem in (2) is equivalent to a mixture
of L2 and L0 regularization, that is

min
w,b,ξ

1

2
‖w‖2

2 + C

l∑
i=1

ξi +
ρ

2
w�Zw (4)

s.t. yi(w�xi − b) ≥ 1 − ξi i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l

‖w‖0 = m.

The equivalence between (2) and (4) can be easily verified by
redefining w as wD(p) and replacing constraint p�e = m with
constraint ‖w‖0 = m.

The theorem below shows that (2) can be reformulated into
a min-max optimization, which is the key for speeding up the
computation.

Theorem 1: The problem in (2) is equivalent to the follow-
ing min-max optimization problem:

min
p∈P̃

max
α∈Q

φ(p, α) (5)

where

P̃ = {p ∈ {0, 1}d |p�e = m}

Q = {α ∈ [0, C]l|α�y = 0}
and φ(p, α) is defined as

φ(p, α) = α�e − 1

2ρ
(α ◦ y)�X�(

Z−1 − [
Z + ρZD(p)Z

]−1
)

X��(α ◦ y).

When ρ is very small (i.e., ρ � 1), φ(p, α) is approximated
as

φ(p, α) = α�e − 1

2
(α ◦ y)�X�D(p)X�

� (α ◦ y).

The proof of this theorem can be found in Appendix A. As
indicated by the above theorem, when ρ is small, the manifold
regularization term can essentially be ignored.

One of the major challenges in solving the optimization
problem in (2), or the equivalence in (5), arises from the
constraint that {pi}di=1 have to be binary variables. To avoid
the combinatorial nature of the problem, we relax the binary
variable pi ∈ {0, 1} to a continuous one, i.e., pi ∈ [0, 1],
and convert the discrete optimization problem in (5) into the
following continuous optimization problem:

min
p∈P

max
α∈Q

φ(p, α) (6)

where the domain p is modified as

P = {p ∈ [0, 1]d |p�e = m}.
Theorem 2: The problem in (6) is indeed a convex-concave

optimization problem, and therefore its optimal solution is the
saddle point of φ(p, α).
The proof can be found in Appendix B. As indicated by the
above theorem, the problem in (6) is essentially a convex
problem and therefore its global optimal solution can be found
via standard techniques.

Although (6) is a convex-concave optimization problem
with a guarantee to find the global optimal solution, solving
it efficiently is very challenging. To reduce the computational
complexity, in the following proposition, we consider a variant
of the min-max optimization problem for (6).

Proposition 3: Equation (6) is equivalent to the following
min-max optimization problem:

min
p∈P

max
α∈Q

h(p, α) (7)

where

h(p, α) = α�e − 1

2
(α ◦ y)�X��X�

� (α ◦ y) (8)

and � is defined as

� = D(p) (I + ρD(p)ZD(p))−1 D(p). (9)

The proof of Proposition 3 is similar to the proof of
Theorem 1.

As the above optimization problem is hard to optimize due
to the existence of the inverse, we then proceed to simplify �

in h(p, α).
The following proposition provides a simple upper bound

for �.
Proposition 4: We introduce the matrix A as

A = (1 − τ)2D(p) +
τ2

ρ
Z−1 (10)

where τ is a trade-off parameter. We have A � � for any
τ ∈ [0, 1].

The proof can be found in Appendix C. It is important to
point out that the solution of A formulated in (29) is only one
of the possible solutions to bound �. Finding the optimal A is
also a challenging problem. However, given p, one can search
for an optimal value of τ to make the bound much tighter. As
our final goal is to derive an approximated convex optimization
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problem and the solution in (29) satisfies our goal, we will not
go deeper to examine the optimality of A.

Using the result in Proposition 4, we replace � with A,
which results in the following optimization problem:

min
p

max
α,τ

α�e − 1

2
(α ◦ y)�X�AX�

� (α ◦ y) (11)

s.t. α�y = 0, 0 ≤ α ≤ C

0 ≤ p ≤ 1 p�e = m

0 ≤ τ ≤ 1.

Because A is linear in p, (11) is substantially simpler to solve
than (7). In addition, since A � �, (α ◦ y)�X�AX�

� (α ◦ y) ≥
(α◦y)�X��X�

� (α◦y) can be obtained. Therefore, for a given τ,
the optimization problem in (11) defines a lower bound to the
maximization problem in (7). However, it is desirable to bound
the gap between the optimal solution and the approximated
solution. We leave this for a future paper.

It is interesting to examine (11) with a fixed τ. When τ = 0,
the problem in (11) is reduced to a supervised feature selection
algorithm. When τ = 1, (11) leads to a semi-supervised
classification approach utilizing all features. Now we can use
(11) to approximate (7).

