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Abstract—Developers often need to decide which APIs to use for
the functions being implemented. With the ever-growing number of
APIs and libraries, it becomes increasingly difficult for developers
to find appropriate APIs, indicating the necessity of automatic API
usage recommendation. Previous studies adopt statistical models
or collaborative filtering methods to mine the implicit API usage
patterns for recommendation. However, they rely on the occurrence
frequencies of APIs for mining usage patterns, thus prone to fail
for the low-frequency APIs. Besides, prior studies generally regard
the API call interaction graph as homogeneous graph, ignoring the
rich information (e.g., edge types) in the structure graph. In this
work, we propose a novel method named MEGA for improving
the recommendation accuracy especially for the low-frequency
APIs. Specifically, besides call interaction graph, MEGA considers
another two new heterogeneous graphs: global API co-occurrence
graph enriched with the API frequency information and hierar-
chical structure graph enriched with the project component infor-
mation. With the three multi-view heterogeneous graphs, MEGA
can capture the API usage patterns more accurately. Experiments
on three Java benchmark datasets demonstrate that MEGA signifi-
cantly outperforms the baseline models by at least 19% with respect
to the Success Rate@1 metric. Especially, for the low-frequency
APIs, MEGA also increases the baselines by at least 55% regarding
the Success Rate@1 score.

Index Terms—API recommendation, graph representation
learning, multi-view heterogeneous graphs.

I. INTRODUCTION

IN the daily software development process, develop-
ers often use the application programming interface
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(API) provided by some libraries to reduce development
time when implementing a function. For instance, the API
BufferedInputStream.read() provides an efficient way to
read data from an input stream and store the data in a buffer
array. However, it is difficult for developers to be familiar with
all APIs, because APIs are extensive in quantity and rapidly
evolving [1], [2]. In the past two decades, the number of Java
Development Kit (JDK) APIs has increased more than 20 times
(from 211 classes in the first version of 1996 to 4,403 classes in
2022) [3] [4]. Therefore, when selecting APIs, developers often
refer to official technical documentation, raise questions on sites
(e.g., Stack Overflow), or query on search engines (e.g., Google),
etc. Obviously, the whole process relies on developers’ experi-
ence, and could be time-consuming since useful information is
usually buried in massive contents [5], [6].

Regarding the issues above, previous studies [7], [8] pro-
pose to automatically recommend a list of API candidates
according to previously-written code, which is demonstrated
to be beneficial for improving the API searching process and
facilitating software development. For example, MAPO [9]
and UP-Miner [10] are based on mining frequent patterns
clusters from collected projects to obtain common API us-
age patterns. PAM [11] uses probabilistic modelling technique
in API call sequence to mine usage patterns. FOCUS [12]
uses a context-aware collaborative-filtering [13] technique to
recommend APIs, relying on the similarity between methods
and projects. GAPI [14] applies graph neural networks [15]
based collaborative filtering to exploit the relationship between
methods and APIs. In this scenario, the API recommendation
task can be described as “Which APIs should this piece of
code invoke, given that it has already invoked some APIs?,”
similar to [12], [14]. However, these techniques focus on rec-
ommending commonly-used APIs, and tend to fail to mine
the usage patterns of the low-frequency APIs. According to
our analysis in Section II, the low-frequency APIs occupy a
significant proportion of all APIs. According to the statistics, the
rarely-appeared APIs account for 76% of the whole APIs in the
SHL dataset which contains java projects retrieved from GitHub
and is released by FOCUS [12]. Nevertheless, the recommen-
dation success rate of rare APIs (7.9%) is much lower than
that of common APIs (54.2%). Thus, how to effectively learn
low-frequency APIs usage patterns is a great yet under-explored
challenge [16]. Besides, the existing techniques highly rely on
the homogeneous interaction information between APIs and
methods, ignoring the rich contextual information in source code
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(e.g., co-occurring APIs and hierarchical structure in projects
and packages). In fact, APIs under the same package are more
likely to be called together (e.g., file.open() and file.close())
are under the package java.io), which is important external
information for API recommendation. Therefore, how to in-
volve contextual information in API recommendation is another
challenge.

In this work, we propose MEGA, a novel API usage rec-
ommendation method with Multi-view hEterogeneous Graph
representAtion learning. In a software project, the method dec-
laration is the smallest functional unit, which consists of a
name, a list of parameters, a return type, and a body. Following
the prior studies [12], [14], we define the name of the method
declaration as “method” and the API call in the code body as
“API”. Thus, “methods” refer to the name of method declarations
in a library’s client code, and an API may be a third-party
library method or method defined in the same project. Different
from the prior studies, MEGA employs heterogeneous graphs,
which are constructed from multiple views, i.e., method-API
interaction from local view, API-API co-occurrence from global
view, and project structure from external view. Specifically,
MEGA builds upon three heterogeneous graphs, i.e., the com-
mon call interaction graph, and two new graphs, i.e., global
API co-occurrence graph and hierarchical structure graph. The
call interaction graph establishes the relations between methods
and corresponding called APIs, and is commonly adopted by
previous approaches [11], [12], [14], [17], [18]. Models based
on only such graph cannot well capture the representations of
the APIs with rare called frequencies. To improve the API rep-
resentations, the global API co-occurrence graph is introduced
to build the relations between APIs with the co-occurrence
frequencies incorporated. To enrich the representations of APIs
and methods with contextual structure information, MEGA
also involves the called information by projects and packages,
composing the hierarchical structure graph. A graph repre-
sentation model is then proposed to learn the matching scores
between methods and APIs based on the multi-view graphs.
To integrate the multi-view knowledge, a frequency-aware at-
tentive network and a structure-aware attentive network are
proposed to encode the co-occurrence information and hierar-
chical structure, respectively. In the early stage of development,
developers may be more interested in knowing which APIs
have been called by the methods with similar functionality for
achieving the current functional requirements [12]. For example,
when a developer implements a client method for opening
the server and receiving data from the client, our approach
could recommend some relevant network programming APIs
ServerSocket(), ServerSocket.accept(), Socket.getInputStream()
and Socket.read(). With the recommended results, the developer
could know which APIs should this piece of code invoke. In
addition, we conduct a user study to investigate whether it
could help developers with their implementation tasks. The
results show that 69% of the participants think that the API lists
recommended by MEGA are relevant and correct for current
programming.

We evaluate the effectiveness of MEGA on three Java bench-
mark datasets consisting of 610 Java projects from GitHub

Fig. 1. The distribution of APIs called frequency in SHS, SHL and MV
datasets.

and 868 JAR archives from the Maven Central Repository. In
addition, we also simulate the real development scenario [12]
where a developer has already called some APIs in a method.
Then MEGA recommends APIs based on the called APIs by
client methods, and calculates the evaluation metrics. The ex-
perimental results show that MEGA outperforms the baseline
approaches (PAM [11], FOCUS [12] and GAPI [14]) by at least
19% with respect to the Success Rate@1 metric. For the low-
frequency APIs, MEGA also achieves an increased rate at more
than 55% compared to the baselines. The source code is publicly
accessible at https://github.com/hitCoderr/APIRec_MEGA.git
for researchers to validate and conduct further research.