C. Optimization Method

Before introducing an optimization method to solve the
optimization problem, we first discuss the relationship between
the model of semi-supervised feature selection and multiple
kernel learning [1], [33], [49], [56]. Note that for a linear
kernel, the kernel matrix K can be written as

K = X�X�
� =

d∑
i=1

viv�
i =

d∑
i=1

Ki

where vi is the ith feature of X�. The term Ki = viv�
i can then

be regarded as a base kernel which is calculated on a single
feature. Therefore, the term (1 − τ)2X�D(p)X�

� can be written
as (1− τ)2 ∑d

i=1 piKi. We further define H = X�(X�LX)−1X�
�

which can be seen as a kernel matrix defined on the entire
data set. The overall optimization problem can be formulated,
by switching p and τ, max

0≤τ≤1
ψ(τ), where ψ(τ) is defined as

min
p

max
α

α�e − 1

2
(α ◦ y)�M(α ◦ y) (12)

s.t. α�y = 0, 0 ≤ α ≤ C

p�e = m

0 ≤ pi ≤ 1, i = 1, . . . , d

where

M = (1 − τ)2
d∑

i=1

piKi +
τ2

ρ
H. (13)

Therefore, the optimization problem in (12) is related to a
kernel learning problem. According to [33], the dual problem

Algorithm 1 A procedure to solve the concave-convex problem

1: Initialize p0 = m
d

e and i = 0
2: repeat
3: Solve the dual of SVM with kernel M = (1 −

τ)2 ∑d
i=1 piKi + τ2

ρ
H and obtain optimal solution αi

4: Solve the minimization problem related to p to obtain
pi

5: Update i = i + 1 and calculate stopping criterion 	i

6: until 	i ≤ ε

of ψ(τ) can be formulated as a minimization problem, that is

min
p,t,ν,δ,θ

t + 2Cδ�e

s.t.

(
M ◦ yy� e + ν − δ + θy

(e + ν − δ + θy)� t

)
� 0

ν ≥ 0 δ ≥ 0, θ ≥ 0

p�e = m, 0 ≤ p ≤ 1.

For a given τ, the above optimization problem is indeed a
semi-definite programming (SDP) problem.

However, the SDP problem involves high computational and
storage complexity. Hence, it is hard to be applied in large
scale feature selection problems. Instead, we seek to employ
efficient optimization techniques to solve the optimization
problem in (12). Indeed, (12) can be regarded as a concave-
convex problem, since (12) is concave in α and convex in p.
The saddle point of (12) corresponds to the optimal solution.
According to the literatures of multiple kernel learning and
convex optimization, we can formulate an alternating proce-
dure to solve the concave-convex problem: in each step, the
solution of α and that of p are alternatively optimized. More
specifically, the procedure can be described in Algorithm 1.

In Algorithm 1, 	i denotes the terminating condition, an
example of which is the duality gap. Step 3 deals with the
optimization problem related to SVM, where a number of
efficient optimization packages could be employed. Step 4
minimizes the problem over p. As the optimization problem
(12) is a linear function of p, a smooth optimization technique
is needed in order to guarantee the fast convergence of the
concave-convex procedure. In this sense, Step 4 plays a very
important role for the overall optimization. Efficient methods
to solve this step include the cutting plane method [49],
the subgradient descent method [40], and the level method
[56]. Among them, the level method has shown its significant
improvements over the other two methods on the convergence
speed [56]. Although some simplification methods of SDP
could lead to a quadratic programming (QP) problem [13],
they may not apply to our case, due to the constraints on p. In
the following, we discuss how to derive an extended level
method to solve the concave-convex optimization problem
related to semi-supervised feature selection.

IV. Level Method for Semi-Supervised Feature

Selection

The level method [34] is from the family of bundle meth-
ods, which has recently been employed to efficiently solve
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regularized risk minimization problems [47] and multiple
kernel learning problems [56]. In this paper, we extend the
level method to solve the semi-supervised feature selection
problem.

A. Introduction to Level Method

The level method is an iterative approach designed for
optimizing a non-smooth objective function. Let f (x) denote
the convex objective function to be minimized over a convex
domain G.

In the ith iteration, the level method first constructs a lower
bound for f (x) by a cutting plane model, denoted by gi(x).
The optimal solution, denoted by x̂i, that minimizes the cutting
plane model gi(x) is then computed. An upper bound f

i
and

a lower bound f
i

are computed for the optimal value of the
target optimization problem based on x̂i.

Next, a level set for the cutting plane model gi(x) is
constructed, denoted by

Li = {x ∈ G : gi(x) ≤ leveli}
leveli = λf

i
+ (1 − λ)f i

where λ ∈ (0, 1) is a tradeoff constant.
Finally, a new solution xi+1 is computed by projecting xi

onto the level set Li. It is important to note that the projection
step, serving a similar purpose to the regularization term in
subgradient descent methods, prevents the new solution xi+1

from being too far away from the old one xi.
To demonstrate this point, consider a simple example

min
x

{f (x) = [x]2 : x ∈ [−4, 4]}.