In summary, our main contributions in this paper are as
follows:
� To the best of our knowledge, we are the first work to con-

struct multi-view heterogeneous graphs for more accurate
API usage recommendation.

� We propose a novel API recommendation approach named
MEGA, which designs a graph representation model with
a frequency-aware attentive network and a structure-aware
attentive network to generate enhanced representations of
methods and APIs.

� We perform experiments on three benchmark datasets, and
the results demonstrate that MEGA outperforms the state-
of-the-art API usage recommendation approaches, even for
the low-frequency APIs.

Outline. The rest of paper is organized as follows: Section II
introduces details of our motivation. Section III presents the
overall workflow of MEGA and architecture of the graph repre-
sentation model in MEGA. Sections IV and V are the settings
and results of evaluation, respectively. Section VII analyzes
some implications and threats to validity. Section VIII succinctly
describes related works. In the end, in Section IX, we conclude
the whole work.

II. MOTIVATION

Fig. 1 shows the distribution of APIs with different occurrence
frequencies in three benchmark datasets [12], i.e., SHS , SHL

and MV , with detailed statistics of the datasets shown in Ta-
ble II. Obviously, APIs with lower occurrence frequencies (i.e.,
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Fig. 2. API recommendation performance of FOCUS [12], GAPI [14] and our
proposed MEGA (corresponding to the APIs with different frequencies on the
SHL dataset).

≤ 3) account for significant proportions (i.e., > 65%) among
all the APIs in each dataset. Although appearing less frequently,
the large proportion of such APIs indicates developers’ strong
demands for specific functions, and accurately recommending
the APIs is critical for facilitating their daily programming.

Fig. 3 illustrates an example of a client method which
queries the low-frequency APIs. In this scenario, the de-
veloper is working on a method to get the name of a
JAR package, but is not sure which APIs to use next. The
“true API calls” in Fig. 3 list the APIs in ground truth, in
which both “JAXBContext.createUnmarshalle()” and “Unmar-
shaller.unmarshal(java.io.InputStream)” are rarely appear in
the datasets. Both popular models including FOCUS [12] and
GAPI [14] learn the API representations ineffectively, and fail
to recommend the APIs. Fig. 2 depicts the API recommendation
performance of the two models corresponding to APIs with
different frequencies on the SHL dataset with respect to the
SuccessRate@10 score. We find that the APIs appearing rarely,
e.g., ≤ 3, present significantly poor performance than the APIs
appearing frequently, e.g., ≥ 10. The results show that the exist-
ing models are difficult to recommend the low-frequency APIs.

Besides, existing approaches [10], [12], [14], [18], [19] gen-
erally regard the API call interaction graph as homogeneous
graph, ignoring the rich heterogeneous information (e.g., edge
types) in the graph. For example, the state-of-the-art models,
FOCUS [12] and GAPI [14] are based on collaborative filtering
for measuring the similarities between all methods to recom-
mend APIs. The learning process in the models tends to rely
on the commonly-used APIs in methods, resulting in ineffective
API recommendation. As the example shown in Fig. 3, the API
recommended by FOCUS for improving the speed and efficiency
of byte stream operations comes from the BufferedReader class,
which is a very general yet function-irrelevant operation for the
current client method.

Our Approach. To address the above limitations of the existing
models, we try to exploit the rich heterogeneous information in
source code from multiple views, including method-API interac-
tion from local view, API-API co-occurrence from global view,
and project structure from external view, respectively. Specif-
ically, we build three heterogeneous graphs from each view,
i.e., call interaction graph, global API co-occurrence graph and

Fig. 3. An Example of API usage recommendation. (The true API calls and
TOP-3 APIs recommended by FOCUS [12], GAPI [14] and our proposed
MEGA, respectively.).

Fig. 4. The overall workflow of MEGA.

hierarchical structure graph. Moreover, two new attentive net-
works are designed for encoding frequency-based co-occurrence
information and structure-based hierarchical information during
learning the representations of APIs and methods. As the
example shown in Fig. 3, MEGA captures the co-occurring

pattern with the API “JAXBContext.NewInstance(
..

P OM
..

)”
and their similar structural information (i.e., under the
same class), so it successfully recommends the rare API
“JAXBContext.CreateUnmarshaller()”.

III. METHODOLOGY

A. Workflow of MEGA

Fig. 4 illustrates the MEGA’s workflow which includes three
main stages, i.e., constructing multi-view heterogeneous graphs,
training a graph representation model and recommending APIs
with the trained model. In the first stage, we construct three
heterogeneous graphs, i.e., call interaction graph, global API
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Fig. 5. An example of element extraction and graph construction from a code snippet.

TABLE I
SYMBOLS AND CORRESPONDING DESCRIPTIONS

co-occurrence graph, and hierarchical structure graph. The
nodes of these graphs include APIs, methods, classes, projects,
and packages. We extract the relations between nodes from the
source code. Then, in the second stage, a graph representation
model is proposed to encode the three graphs and integrate the
graph representations for recommendation. In the last stage, we
employ the trained model to return a ranked list of API usage
recommendation according to the code snippet of the current
client method. The details of our approach are explained in the
following parts. For facilitating readers’ understanding of the
proposed approach, we list the key notations in Table I.

B. Constructing Multi-View Heterogeneous Graphs

In this section, we present the graph construction process of
the multi-view graphs. We parse the source code in the dataset,

identify methods, APIs, classes, projects and packages, and ex-
tract different relationships between these code entities. Fig. 5(a)
illustrates a toy example of a project with one class and some
methods/APIs. After parsing, we identify the code entities from
the project Normolize – methods (normalizeNFD and normal-
izeASCII), APIs (String.isEmpty, String.trim, String.replaceAll
and Normalizer.normalize), classes of methods/APIs (StrUtils,
String and Normalizer) and packages (java.text and java.lang),
as shown in Fig. 5(b).

Meanwhile, we also record the method-API interactions (e.g.,
normalizeNFD calls String.isEmpty, String.trim, etc), the API-
API co-occurrence information (e.g., String.isEmpty and Nor-
malizer.normalize are used together twice in the project), and the
hierarchical structure (e.g., normalizeNFD is declared in StrUtils
and StrUtils is one class of Normolize). With these code entities
as graph vertices and the relationships between entities as graph
edges, the three graphs can be constructed, as plotted in Fig. 5(c),
(d), and (e).