Assume x0 = −3 is the initial solution. The cutting plane
model at x0 is

g0(x) = h0(x) = 9 − 6(x + 3).

The optimal solution minimizing g0(x) is x̂1 = 4. If we directly
take x̂1 as the new solution, as the cutting plane method does,
we will find that it is significantly worse than x0 in terms of
[x]2. The level method alleviates this problem by projecting
x0 = −3 to the level set

L0 = {x : g0(x) ≤ 0.9[x0]2 + 0.1g0(x̂1), −4 ≤ x ≤ 4}
where λ = 0.9. It is easy to verify that the projection of x0

to L0 is x1 = −2.3, which significantly reduces the objective
function f (x) compared with x0. This is illustrated in Fig. 1. ∇
denotes the lower bound value in one iteration and � denotes
the projected solution.

B. Level Method for Semi-Supervised Feature Selection

We now derive an extended level method for the concave-
convex optimization problem (12) that is related to semi-
supervised feature selection. To facilitate the description, we
denote the objective function of (12) as follows:

ϕ(p, α) = α�e − 1

2
(α ◦ y)�M(α ◦ y). (14)

Fig. 1. Illustration of the Level method. We aim to minimize f (x) over
[−4,4]. With the help of the affine lower bound function gi(x), we are able
to gradually approximate the optimal solution.

The optimization problems related to p and α are defined as
follows:

ϕα(p) = max
α∈Q

ϕ(p, α) (15)

ϕp(α) = min
p∈P

ϕ(p, α). (16)

Since ϕ(p, α) is convex in p and concave in α, according
to the van Neuman lemma, for any optimal solution (p∗, α∗),
we have

ϕ(p, α∗) = ϕα(p)

≥ ϕ(p∗, α∗) ≥ ϕ(p∗, α) = ϕp(α).

This observation suggests that one can iteratively update both
the lower and the upper bounds for ϕ(p, α) in order to find
the saddle point.

To obtain the bounds, we first construct the cutting plane
model. Let {pj}ij=1 denote the solutions for p obtained in the
last i iterations. Let αj = argmaxα∈Qϕpj (α) denote the optimal
solution that maximizes ϕ(pj, α). We calculate the gradient of
ϕ(p, α) over p as follows:

[∇pϕ(p, α)]i = −1

2
(α ◦ y)�Ki(α ◦ y) i = 1, . . . , m.

We then construct a cutting plane model gi(p)

gi(p) = max
1≤j≤i

ϕ(pj, αj) + (p − pj)�∇p(pj, αj).

As ϕ(p, α) is linear in p, gi(p) can be simplified as follows:

gi(p) = max
1≤j≤i

ϕ(p, αj). (17)

Remark: It is important to note that the cutting plane model
in (17) utilizes the historical information of previous steps. As
indicated in the illustration, the historical information is help-
ful to locate the solution. Using only the gradient information
of the current iteration may introduce large oscillations. Due to
the non-smoothness of the space P , the historical information
can help to improve the stability of solutions.

We derive the following proposition for the cutting plane
model.
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Proposition 5: For any p ∈ P , we have

gi+1(p) ≥ gi(p), (18)

gi(p) ≤ ϕα(p). (19)

Proposition 5 shows that the cutting plane model in (17)
indeed defines a more and more accurate lower bound for the
optimal value of φ(p, α) as the optimization progresses.

Then we can construct the lower and the upper bounds for
the optimal value ϕ(p∗, α∗). We define two quantities ϕi and
ϕi as follows:

ϕi = min
p∈P

gi(p) (20)

ϕi = min
1≤j≤i

ϕ(pj, αj). (21)

The following theorem shows that {ϕj}ij=1 and {ϕj}ij=1 provide
a series of increasingly tight bounds for ϕ(p∗, α∗).

Theorem 3: We obtain the following properties for {ϕj}ij=1

and {ϕj}ij=1:

ϕi ≤ ϕ(p∗α∗) ≤ ϕi (22)

ϕ1 ≥ ϕ2 ≥ . . . ≥ ϕi (23)

ϕ1 ≤ ϕ2 ≤ . . . ≤ ϕi. (24)

Proof: First, since gi(p) ≤ maxα∈Q ϕ(p, α) for any p ∈ P ,
we have

ϕi = min
p∈P

gi(p) ≤ min
p∈P

max
α∈Q

ϕ(p, α).

Second, since ϕ(pj, αj) = max
α∈Q

ϕ(pj, α), we have

ϕi = min
1≤j≤i

ϕ(pj, αj)

= min
p∈{p1,...,pi}

max
α∈Q

ϕ(p, α)

≥ min
p∈P

max
α∈Q

ϕ(p, α)

= ϕ(p∗, α∗).

Combining the above results, we obtain (22) in the theorem.
It is easy to verify (23) and (24).

Theorem 3 shows that the series of lower bound values
(ϕj)ij=1 is non-decreasing and the series of upper bound values
(ϕj)ij=1 is non-increasing. Therefore, we can use these two
quantities to bound the optimal value ϕ(p∗, α∗).

We furthermore define the gap 	i as

	i = ϕi − ϕi. (25)

The following corollary indicates that the gap 	i can be
used to measure the sub-optimality for solution pi and αi.

Corollary 1: We have the following properties for 	i:

	j ≥ 0j = 1, . . . , i

	1 ≥ 	2 ≥ . . . ≥ 	i

|ϕ(pj, αj) − ϕ(p∗, α∗)| ≤ 	i.

It is easy to verify these three properties of 	i in the above
corollary using the results of Theorem 3. Corollary 1 shows
that the difference of the current objective value to the optimal
value is always bounded by the non-increasing gap 	i.

Algorithm 2 The level method for semi-supervised feature selection

1: Initialize p0 = m
d

e and i = 0
2: repeat
3: Solve the dual problem of SVM with M = (1 −

τ)2X�D(pi)X�
� + τ2

ρ
H to obtain the optimal solution αi

4: Construct the cutting plane model gi(p) in (17)
5: Calculate the lower bound ϕi and the upper bound ϕi

in (21), and the gap 	i in (25)
6: Compute the projection of pi onto the level set Li by

solving the optimization problem in (27)
7: Update i = i + 1
8: until 	i ≤ ε

In the third step, we define the current level as

�i = λϕi + (1 − λ)ϕi.

We then construct the level set Li using the estimated
bounds ϕi and ϕi as follows:

Li = {p ∈ P : gi(p) ≤ �i} (26)

where λ ∈ (0, 1) is a predefined constant. The new solution,
denoted by pi+1, is computed as the projection of pi onto
the level set Li, which is equivalent to solving the following
optimization problem:

min
p∈P

‖p − pi‖2
2 (27)

s.t. ϕ(p, αj) ≤ �ij = 1, . . . , i.

By means of the projection, we on the one hand aim to ensure
that pi+1 is not very far away from pi, and on the other hand
ensure that a significant progress is made when the solution
is updated from pi to pi+1.

As stated in [56], although the projection is regarded as a QP
problem, it can often be solved efficiently because its solution
is likely to be the projection onto one of the hyperplanes of
polyhedron Li. In other words, only a few number of linear
constraints of L are active, while most of others are inactive.
This sparsity nature usually leads to significant speedup of
QP, similar to the solver of SVM [39]. Moreover, with the
optimization progresses, especially when it is near to the
convergence, there are less changes the values of p. Using
warm-start techniques, we can obtain the new solution very
efficiently.

We summarize the steps of the extended level method for
semi-supervised feature selection in Algorithm 2.

Finally, we discuss the convergence behavior of the level
method. In general, convergence is guaranteed because the gap
	i, which bounds the absolute difference between ϕ(p∗, α∗)
and ϕ(pi, αi), monotonically decreases through iterations.
Based on [56], the following theorem shows the convergence
rate of the level method when applied to semi-supervised
feature selection.

Theorem 4: To obtain a solution p that satisfies the stopping
criterion, that is

| max
α∈Q

ϕ(p, α) − ϕ(p∗, α∗)| ≤ ε
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the maximum number of iterations N that the level method
requires is bounded as follows:

N ≤ 2c(λ)L2

ε2
(28)

where

c(λ) =
1

(1 − λ)2λ(2 − λ)

L =
1

2

√
dC2 max

1≤i≤d
|vi|2.

Note L is the Lipschitz constant of ϕ(p, α). The convergence
rate can be derived similarly as in [55].

We now analyze the overall complexity. In each iteration,
the main complexity is bound by the complexity of an SVM
solver, which is usually in the scale of O(n2.5), since the two
subproblems of the level method are a linear programming
and a simple quadratic programming, respectively. Therefore,
in general, the overall complexity of the proposed algorithm
can be bound by O(n2.5/ε2).

C. Extension to Multiclass Feature Selection

Before presenting how to extend the model of semi-
supervised feature selection to multiclass problems, we first
discus the approaches related to multiclass SVM. Generally,
multiclass SVM can be solved by combining a series of binary
classification problems. Standard approaches include the one-
against-one approach and the one-against-others approach. For
an overview on multiclass SVM, the readers can refer to
[16], [25], where the performance of different implementations
is compared. Multiclass SVM can also be regarded as a
global optimization problem [14], a structured-output SVM
[29], or a Bayesian inference problem [63]. Here we are not
concerning the aspect of which approach is better. Instead,
we will show the multiclass semi-supervised feature selection
problem can also be as easily solved as the binary problem.
In the following, we employ the one-against-others approach
to implement the multiclass semi-supervised feature selection.