We analyze all the projects in the datasets and collect all called
APIs in the code repositories to form the API set I, following
previous work [12], [14]. We also obtain the method set U .
Besides, all the classes, projects, and packages are denoted as
node sets E , and all relationships are represented as an edge set
R. We present the details of the graph construction as follows.

1) Call Interaction Graph GI. It represents the call re-
lations between methods and APIs, denoted as a bipartite
graph GI = {(u, yui, i)|u ∈ U , i ∈ I}, where yui = 1 indicates
a method u calls an API i. For example, [myFile.createFile(), 1,
java.io.File.exists()] indicates that a method myFile.createFile()
calls an API java.io.File.exists(). The call interaction graph
reflects the basic relations between APIs and methods, and is
commonly adopted by prior studies [11], [12], [14], [17], [18].

2) Global API Co-occurrence Graph GC. It records the co-
occurrence relations between APIs, e.g., the two API file.open()

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 21,2023 at 07:05:31 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: API USAGE RECOMMENDATION VIA MULTI-VIEW HETEROGENEOUS GRAPH REPRESENTATION LEARNING 3293

Algorithm 1: Global API Co-Occurrence Graph
Construction(S, ε).

and file.close() are connected since they ever appeared together
in some methods. Algorithm 1 shows the pseudo-code for global
API co-occurrence graph construction. The graph is built based
on a set of API sequences S and an integer ε. Specifically, we
first initialize the set of vertices V=∅ and the set of edges E=∅
in the co-occurrence graph (line 2). For each sequence A in
the API sequence set S (line 4), we add all the APIs in the
sequence A to the vertices sets V (line 5). Then, for each API
im in sequence A (line 6), any API in within the distance of ε
has a co-occurrence relationship with API im. To represent the
co-occurrence relationship between im and in, we add an edge
(im, in) into the edge set E (line 7). Next, for each edge e in
E, we update the ω(e) by counting the occurrence frequencies
(lines 8-9). Finally, we build the co-occurrence graph GC based
on V , E and ω, and return the co-occurrence graph GC (lines
10-11). GC is denoted as {(i, f, j)|i, j ∈ I, f ∈ T }, where each
triplet describes that API i and API j are invocated together f
times.

For example, [file.open(), 10, file.close()] indicates that
file.open() and file.close() appear together 10 times. The global
API co-occurrence graph contains frequency-enriched API re-
lationships, which is beneficial for enriching APIs with by their
relevant APIs in this graph.

3) Hierarchical Structure Graph GH. The hierarchical in-
formation, e.g., the belonging projects/packages, implies the
functionality of APIs and methods, thereby helpful for API
recommendation.

We consider both project-level and package-level informa-
tion, i.e., the projects where methods are declared and packages
that APIs belong to, for constructing the hierarchical structure
graph. We construct the graph as a directed graph, denoted as
GH = {(h, r, t)|h, t ∈ E , r ∈ R}, in which each triplet (h, r, t)
represents there is a relation r from head entity h to tail entity
t, E is the set of all entities, including API, method, class,
project, and package, and R is the set of relations including
belong-to-class, belong-to-project and belong-to-package. As
the example depicted in Fig. 5(e), projects and packages are
organized as a tree structure. The hierarchical structure graph

Algorithm 2: Encoding Process of GC and GH .

contains the attribute information of the APIs. These classes
and packages are considered as the side information to enrich
the representations of APIs.

C. Training Graph Representation Model and
Recommendation

This section introduces how MEGA trains a graph repre-
sentation model based on the constructed multi-view graphs,
and utilizes the trained model to make API recommendation,
corresponding to the second stage and third stage in Fig. 4,
respectively.

Fig. 6 illustrates the whole process of training and recom-
mendation, including three graph encoding modules, i.e., call
interaction encoding, co-occurrence information encoding and
hierarchical structure encoding, as well as one fusion and pre-
diction module. Given a client method, a target API, and the three
heterogeneous graphs as input, the graph representation model
aims to predict the probability of the target API invocated by the
client method. In the first module, an Embedding Network is em-
ployed to encode basic interaction information into local-view
representations of the client method and the target API, as shown
in Fig. 6 (1). Then, in the second module, as illustrated in Fig. 6
(2), a Frequency-aware Attentive Network is designed to encode
frequency-based co-occurrence information into representations
of the client method and the target API from global view. Next,
in the third module, a Structure-aware Attentive Network is
designed to encode structure-based hierarchical information into
representations of the client method and the target API from
external view, as shown in Fig. 6 (3). Finally, in the last module,
the local-view, global-view and external-view representations
are concatenated as the final representations of the client method
and the target API.

1) Call Interaction Encoding: Call interaction reflects basic
information of the client method u and the target API i, respec-
tively. We represent the client method u by its called APIs and
represent the target API i by its related methods, integrating the
call interaction information into their local-view representations.
Specifically, for each client method u, the called API set is
denoted as Eu = {i | i ∈ {i | (u, yui, i) ∈ GI and yui = 1}}.
We then obtain the client method u representation according to

its called API set: e(o)u =
∑

i∈Eu ei
|Eu| , where ei is the embedding
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Fig. 6. Training and recommending process of the graph representation learning model in MEGA.

Fig. 7. Illustration of two attentive networks in the graph representation model.

of API i and |Eu| is the set size. Similarly, we obtain the target
API i representation e

(o)
i .

2) Co-Occurrence Information Encoding: For the client
method u, co-occurred APIs of its called APIs are potential to
be called next. For the target API i, co-occurred APIs reflect
its usage patterns (which APIs are used frequently with the
target API). Thus, in this module, we represent the client method
u and the target API i by their co-occurred APIs, integrating
the co-occurrence information into the representations. Accord-
ing to the definition of the global API co-occurrence graph,
the weights between a pair of API nodes present the co-
occurrence frequency, implying the extent of their relevance. To
encode the global-view information of the client method u and
the target API i, we design a frequency-aware attentive network,
as shown in Fig. 7(a). Algorithm 2 shows the pseudo-code for
the encoding. For the client method u, the APIs co-occurred
with its called APIs reveal the method’s potential call need.
Thus, we utilize the API set Eu obtained from Section III-C1
as the initial set E(0)

u for the first-hop propagation on GC (line
2). After initialization, we conduct information encoding to
generate co-occurrence representation in each hop (line 4-8).

Information Encoding (line 4-8). For each triple in global
API co-occurrence graph, i.e., (i, f, j) ∈ GC , we define the l-
hop triple set based on the entity set E(l)

u as: Sl
u = {(i, f, j)|i ∈

E l
u} (l begins with 0). Following previous works [20], [21], we

sample a fixed-size triple set instead of using a full-size set to
reduce the computation overhead.