Consider a data set with N classes, denoted by
{C1, . . . , CN}. We denote the number of examples in class
Ci as ni. For the one-against-others approach, there are totally
t = N binary classification problems. In this case, we can write
the multiclass feature selection problem in the following way:

min
p∈P

max
α̂∈∧Q

α̂�e

−1

2
(α̂ ◦ ŷ)�

(
(1 − τ)2

m∑
i=1

piK̂i + τ2Ĥ

)
(α̂ ◦ ŷ)

where

α̂ = [α1, . . . , αN ] ∈ Rn×N

ŷ = [y1, . . . , yN ] ∈ Rn×N

K̂i = D(S1
i , . . . , SN

i ) ∈ Rn×N × Rn×N

Ĥ = D(H, . . . , H) ∈ Rn×N × Rn×N.

In the above multiclass feature selection problem, we sup-
pose the kth classifier is composed by the kth class and the
rest classes. αk ∈ Rn (for 1 ≤ k ≤ N) is the dual variable

TABLE I

Text Data Sets for Evaluation

Corpus Data Set # Cat # Doc # Dim
20-NG auto versus motor 2 2000 5341

baseball versus hockey 2 2000 6311
gun versus mideast 2 2000 7821

news.rec 4 2000 8959
news.sci 4 2000 9674
news.talk 3 3000 9533

Reuters money versus trade 2 1203 2498
ship versus trade 2 772 2321

# Cat, # Doc, and # Dim denote the number of categories, the
number of documents, and the number of features, respectively.

for the kth classifier. For the kth classifier, the class labels
ŷk ∈ {−1, +1}n satisfying ŷk

h = +1 for 1 ≤ h ≤ n if xk
h belongs

to Ci and ŷk
h = −1 otherwise. Sk

i ∈ Rn × Rn denotes the kth
block of the block-diagonal kernel matrix K̂i constructed by
the ith kernel function for the kth classifier.

Now we can solve the semi-supervised multiclass feature
selection problem using the Levle method. The only change
is the calculation of the gradient. The gradient for each element
of p can be calculated as

[∇pf (p, α)]i = −1

2
(α̂ ◦ ŷ)�K̂i(α̂ ◦ ŷ) i = 1, . . . , m.

Correspondingly, the cutting plane model gi(p) in the ith
iteration can be calculated as

gi(p) = max
1≤j≤i

ϕ(pj, αj) + (p − pj)�∇pϕ(pj, αj).

V. Experiments

In this section, we thoroughly compare the proposed semi-
supervised feature selection method with previous state-of-
the-art feature selection algorithms. In the following, we will
introduce the data sets employed in the paper, the experimental
setup and experimental results.

A. Data Description

We adopt two types of data sets: digit characters
and text documents. For the data sets of digit char-
acters, we select three tasks from the United States
Postal Service (USPS) data set, i.e., 4 versus 7, 2
versus 3, and 3 versus 8, to make the learning tasks more
challenging. For each task, we randomly select 400 digit
images to form a data set. Each digit image is a 16 × 16
gray scale image. For the data sets of text documents, five
subsets of text documents are selected from two benchmark
text corpora, i.e., 20-Newsgroups (20-NG) and Reuters-21578.
Their detailed information is summarized in Table I.

B. Experimental Setup

We denote by FS-Manifold the proposed discriminative
feature selection method based on manifold regularization.
We compare our algorithm with the following state-of-the-
art approaches for feature selection: Fisher [5], L0-SVM [51]
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TABLE II

Classification Accuracy (%) on Binary Text Data Sets

Data Set #F FS-Manifold L1-SVM L0-SVM Fisher

auto versus motor
50 82.9±2.4 82.2±2.9 82.3±2.9 82.3±3.5

100 83.5±2.2 82.9±2.6 83.2±2.6 83.4±2.6

baseball versus hockey
50 89.7±3.9 88.7±8.6 89.1±4.9 89.8±6.9

100 91.1±3.4 90.9±5.8 90.3±3.7 90.3±5.6

gun versus mideast
50 84.2±4.3 82.0±4.4 82.9±4.3 81.3±4.7

100 85.8±3.9 84.1±4.2 85.2±4.4 84.3±4.1

money versus trade
50 90.1±1.7 89.4±2.4 90.0±2.0 89.1±2.7

100 90.7±1.6 89.7±2.2 90.5±1.5 90.0±2.5

ship versus trade
50 95.4±1.6 94.1±2.2 94.6±1.7 94.3±2.2

100 95.9±1.3 95.0±1.7 95.4±1.6 95.3±1.5

#F denotes the number of selected features. The best result, and those not significantly
worse than it (t-test with 95% confidence level), are highlighted.

and L1-SVM [20]. The description of the selected comparison
methods is as follows.