Based on co-occurred API triple sets, i.e., (i, f, j) ∈ Sl
u, we

learn l-hop co-occurrence representation of the client method u
by its related APIs. Since APIs with different co-occurrence
frequencies have different contributions on representing the
client method u, we design a coefficient π(i, f, j) to control
the attentive weight:

e(l)u =
∑

(i,f,j)∈Sl
u

π(i, f, j) ej , (1)

where coefficient π(i, f, j) is attentively calculated based on the
API similarity and their co-occurrence frequency:

π(i, f, j) =
exp(mlp(((ei � ej)||ef ))∑

(i′,f ′,j′)∈Sl
u

exp(mlp((ei′ � ej′)||ef ′))
, (2)

where the notation � denotes the element-wise multiplication
operation, and || denotes the concatenation operation. ei and
ej are the embeddings of API i and its co-occurred API j,
respectively. ef is the embedding of frequency f . mlp(Â·) is
a three-layer MLP with Relu [22] as the nonlinear activation
function. The attention mechanism for encoding the l-hop co-
occurrence representation (i.e., (1) and (2)) explicitly introduces
co-occurred frequency f into calculating the influence of co-
occurred API i on the representation of API j.

After performingL-hop information encoding, whereL is the
max hop number, we obtain the global-view representations e(c)u

of the client method u by appending the representations from
all hops: e(c)u = {e(0)u , e

(1)
u , . . . , e

(L)
u }. Similarly, we obtain the

global-view representation e
(c)
i of the target API i. The global-

view representations e(c)u and e
(c)
i captures frequency-enriched

co-occurrence information for enhancing the semantic represen-
tations of the client method and the target API, respectively.

3) Hierarchical Structure Encoding: External hierarchical
attribute information such as classes can also contribute to
enriching the representations. In this module, we represent the
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client method u and the target API i by structure entities, in-
tegrating the hierarchical structure information into their repre-
sentations. According to the definition of hierarchical structure
graph, as described in Section III-B, different head entities and
relations endow tail entities with different semantics. To obtain
the representations of the client method u and the target API
i from external view, we design a structure-aware attentive
network, as shown in Fig. 7(b).

The encoding process for the hierarchical structural graph
is similar to the encoding process of the API co-occurrence
information, as illustrated in Section III-C2, except for
the design of the attentive network. Specifically, for the l-
hop triple set Sl

u = {(h, r, t)|h ∈ E l
u} in hierarchical structure

graph, we learn l-hop structure representation for client method
u by:

e(l)u =
∑

(h,r)∈Sl
u

π(h, r) et, (3)

where coefficient π(h, r) is attentively calculated as:

π(h, r) =
exp(mlp(eh||er))∑

(h′,r′,t′)∈Sl
u

exp(mlp(eh′ ||er′))
, (4)

where eh, et are the embeddings of head entity h and tail entity
t, respectively. er is the embedding of relation r. The structure-
aware attention mechanism (i.e., (3) and (4)) explicitly endows
the relevance calculation of tail entity twith the relation r. Based
on the structure encoding, we finally obtain the external-view
representations e

(h)
u and e

(h)
i for the client method u and the

target API i, respectively.
4) Fusion and Prediction: In this module, the three represen-

tations with different semantic information are concatenated to
form the final representation of the client methodu and the target
API i, i.e., eu = e

(o)
u ||e(c)u ||e(h)u and ei = e

(o)
i ||e(c)i ||e(h)i . Then,

we can calculate the call probability between the client method
u and each target API i using their learned representations. In
this paper, we use the inner product as the similarity function:
ŷui = e�uei. Finally, we rank all the candidates by descending
order and return the top-k APIs to the developer.

IV. EXPERIMENTAL SETUP

In this section, we conduct extensive experiments to evaluate
the proposed approach with the aim of answering the following
research questions:
� RQ1: How does MEGA perform compared with the state-

of-the-art API usage recommendation approaches?
� RQ2: What is the impact of the three encoding components

(i.e., Call Interaction Encoding, Co-occurrence Informa-
tion Encoding and Hierarchical Structure Encoding) in the
graph representation model on the performance of MEGA?

� RQ3: How does MEGA perform on low-frequency APIs?
� RQ4: How do different hyper-parameter settings affect

MEGA’s performance?

TABLE II
STATISTICS OF THE THREE DATASETS: SHS, SHL AND MV. THE CALL-AVG

MEANS THE AVERAGE CALLS PER METHOD

A. Dataset Description

To evaluate the effectiveness of MEGA, we utilize three
publicly available benchmark datasets: SHS , SHL, and MV :
� SHL contains 610 java projects, filtered from 5,147 ran-

domly downloaded java projects retrieved from GitHub via
the Software Heritage archive [23].

� SHS is comprised of 200 java projects with small file sizes
extracted from SHL. It is designed to evaluate some time-
consuming baselines such as PAM [11].

� MV consists of 868 JAR archives collected from the
Maven Central repository. There are 3,600 JAR archives
in the original dataset, and 1,600 JAR archives remain
after being deduplicated by the previous work [12],
[14]. While through our manual inspection, we find
that the cleaned dataset still contains highly similar
projects. For example, some projects have snapshot ver-
sions during the development process and a release ver-
sion at the end, such as commons-1.0.2.RELEASE.jar and
commons-1.0.2.BUILD-SNAPSHOT.jar. Besides, some
projects may have their renamed versions, such as
eclipse.equinox.common-3.6.200.jar and common-3.6.
200.jar. In these cases, the two projects are nearly identical.
Too many similar projects in a dataset may introduce bias
in evaluation [12]. Therefore, we decided further clean this
dataset by removing duplicated project versions, i.e., the
projects with snapshot versions or renamed versions. We
finally obtain 868 JAR archives from 3,600 JAR archives
for the MV dataset.

From the source code in datasets, we extract the method
declarations and corresponding API calls, and hierarchical struc-
ture of the projects and packages containing methods/APIs. We
summarize the detailed statistics of the three datasets in Table II.

B. Baselines

When selecting baselines, we consider their inputs, whether
their code is released and the datasets they used. First, our
approach recommends APIs according to the previously-called
APIs in the method thus it is a code-based API recommendation
approach. Therefore, some API recommendation approaches
based on query are not compared, such as DeepAPI [24],
GeAPI [19], BRAID [25], etc. To fairly compare our approach
with baselines, we only choose the baselines with open-sourced
code, so we exclude approaches such as Codekernel [18]. Be-
sides, our approach requires nothing but the source code of
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software projects, so we do not include the baselines requiring
extra information (e.g., code changes) such as APIREC [26].
Finally, PAM [11], FOCUS [12] and GAPI [14] are selected
as baselines. For all the baselines including PAM, FOCUS
and GAPI, we reuse their original implementations instead of
re-implementing from scratch.
� PAM [11] is a statistical approach to mine API usage

patterns, which mainly adopts a probabilistic model to mine
API usage patterns for every target project collected from
the GitHub Java corpus. When conducting API recommen-
dation, it searches mined API usage patterns based on some
APIs called in the evaluated method and returns an API list.

� FOCUS [12] leverages collaborative filtering technique
to recommend APIs via a context-based rating matrix. It
uses the same API calls of the evaluated method as input,
calculates the similarity to other methods and projects, and
then scores all APIs in similar projects. Finally, it outputs
a ranked list of APIs with scores in descending order.

� GAPI [14] is a state-of-the-art graph-based collaborative
filtering technique. It employs a graph neural network to
exploit the high-order connectivity on an integrated graph
of client methods and target APIs from source code reposi-
tories. In the recommendation stage, it inputs some APIs of
the evaluated method into the trained model, calculates the
similarity between client methods and all APIs, and outputs
a ranked list of APIs with similarity scores in descending
order.

C. Evaluation Metrics

Following previous approaches [12], [14] on API usage
recommendation, we adopt successRate@K, Precision@K
and Recall@K to evaluate the quality of top-K API us-
age recommendation. Given a top-K ranked recommen-
dation list RECk(m) for a test method m ∈ M and
the ground-truth set GT (m), we adopt MATCHk(m) =
RECk(m) ∩GT (m) to present the correctly predicted API set.
The SuccessRate@K(SR@K), Precision@K(P@K), and
Recall@K(R@K) are defined as follows:
� SuccessRate@K is the proportion of at least one success-

ful match among the top-K APIs.

SR@K =
countm∈M(MATCHk(m) > 0)

|M| (5)

� Precision@K is the proportion of correctly predicted
APIs amongst the top-K APIs.

P@K =
|MATCHk(m)|

k
(6)

� Recall@K is the proportion of correctly predicted APIs
amongst the ground-truth APIs.

R@K =
|MATCHk(m)|

|GT (m)| (7)

D. Implementation Details

Following the evaluation methodology of previous
works [12], [14], we consider the developer is working at

a project p, and the methods of p are split as training methods
and testing methods, which are added into training set and
testing set, respectively. After splitting all projects, we obtain
190, 600 and 838 methods for the testing sets of SHS , SHL and
MV (removing some methods with fewer than 4 API calls),
respectively. For each method m in the test set, we keep the
first four API calls as visible context and the rest invocations
are taken as the ground truth GT (m).

We implement MEGA in PyTorch. The embedding size is
set to 64 for the model in MEGA. We employ the binary
cross-entropy loss as the loss function. To initialize the model
parameters, we utilize the default Xavier initializer [27]. Also,
we choose Adam optimizer [28] to train our model, with a
learning rate of 0.002, a coefficient ofL2 normalization of 10−5,
a batch size of 1024 and an epoch number equal to 40 fixed for
all datasets.

Following previous work [29], we set the maximum distance
of adjacent APIs ε as 3 in constructing GC . Considering that
the edge attribute in GC is a continuous variable, we adopt the
equidistant bucket discretization method, and regard the bucket
number as the edge type. The optimal number of buckets |T |
in discretization, the max hop number L and the size of triple
set |Sl

u| in each hop l on three datasets are determined based on
the experimental performance. The best settings of the hyper-
parameters for all the baseline approaches are defined following
the original papers. All approaches are trained on NVIDIA Tesla
V100 GPU.

V. RESULTS

A. Effectiveness of MEGA Compared With Baselines (RQ1)

Table III presents overall results of all baselines along with
MEGA in terms of SR@K metric, and the comparison curves
of P@K and R@K on three datasets (with K = 1, 5, 10, 20)
are shown in Fig. 8 and Fig. 9, respectively. Intuitively, MEGA
consistently achieves the best performance on all datasets. Note
that, we only test PAM on SHS due to its long execution time
and scaling poorly in a large dataset. Detailed observations are
as follows:

Comparison of SR@K on a Single Dataset. Without loss of
generality, we take the SHS dataset as an example to illustrate
the comparison here, and similar trends can also be observed on
other datasets. In the SHS dataset, the results show that MEGA
greatly outperforms GAPI and FOCUS in terms of various K
settings of SR@K, with an improvement of 125.1% in SR@1,
85.12% in SR@5 and 67.76% in SR@10. This suggests that the
APIs recommended by MEGA match better with the developer’s
context. Besides, from Table III we can see that SR@K of MEGA
increases to 0.794 when K increases to 10. This means that in
most cases, MEGA can identify the correct API in the Top-10
results, while other baseline models can only identify about 47%
of correct APIs in the Top-10 results.

Comparison of SR@1 on Multiple Datasets. To evaluate the
performance of MEGA among multiple datasets compared with
baseline models, we choose the SR@1 metric as it considers
both whether a correct API can be included and whether a correct
API can get a higher rank. Overall, in terms of SR@1, MEGA
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TABLE III
THE PERFORMANCE COMPARISON OF SR@K BETWEEN MEGA AND THE BASELINES ON THREE DATASETS

Fig. 8. The performance comparison of P@K between MEGA and the baselines on three datasets.

Fig. 9. The performance comparison of R@K between MEGA and the baselines on three datasets.

improves 125.1% and 77.65% compared to the best baseline
GAPI on SHS and SHL, and 19.85% compared to the best
baseline FOCUS onMV . This demonstrates that MEGA is more
effective on multiple datasets than baselines. We use Wilcoxon
signed-rank test [30] to verify whether the performance gain
is significant, and Cliff’d Delta (or d) [31] to measure the
effect size. The significance test result (p-value<0.01) and large
effect size on the metrics (d=0.479) of MEGA and the best
baseline GAPI indicate that the proposed model significantly im-
proves the recommendation performance. We notice that GAPI
underperforms FOCUS on MV . One possible explanation is
that the average number of API calls per method of MV is the
largest. The abundant direct call interactions between methods
and APIs are enough for FOCUS to identify similar methods and
recommend relevant APIs, while GAPI uses more complicated
connectivity which introduces more noise into the representation
of methods and APIs instead, leading to a negative effect.

Figs. 8 and 9 give detailed precision and recall curves on
different datasets by varying k from 1 to 20. As can be seen,
MEGA shows the best performance among all the approaches.
Specifically, MEGA increases the performance of the baseline

by an average of 54.98% and 49.36% over the three datasets with
respect to precision and recall, respectively. There is usually
a trade-off between precision and recall. As the number of
recommended APIs (i.e., k) increases, the recall increases as
more correct APIs are found, while the precision decreases as
more irrelevant APIs are involved. For example, MEGA achieves
the top-1 precision of 0.439 and recall of 0.102 and the top-5
precision of 0.234 and recall of 0.244 (as shown in Figs. 8
and 9).

The above experimental results show that pattern-based meth-
ods, such as PAM, relying on mining frequent subsequences gen-
erally perform worse than learning-based methods such as GAPI
and MEGA. This indicates the significance of exploring high-
order connections and making full use of external information.