1) Fisher [5] calculates a Fisher/Correlation score for each
feature.

2) L0-SVM [51] approximates the L0-norm by minimizing
a logarithm function.

3) L1-SVM [20] replaces L2-norm of the weights w with
L1-norm in SVM and leads to a sparse solution.

For all the comparison methods, features with the largest
scores are selected. SVM is used as the evaluation classifier
since it is usually regarded as the state-of-the-art classification
method.

It is important to note that we also compare the above
methods with the semi-supervised feature selection method
proposed in [65], which selects features according to the
spectral and the normalized mutual information. However,
given the small amount of training data used in our semi-
supervised learning algorithm, it is usually difficult to tune
parameters for the optimal setup. Furthermore, due to the
weak interaction between features and the class labels, it is
unstable in the scenario of small training samples and it usually
performs significantly worse than L0-SVM. Therefore, we do
not include its results in this paper.

The regularization parameter C in all SVM-based fea-
ture selection methods is chosen from the set {10−3, 10−2,

10−1, 1, 10, 100, 1000} by a 5-fold cross validation. The trade-
off parameter τ in our proposed FS-Manifold is also tuned by
a 5-fold cross validation and selected from {0, 0.1, . . . , 0.9, 1}.
The parameter ρ is fixed to 10, since the tradeoff is naturally
taken care of by the parameter τ. To calculate the Laplacian, a
graph is constructed. We adopt the Cosine similarity measure
and the binary weights. The number of neighbors is set to 20
for all cases. In addition, we set the parameter λ in the level
method to 0.9, since a larger λ means more regularization
from the previous solution and thus the solution is more stable
especially when it is near to the optimal solution.

We adopt two settings for semi-supervised feature selection.
One is the transductive setting: all the test data are used as
unlabeled data during training. Another is semi-supervised
setting: a part of the test data are employed as unlabeled data
and the left data are regarded as new data and not involved in
training.

TABLE III

Classification Accuracy (%) on Multi-Category

Text Data Sets

Data Set #F FS-Manifold L0-SVM Fisher
news.rec 200 73.1±3.3 72.8±2.0 72.1±2.0
news.sci 200 67.4±3.3 66.5±3.0 66.4±3.4
news.talk 200 57.2±2.4 55.4±2.1 54.7±2.4

The best result, and those not significantly worse than it
(t-test with 95% confidence level), are highlighted.

In the following, we first present experiments on transduc-
tive settings for both the USPS digits recognition task and the
text categorization task. Then we present experiments under
semi-supervised setting.

C. Experiments on USPS Digits Recognition

In this experiment, the training examples are randomly
selected such that each category has the same number of
examples. The remaining examples are then employed as the
test data. As the USPS data sets are engaged to examine how
the property of features changes with the number of labeled
examples, we vary the number of training examples within
the set of {6, 10, 20, 30, 40}. For each setting of the training
samples, the number of selected features is set to 10, 20, and
30, respectively. This is because a small number of features
(pixels) are enough to identify the digits. In all cases, every
experiment is repeated with 30 random trials.

In the following, we first examine the results of the USPS
data sets. We plot the results on the USPS data sets averaged
over 30 runs in Figs. 2–4. Fig. 2 shows the test accuracy of
the feature selection algorithms when the number of required
features is set to 10.

First, we analyze the experimental results from the per-
spective of embedding the feature selection process to the
classification method. It can be observed that the maximum
margin based methods (SVM-based methods) usually perform
better in identifying the discriminative features comparing
with the non-SVM based method, Fisher. The advantage is
more significant for the proposed semi-supervised feature
selection method, i.e., FS-Manifold. For example, for the task
of 4 versus 7, when the number of training samples is 30 and
the number of required features is 10, the improvement of FS-
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Fig. 2. Comparison among different feature selection algorithms when the number of selected features is equal to 10. The number of training samples is set
as 6, 10, 20, 30, and 40, respectively. (a) 2 versus 3. (b) 3 versus 8. (c) 4 versus 7.

Fig. 3. Comparison among different feature selection algorithms when the number of selected features is equal to 20. The number of training samples is set
as 6, 10, 20, 30, and 40, respectively. (a) 2 versus 3. (b) 3 versus 8. (c) 4 versus 7.

Fig. 4. Comparison among different feature selection algorithms when the number of selected features is equal to 30. The number of training samples is set
as 6, 10, 20, 30, and 40, respectively. (a) 2 versus 3. (b) 3 versus 8. (c) 4 versus 7.