Answer to RQ1: MEGA is quite effective on API usage rec-
ommendation, outperforming the state-of-the-art approaches
in terms of Success Rate, Precision and Recall, respectively.
Besides, MEGA achieves consistent performance on all
datasets.
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TABLE IV
THE PERFORMANCE COMPARISON OF SR@K BETWEEN MEGA AND ITS VARIANTS ON THREE DATASETS

B. Ablation Study (RQ2)

To investigate the effectiveness of each component of the
graph representation model in MEGA, we perform ablation
studies by considering the following three variants.
� MEGAw/oHS: This variant removes the hierarchical

structure encoding module from the model to study the
effect of external information derived from the project and
package.

� MEGAw/oCO: This variant deletes the co-occurrence in-
formation encoding module from the model to investigate
the impact of global information obtained between APIs.

� MEGAw/oH&C: This variant only preserves the call in-
teraction encoding in the model to gain the primary repre-
sentations of the method and the API, without any supple-
mentary information.

The experimental results are shown in Table IV. We find that
the performance of MEGA drops in three variants compared
with the complete model, which demonstrates the effectiveness
of the hierarchical structure encoding module and co-occurrence
information encoding module.

MEGAw/o H&C performs worst since the variant only uti-
lizes historical call information. Moreover, we notice that the
performance degradation is most significant on SHL. For ex-
ample, SR@1 decreases from 0.311 to 0.142. Note that, in
SHL, the average number of call interactions is 5, which is the
smallest among all datasets. This demonstrates the prominent
advantage of appending co-occurrence information and structure
information to the final representation when the interactions are
insufficient.

In addition, the performance of MEGAw/o HS is better than
MEGAw/o CO, meaning that hierarchical structure information
is more critical than co-occurrence information. One possible
reason is that the external project/package structure can provide
more contextual information instead of just internal call rela-
tion, which is more beneficial for capturing the semantic match
between methods and APIs.

Answer to RQ2: Encoding both API co-occurrence infor-
mation and project/package hierarchical structure informa-
tion into the final representations of methods and APIs is ben-
eficial to MEGA’s performance improvements. Especially,
project/package hierarchical structure information is more
critical, benefiting from it contains contextual information
of methods and APIs.

TABLE V
THE PERFORMANCE COMPARISON OVER LOW-FREQUENCY APIS ON THREE

DATASETS

C. Performance of MEGA on Low-Frequency APIs(RQ3)

As stated in Section II, we design MEGA to alleviate the
problem that current approaches on low-frequency APIs. We
define APIs that are called by methods fewer than or equal to
three times as low-frequency APIs, as introduced in Section II.
According to the definition, there are 4,046, 20,171 and 16,274
low-frequency APIs in SHS , SHL and MV , respectively. To
evaluate the recommendation effectiveness on low-frequency
APIs, we validate MEGA and baselines on methods which con-
tain low-frequency APIs in the ground truth. In this experiment,
the metrics SR@K, P@K, and R@K are calculated based on
the correctly predicted low-frequency APIs. To further evaluate
the performance of MEGA on low-frequency APIs, we design
a metric HitRate@K (HR@K), which is the proportion of
correctly predicted low-frequency APIs amongst all predicted
low-frequency APIs. A higher HitRate@K indicates that the
model can recommend more correct low-frequency APIs.

Table V shows SR@K, P@K and R@K (K = {1, 10}) for
all approaches on three datasets. To sum up, that MEGA greatly
outperforms other approaches in all metrics. In detail,SR@10 is
improved by 298.7%, P@10 is improved by 233.3%, and R@10
is improved by 402.1% compared to the latest approach GAPI on
SHL. Looking into the performance of baselines, GAPI obtains
better performance than FOCUS, indicating the effectiveness of
incorporating complicated connectivity information in enriching
the representation of APIs with fewer direct interactions. To
further evaluate the performance of MEGA on low-frequency
APIs, we adopt a metric HitRate (HR@K), which measures
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TABLE VI
THE PERFORMANCE COMPARISON OF HR@K OVER LOW-FREQUENCY APIS

ON THREE DATASETS

the hit rate when the model has recommended low-frequency
APIs. Following Table VI, MEGA significantly outperform the
baselines with an average increase of 41.09% in terms of HR@5.
These results demonstrate that MEGA can capture more useful
usage patterns of low-frequency APIs and recommend accurate
APIs. Although MEGA presents a significant improvement on
the recommendation performance, the results of low-frequency
APIs are still quite limited, which may be attributed to the func-
tional particularity of the APIs and needs more future research.

Answer to RQ3: MEGA consistently outperforms the
state-of-the-art baselines for recommending low-frequency
APIs on the three benchmark datasets. Despite the superior
performance of MEGA, low-frequency recommendation is
still challenging and needs more future research.

D. Parameter Sensitivity Study (RQ4)

We conduct experiments to analyze the impact of following
hyper-parameters with different settings on MEGA’s perfor-
mance.

Impact of max hop Number L. We vary the number of hops
in propagating to observe the performance change of MEGA.
Fig. 11(a) depicts the results in terms ofSR@10. We observe that
MEGA achieves the best results with one hop on three datasets,
and the performance gradually decreases with the hop number
increases.

One possible explanation is that, in the graph, short-distance
nodes have a strong correlation with the original node, while
the relevance decays as the distance increases. Consequently,
the positive impact of short-distance propagation is greater,
while long-distance propagation brings more noise than useful
signals.

Impact of Bucket Number |T |. To study the impact of bucket
numbers, we conduct different experiments by setting different
bucket numbers. The experimental results in terms of SR@10
are presented in Fig. 11(b), which shows that for SHS , SHL,
and MV , the best performance is achieved when the number of
buckets is 15, 10, and 15, respectively.

One possible reason for this phenomenon is that when the
number of buckets is too small, i.e., few relation types, the
graph contains less information, which compromises the trained
model’s expressiveness. While a large number of buckets, i.e.,
many relation types, makes the information in the graph too rich,
leading to over-fitting the model.

Impact of Triple set Size |Sl
u| in Each hop l. We change

the number of neighbors selected by the client method and

TABLE VII
TIME COST FOR MODEL TRAINING AND PREDICTION OF MEGA AND THE

BASELINE APPROACH ON MV

the target API in each hop to explore the effects of triple set
size on MEGA’s performance. The results of SR@10 on the
SHS , SHL and MV are demonstrated in Fig. 10(a), (b), and
(c), respectively.

Jointly analyzing the three sub-figures, when the size in-
creases, the results get better first and then worse. This means
that when the size is moderately large, the benefits of more
information included improves the performance. However, when
the size is extremely large, the noise introduced outweighs
the useful information introduced and thus it can hurt the
performance. Overall, 16 or 32 is the suitable size of triple
set in each hop for both the method and the API on three
datasets.

E. Timing Efficiency

We conduct a timing efficiency experiment of MEGA on
the largest MV dataset. In this experiment, we record how
long it takes to train the model and how long it takes to make
predictions. The detailed time cost of three approaches is shown
in Table VII.

Training Time. As reported by GAPI’s authors [14], their
approach takes 21.6 hours of model training, since their ap-
proach is based on a graph convolutional network, which is
computationally expensive during training. The training time
cost of FOCUS [12] is 1 minute since it only needs to construct
a 3D context-based rating matrix. As shown in Table VII, MEGA
takes 1.2 hours to train, which is relatively slow, and almost the
whole time cost is due to training two attentive networks. The
training phase is offline, which indicates that MEGA can scale
well on larger datasets.

Prediction Time. Since MEGA needs to calculate the call
probabilities of all candidate APIs for every client method in
the prediction phase, the major computation cost is dependent
on the number of candidate APIs and the client methods in
the test set. For the prediction time, FOCUS is the slowest
(31 milliseconds) to provide recommendation, while GAPI is
the fastest (0.111 milliseconds). MEGA (0.368 milliseconds) is
slower than GAPI. Since FOCUS has been used in the Eclipse
IDE by developers, MEGA could also be suitable in a real
development environment.

VI. USER STUDY

In this section, we conduct a user study to further vali-
date the effectiveness of the proposed MEGA from a devel-
oper perspective. The user study is conducted through online
questionnaire.
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Fig. 10. The results of SR@10 on three datasets along with different sizes of triple set.

Fig. 11. The parameter sensitivity study of hop and bucket numbers.

A. Study Design

Questionnaire. The online questionnaire includes 25 code
snippets randomly selected from SHS testing dataset. In the
questionnaire, each question comprises a code snippet, three API
lists recommended by FOCUS, GAPI and MEGA, respectively.
The quality of the recommended API lists is evaluated from two
aspects, including “relevancy” and “preference”. Specifically,
the metric “relevancy” measures the extent of function relevance
between the code snippet and API list; And the metric “prefer-
ence” implies the extent of helpfulness of API lists recommend
for developers. The “relevancy” is scored based on 1-5 Likert
scale (1 for complete irrelevancy and 5 for full relevancy). The
“preference” is evaluated on 1-3 rank (1 for the most preferred
and 3 for the least preferred).

Participants. We invite 6 developers with an average Java
development experience of 4.3 years. The statistic indicates
that these participants are familiar with Java development. Each
participant needs to read 25 code snippets and evaluates the
quality of the API lists recommended by FOCUS, GAPI and
MEGA. They are not aware of which API list is recommended by
which model. Each participant is paid 22 USD upon completing
the questionnaire.

B. Result Analysis

We finally received 150 sets of scores totally from the user
study. Each set contains scores regarding “relevancy” and “pref-
erence,” for the recommended API lists of FOCUS, GAPI and
MEGA, respectively. Fig. 12 depicts the results of user study.
For the metric “relevancy,” the higher scores the better; while

for the metric “preference,” the lower scores the better. As can
be seen, the API lists recommended by MEGA received the best
scores among all three API lists in terms of “relevancy” and
“preference,” respectively.

Relevancy. We compute the distribution and proportion of av-
erage relevancy scores of the API lists recommended by FOCUS,
GAPI and MEGA, shown in Fig. 12(a) and (c), respectively.
As illustrated in Fig. 12(a), the relevancy scores for API lists
recommended by MEGA are concentrated in the higher area of
boxplot, while the scores of FOCUS and GAPI are rather close,
both in the lower area. Combined with Fig. 12(c), we can observe
that nearly 80% participants gave the API lists recommended by
FOCUS and GAPI “neutral/irrelevancy” ratings (lower than 4
points), and the number of “relevancy” rating (4/5 points) for
the API lists recommended by MEGA is 2.5 times than those
for the API lists of FOCUS and GAPI. These results imply that
the API lists recommended by MEGA tend to be more relevant
to the current code snippet.

Preference. Figs. 12(b) and (d) illustrate the distribution and
proportion of average preference ranks, respectively. We dis-
cover that the majority of participants rank the API lists recom-
mended by MEGA as the most favored (69%). Also, the API lists
recommended by MEGA present a much lower preference rank
than other API lists on average, i.e., 1.43 versus 2.32/2.24 (as
shown in Fig. 12(b)). This indicates that the participants think
the API list recommended by MEGA is more favorable.

The user study further validates the effectiveness of the pro-
posed MEGA for API recommendation.”

VII. DISCUSSION

A. Why Does MEGA Work or Fail?

To explore how the three graphs help the recommendation
process, we select a few samples from testing data of SHS

for a case study. Fig. 13 depicts two successful API recom-
mendation cases to demonstrate why MEGA works. Due to
the space limitation, we only show the called APIs of client
methods, instead of their complete code snippets. The first
client method “getJarName()” is employed as an example in
Section II. As illustrated in the call interaction subgraph, the
interaction path “getJarName() → getValue() → getProjectVer-
sion() → createUnmarshaller()/unmarshal()” indicates that
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Fig. 12. Results of user study.

Fig. 13. Case study for successful recommendation. The left column presents the client method. The middle column presents relevant subgraphs of the client
method. The right column denotes the ground-truth APIs and the top-3 recommended results of different models.
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createUnmarshaller()/unmarshal() may be needed after the in-
vocation of getValue(). MEGA captures this connection between
APIs, and successfully recommends relevant APIs.

For the second client method getOrcidWorks(), we can dis-
cover that both setOrcidProfile() and OrcidMessage() are called
together with setMessageVersion() from the global API co-
occurrence subgraph, which may be potential APIs. Besides,
the project structure also carries useful information. As shown
in the hierarchical structure subgraph, both setMessageVer-
sion() and setOrcidProfile() belong to the same class Or-
cidMessage() in the project, so getOrcidWorks() can also be
related to setOrcidProfile() by the structure path of “getOr-
cidWorks() → setMessageVersion() → OrcidMessage() → se-
tOrcidProfile()”. From the perspective of co-occurrence and
structure relationships, MEGA finally recommends Orcid-
Profile.OrcidProfile(), OrcidMessage.setOrcidProfile() and Or-
cidMessage.OrcidMessage().Through the analysis of the two
successful cases, the three graphs reflect the project content from
different perspectives. By leveraging the abundant relationships
in multi-view graphs, MEGA can discover potential APIs for
client methods.

We also randomly analyze some bad cases. For exam-
ple, for a client method onShortLink() which has called
APIs HttpServletRequest.getHeader(), PrintStream.println(),
Browser.getName() and UserAgent.getBrowser(), MEGA fails
to recommend related APIs. The reason could be that
Browser.getName() and UserAgent.getBrowser() are only called
in this method. Our model is incapable of exploring useful usage
patterns for these APIs from other methods and makes an inaccu-
rate recommendation based on the common APIs HttpServletRe-
quest.getHeader() and PrintStream.println(). In the future, we
will attempt to incorporate more external knowledge (e.g., API
documentation) or conduct data augmentation (e.g., generating
contrastive samples) to alleviate the problem of low-frequency
APIs, improving the recommendation performance.