Manifold over Fisher is over 3%. This indicates the advantage
of embedding the feature selection process to the classifier.

Second, we analyze the results from the perspective of
whether the unlabeled data are employed. Compared with the
supervised feature selection methods, FS-Manifold achieves
promising test accuracy. In a number of cases, FS-Manifold
outperforms the supervised feature selection methods. This is
because the information supplied by the manifold structure of
the unlabeled data helps to identify the global smooth features
where the data lie in.

Figs. 3 and 4 show the test accuracy when the number of
required features is set to 20 and 30, respectively. Consis-
tent results are also observed. This, therefore, indicates the

importance of the proposed semi-supervised feature selection
method, which takes advantage of the maximum margin prin-
ciple and the manifold regularization principle.

D. Experiments on Text Categorization

For the text data sets, we fix the number of training
documents to be 50, since the scales of the text data sets
are significantly larger than those of the USPS data sets. For
each text data set, we consider two settings that the number
of required features is equal to 50 and 100, respectively. It is
interesting to note that the features (words) in the text data
sets are very sparse and therefore more features are needed to
represent the documents.
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Fig. 5. Accuracy of different feature selection algorithms for unlabeled data and new test data, respectively. (a) Baseball versus hockey. The number of
selected features is set to 50. (b) Baseball versus hockey. The number of selected features is set to 100.

Fig. 6. Accuracy of different feature selection algorithms for unlabeled data and new test data, respectively. (a) Gun versus mideast. The number of selected
features is set to 50. (b) Gun versus mideast. The number of selected features is set to 100.

We report the averaged prediction accuracy and the standard
deviation on the text data sets in Table II. The best result,
and those not significantly worse than it (t-test with 95%
confidence level), are highlighted. We can observe that the
proposed semi-supervised feature selection method performs
better than other methods in lot of cases. For example, in the
gun versus mideast data set, the improvement of FS-Manifold
over Fisher is nearly 4% when the number of selected features
is equal to 50. Furthermore, it is important to note that, for
each data set, FS-Manifold achieves smaller deviation values
than other feature selection methods. This phenomenon, which
may be due to the global smoothness induced by the manifold
regularization, suggests that FS-Manifold is more robust in
selecting features.

We then conduct experiments for multiclass classification.
For the multiclass data, the number of training examples is set
to 100 and the number of selected features is set to 200. This is
because the task of feature selection for multiclass text catego-

rization becomes more challenging than binary classification.
We show the results experiments on multiclass classification in
Table III. Consistent with the results of binary classification,
the proposed algorithm achieves better categorization accuracy
than other algorithms.

E. Semi-Supervised Setting

To understand the generalization of the proposed feature
selection algorithm, we conduct experiments on the semi-
supervised setting, i.e., part of the test data are not employed
in training. For clear of presentation, we regard this part of test
data as new data. Under this setting, we divide the test data
into two equal size parts: one for training, and the other for
testing. The other settings remain the same as the transductive
setting.

We show the results of the selected data sets, i.e., base-
ball versus hockey and gun versus mideast, in Figs. 5 and 6.
Results on other data sets are consistent with the results of the
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selected data sets. It can be observed that in all cases for both
data sets, the proposed feature selection algorithm achieves
better accuracy on both the unlabeled data and the new coming
test data. For example, for baseball versus hockey, when the
number of features is set to 100, as shown in Fig. 5(b), the
improvement of the proposed FS-Manifold over Fisher is about
2%. It is important to note that the accuracy on the new data
is consistent with the accuracy on the unlabeled training data.

In summary, the proposed semi-supervised feature selec-
tion algorithm improves the accuracy of supervised feature
selection algorithms. The t-test with the confidence of 95%
indicates that the improvement in a number of cases is
significant, which is much clearer in text data. Unfortu-
nately, we did not observe the improvement in all cases. It
should be noted that semi-supervised learning is sensitive
to data distributions and experimental settings. This is also
observed in [10], where different algorithms seem to have
clearly different performance. Furthermore, it is still unclear
in what theoretical conditions semi-supervised learning would
outperform supervised learning [32], [46]. As semi-supervised
feature selection is a newly emerging and challenging topic,
it is very deserving to find the theoretical conditions where it
would improve supervised feature selection.

VI. Conclusion and Future Work

We have presented a discriminative semi-supervised feature
selection method via manifold regularization. The proposed
method selects features through maximizing the margin be-
tween different classes and at the same time exploiting the
geometry of the probability distribution that generates the
data. Comparing with other supervised and semi-supervised
feature selection algorithms, our proposed semi-supervised
feature selection method is an embedded feature selection
method and is able to find more discriminative features. We
successfully formulate the resulting semi-supervised feature
selection method as a concave-convex optimization problem,
where the saddle point corresponds to the optimal solution. We
then derive an extended level method to find the optimal solu-
tion of the concave-convex problem. Empirical evaluation with
several benchmark data sets demonstrates the effectiveness of
our proposed feature selection method over the state-of-the-art
feature selection methods.