B. Usefulness of MEGA

We believe that MEGA is useful and the performance is not
marginal. (1) MEGA greatly outperforms the best baseline meth-
ods in terms of the overall performance. For example, MEGA
greatly outperforms the best baseline with an average improve-
ment of 44.90% in SuccessRate@5, 61.99% in Precision@5
and 52.27% in Recall@5 over the three datasets. (2) MEGA
is helpful in recommending low-frequency APIs. Specifically,
MEGA presents a significant improvement on the recommen-
dation performance (e.g., 298.7% in SuccessRate@10, 233.3%
in Precision@10, and 402.1% in Recall@10), with marginal
increase of time cost (e.g., the prediction time of per client
method increases around 0.25 ms). The finding that the results
of low-frequency APIs are not as high as those for other APIs
can inspire future relevant research. We also provide some re-
search directions such as incorporating more external knowledge
(e.g., API documentation) or conducting data augmentation
(e.g., generating contrastive samples) to alleviate the problem
of low-frequency APIs. (3) The user study further verifies the
effectiveness of MEGA. For example, 69% of the participants

think that the API lists recommended by MEGA are relevant and
correct for current programming. Among the 25 client methods,
10 of them have low-frequency APIs in the ground-truth sets,
and the recommendation results are preferred by 76% of the
participants.

C. Implications

In this section, we discuss the implications that would be
helpful for software researchers and software developers.

Software Researchers. In Section V, we achieve that the het-
erogeneous information in source code is greatly beneficial for
improving the recommendation performance of APIs including
the low-frequency APIs. However, we also find that the results
of low-frequency APIs are still quite limited, presenting a large
gap with those of common APIs. The limited results may be
attributed to the functional particularity of the low-frequency
APIs, and could impact the practical usage of current API
recommendation tools. Thus, we suggest researchers working on
API recommendation to focus more on the recommendation of
low-frequency APIs by combining external knowledge such as
API documentation or exploring data augmentation techniques.

Software Developers. We retrieve the low-frequency APIs of
three benchmark datasets in the java API documentation [4]. The
result shows that 3,027 of the 4,046 low-frequency APIs inSHS ,
18,481 of the 20,171 low-frequency APIs in SHL and 13,130 of
the 16,247 low-frequency APIs in MV do not have correspond-
ing API documentation. Thus, we achieve that low-frequency
APIs are usually not associated with the API documentation. API
documentation which contains usage samples and instructions
is helpful for learning the representations of APIs [32], [33].
Thus, we encourage developers to write some descriptions or
usage examples for facilitating the API recommendation task.

D. Threats to Validity

Internal Validity. In this paper, following [20], [21] we sample
a fixed-size of neighbors on graphs instead of using a full size
triple sets for the trade off of computation overhead. This may
slightly influence the performance of MEGA. To alleviate the
impact of this threat, we conduct each experiment five times and
obtain average performance as shown in Section V. Furthermore,
our experiments on parameter sensitivity also demonstrates that
different sizes of triple set influence the performance of MEGA
slightly.

External Validity. We evaluate MEGA under Java datasets,
while MEGA may show different performance on datasets in
other programming languages. To reduce the impact from differ-
ent programming languages, when designing three multi-view
graphs, we try to exclude the language-specific information and
only maintain the structure information such as call relationships
and definition relationships. We believe our design can be easily
adapted to most programming languages.

VIII. RELATED WORK

In this section, we review existing work about API usage
recommendation. The work on API usage recommendation
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can be divided into two categories: pattern-based methods and
learning-based methods. Pattern-based methods utilize tradi-
tional statistical methods to capture usage patterns from API
co-occurrences. Learning-based methods leverage deep learning
models to automatically learn the potential usage patterns from
a large code corpus and then use them to recommend patterns.

Pattern-Based Methods. Zhong et al. propose MAPO [9] to
cluster and mine API usage patterns from open source repos-
itories, and then recommends the relevant usage patterns to
developers. Wang et al. improve MAPO and build UP-Miner [10]
by utilizing a new algorithm based on SeqSim to cluster the
API sequences. Nguyen et al. propose APIREC [26], which
uses fine-grained code changes and the corresponding changing
contexts to recommend APIs. Fowkes et al. propose PAM [11] to
tackle the problem that the recommended API lists are large and
hard to understand. PAM mines API usage patterns through an
almost parameter-free probabilistic algorithm and uses them to
recommend APIs. Liu et al. propose RecRank [34] to improve
the top-1 accuracy based on API usage paths. Nguyen et al.
propose FOCUS [12], which mines open-source repositories
and analyzes API usages in similar projects to recommend APIs
and API usage patterns based on context-aware collaborative-
filtering techniques. Some graph-based techniques, such as [35],
GRAPAC [36], and MuDetect/AUGs [37] parse each code snip-
pet individually to build API-Uage graphs (AUGs). For APIs,
these graphs contain only the call interactions between them and
methods. However, MEGA also constructs API co-occurrence
relationships in different methods and package/project structure
relationships that comprehensively represent the contexts sur-
rounding APIs.

Learning-Based Methods. Nguyen et al. propose a graph-
based language model GraLan [17] to recommend API usages.
Gu et al. propose DeepAPI [24]. They reformulate API recom-
mendation task as a query-API translation problem and use an
RNN Encoder-Decoder model to recommend API sequences.
Ling et al. propose GeAPI [19]. GeAPI automatically con-
structs API graphs based on source code and leverages graph
embedding techniques for API representation. Gu et al. propose
Codekernel [18] by representing code as object usage graphs and
clustering them to recommend API usage examples. Zhou et al.
build a tool named BRAID [25] to leverage learning-to-rank
and active learning techniques to boost recommendation per-
formance. Previous learning-based methods fail to recommend
usage patterns for low-frequency APIs due to the data-driven
feature, MEGA encodes API frequency with global API co-
occurrence graph to alleviate this problem.

IX. CONCLUSION

In this paper, we propose a novel approach MEGA for au-
tomatic API usage recommendation. MEGA employs hetero-
geneous graphs, which are constructed from multiple views,
i.e., method-API interaction from local view, API-API co-
occurrence from global view, and project structure from external
view. A graph representation model with a frequency-aware
attentive network and a structure-aware attentive network is then
proposed to learn the matching scores between methods and

APIs based on the multi-view graphs. Experiment demonstrates
MEGA’s effectiveness both on overall API usage recommenda-
tion and low-frequency API usage recommendation. For future
work, in addition to the information extracted from projects,
some information from API official documentation or Q&A sites
also contributes to mining API usage patterns. Therefore, we
plan to design some new modules that encode more information
from different sources.
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