This paper can be improved from several perspectives. One
is to study how to efficiently solve large scale semi-supervised
feature selection problems. Although extensive experiments
are conducted to verify the efficacy of the proposed semi-
supervised feature selection, our studies are mostly restricted
to data set of modest size. In the next step, we plan to
extend this paper to large data sets that consist of hundreds of
thousands or even millions of training examples. The main
computational difficulty of this paper is in calculating the
regularization term related to manifold regularization. We
will explore other optimization techniques to accelerate the
calculation. Another perspective to improve this paper is to
study the robustness of the selected features produced by
the proposed algorithm when noisy features appear. Since
the proposed algorithm employs an L1-norm constraint for

kernel/feature combination coefficients, intuitively, the L1-
norm constraint is robust to noisy features. In the future paper,
we plan to verify the robustness of the proposed algorithm by
testing it on toy or real-world data sets. Furthermore, we could
also study how to employ robust optimization techniques on
our model to further improve the robustness.

APPENDIX A

PROOF OF THEOREM 1

Proof: First, using Lemma 1, it is straightforward to
verify the problem in (2) is equivalent to the following min-
max optimization problem:

min
p∈{0,1}d

max
α∈Q

h(p, α)

where h(p, α) is defined as

h(p, α) = α�e − 1

2
(α ◦ y)�X�Z−1WZ−1X�

l (α ◦ y)

W = ZD(p)(I + ρD(p)ZD(p))−1D(p)Z.

Using the matrix inverse lemma, we have(
Z−1

ρ
+ D(p)D(p)

)−1

= ρZ − ρ2ZD(p)(I + ρD(p)ZD(p))−1D(p)Z

= ρZ − ρ2W.

Hence, h(p, α) is written as

h(p, α) = α�e − 1

2ρ
(α ◦ y)�X�(

Z−1 − [
Z + ρZD(p)Z

]−1
)

X�
� (α ◦ y).

The above derivation is based on the fact that p is a binary
vector and therefore D2(p) = D(p). When ρ � 1, we could
approximate Z−1 − [

Z + ρZD(p)Z
]−1

by using the first order
expansion of Z−1, i.e., (Z + 	)−1 ≈ Z−1 − Z−1	Z−1. This
results in the following approximation of h(p, α):

h(p, α) = α�e − 1

2
(α ◦ y)�X�D(p)X�

� (α ◦ y).

APPENDIX B

PROOF OF THEOREM 2

Proof: It is easy to verify that φ(p, α) is a concave
function in terms of α. This is because ∇2

αφ(p, α) = −
1
ρ

D(y)X�

(
Z−1 − [Z + ρZD(p)Z]−1

)
X�D(y).

It is clear that ∇2
αφ(p, α) 
 0, and therefore φ(p, α) is

concave in α. To show that the minimization of φ(p, α)
with respect to p is a convex optimization problem, we first
extract the two terms in φ(p, α) that are dependent on p, and
denote their sum by ψ(p, α), i.e., ψ(p, α) = α�e + 1

2ρ
(α ◦

y)�X� (Z + ρZD(p)Z)−1 X�(α ◦ y).
We thus need to show

min
p∈P

ψ(p, α)
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is a convex optimization problem. To this end, we introduce
a slack variable t to bound the second term in ψ(p, α), that is

2ρt ≥ (α ◦ y)�X� (Z + ρZD(p)Z)−1 X�(α ◦ y).

Using the Schur complement, the above inequality constraint
is converted into the following linear matrix inequality:(

Z + ρZD(p)Z X�
l (α ◦ y)

(α ◦ y)�X� 2ρt

)
� 0.

As a result, the minimization of ψ(p, α) with respect to
p is rewritten into the following semi-definite programming
problem, which is a standard convex optimization problem:

min
p∈P

α�e + t

s.t.

(
Z + ρZD(p)Z X�

l (α ◦ y)
(α ◦ y)�X� 2ρt

)
� 0.

APPENDIX C

PROOF OF PROPOSITION 4

Proof: According to the Schur complement, the condition
A � � is equivalent to the following constraint:(

A D(p)
D(p) I + ρD(p)ZD(p)

)
� 0. (29)

The necessary condition for the condition (29) to hold is that
A = A1 + A2 such that(

A1 (1 − τ)D(p)
(1 − τ)D(p) I

)
� 0 (30)(

A2 τD(p)
τD(p) ρD(p)ZD(p)

)
� 0 (31)

where 0 ≤ τ ≤ 1. Add (30) to (31), we therefore have

A = (1 − τ)2D(p) +
τ2

ρ
Z−1.
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