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Abstract— Estimating covariance matrix from massive
high-dimensional and distributed data is significant for various
real-world applications. In this paper, we propose a data-aware
weighted sampling-based covariance matrix estimator, namely
DACE, which can provide an unbiased covariance matrix
estimation and attain more accurate estimation under the same
compression ratio. Moreover, we extend our proposed DACE
to tackle multiclass classification problems with theoretical
justification and conduct extensive experiments on both
synthetic and real-world data sets to demonstrate the superior
performance of our DACE.

Index Terms— Covariance estimation, dimension reduction,
randomized algorithms, unsupervised learning.

I. INTRODUCTION

COVARIANCE matrix, absorbing the second-order infor-
mation of data points, plays a significant role in many

machine learning and statistics applications [23]. For example,
the estimated covariance matrix plays the role of dimension
reduction or denoising for the principal component analysis
(PCA) [48], the linear discriminant analysis (LDA), and the
quadratic discriminant analysis (QDA) [8]. Via an estimated
noise covariance matrix, generalized least squares (GLS)
regression can attain the best linear estimator [33]. The inde-
pendent component analysis (ICA) relies on the covariance
matrix for pre-whitening [31]. The generalized method of
moments (GMM) [28] improves the effectiveness of the model
by estimating a precise covariance matrix. Many real-world
applications, such as gene relevance networks [12], [40], mod-
ern wireless communications [45], array signal processing [2],
and policy learning [20], also rely on directly estimating the
covariance matrix [10].
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Nowadays, large and high-dimensional data are routinely
generated in various distributed applications, such as sensor
networks, surveillance systems, and distributed databases [26],
[29], [41]. The communication cost becomes challenging
because the distributed data need to be transmitted to a fusion
center from remote sites, requiring tremendous bandwidth and
power consumption [1], [42]. One effective solution is to
utilize the compressed data, i.e., projecting the original data
to a small-sized one via a Gaussian matrix, where the space
cost, the computational cost, and the communication cost can
be reduced significantly to linearly depend on the projected
size. However, the above solution suffers from two critical
drawbacks. First, projecting to a Gaussian matrix is inefficient
compared with computing sparse projection matrices [34],
structured matrices [14], or sampling matrices [22]. Second,
applying the same projection matrix to all data points can-
not recover the original covariance matrix precisely. Current
theoretical investigation and empirical results show that even
the size of the samples with a fixed dimension increases to
infinity, and the estimator cannot recover the target covariance
matrix [6], [7], [9], [24].

To tackle the above challenges, we propose a data-aware
convariance matrix estimator, namely DACE, to leverage dif-
ferent projection matrices for each data point. It is known that
without statistical assumptions or low-rank/sparsity structural
assumptions on the distribution of the data, our DACE can
achieve consistent covariance matrix estimation. By a crafty
designed weighted sampling scheme, we can compress the data
and recover the covariance matrix in the center efficiently and
precisely. We summarize our contributions as follows.

1) First, we propose a data-aware covariance matrix
estimator by a weighted sampling scheme. This
is different from existing data-oblivious projection
methods [5]–[7], [9]. By exploiting the most important
entries, our strategy requires considerably fewer entries
to achieve the same estimation precision.

2) Second, we rigorously prove that our DACE is an
unbiased covariance estimator. Moreover, our DACE can
achieve more accurate estimation precision and consume
less time cost than existing methods under the same
compression ratio. The theoretical justification is verified
in both synthetic and real-world data sets.

3) Third, we extend our DACE to tackle the multiclass clas-
sification problem and provide both theoretical justifica-
tion and empirical evaluation. The compact theoretical
result and the superior empirical performance imply that
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the covariance matrix estimated from compressed data
indeed guarantees the intrinsic properties of data and can
be applied in various down-stream applications.

II. PROBLEM DEFINITION AND RELATED WORK

A. Notations and Problem Definition

Following the notations defined in [15], given n distributed
data in g remote sites, X = [x1, . . . , xn], where xi ∈ R

d

and g � n, the corresponding covariance matrix can be
computed by C = (1/n)XXT −x̄x̄T , where x̄ = (1/n)

∑n
i=1 xi

can be exactly computed in the fusion center through x̄ =
(1/n)

∑g
j=1 g j , where g j ∈ R

d represents the summation of
all data points in the j th remote site before being compressed.
Hence, without loss of generality, we can assume zero-mean,
i.e., x̄ = 0.

Now, we define the procedure of covariance matrix recovery
as follows: given data X and specific designed sampling
matrices, {Si }n

i=1 ∈ R
d×m , where m � {d, n}, the original data

is compressed via ST
i xi and transmitted to the fusion center

while the covariance matrix of the original data is recovered
by a transformation only via Si . The question is how to design
the sampling matrices to guarantee the estimated covariance
matrix as precisely as possible.

B. Related Work

Various randomized algorithms have been proposed to
tackle the above problem and can be divided into three main
streams.

1) Independent Projection: The Gaussian-inverse met-
hod [39] applies a Gaussian matrix Si to com-
press each data point and recovers the data via
Si (ST

i Si )
−1(ST

i xi). The information of all entries in
each data vector is very likely to be acquired uni-
formly and substantively because Si (ST

i Si )
−1ST

i is an
m-dimensional orthogonal projection, whose projection
spaces are uniformly and randomly drawn. Hence,
1
n

∑n
i=1 Si (ST

i Si )
−1ST

i xixT
i Si (ST

i Si )
−1ST

i is expected to
constitute an accurate and consistent covariance matrix
estimation up to a known scaling factor [9]. However,
computing the Gaussian matrix is computational burden
because the Gaussian matrix is dense and unstructured.
Moreover, the matrix inverse operation requires much
computational time and memory cost. A biased estima-
tor (1/n)

∑n
i=1 Si ST

i xi xT
i Si ST

i is then presented in [7]
by applying a sparse matrix Si to avoid computing
the matrix inversion. This strategy is less accurate
because Si ST

i approximates only an m-dimensional ran-
dom orthogonal projection. Moreover, its performance is
guaranteed only on data that satisfy a certain statistical
assumption, e.g., Gaussian distribution. An unbiased
estimator [5] is then proposed to adopt an unstructured
sparse matrix to construct the projection. The method is
computational inefficient and fails to afford error bounds
to trade off the estimation error and the compression
ratio. To improve computational efficiency, the strategy
of sampling without replacement has been employed

to Si . However, this method recovers the data via ST
i xi ,

which is poor because Si ST
i is an m-dimensional orthog-

onal projection drawn only from d deterministic orthog-
onal spaces/coordinates and removes (d − m) entries
of each vector. To retain the accuracy, the Hadamard
matrix [43] is applied in [6] before sampling, which
flattens out all entries, particularly those with large
magnitudes, to all coordinates. Even though the pro-
posed uniform sampling scheme can capture sufficient
information embedded in all entries, it fails to capture
the information uniformly in all coordinates of each vec-
tor because the Hadamard matrix involves deterministic
orthogonal projection. Hence, it requires numerous sam-
ples to obtain sufficient accuracy [6]. Overall, existing
independent projection methods cannot capture the most
valuable information sufficiently.

2) Projection via a Low-Rank Matrix: A representa-
tive work [16], [27] is to improve the approxima-
tion precision by projecting the original data via a
low-dimensional data-aware matrix XŜ, where Ŝ is a ran-
dom projection matrix and X must be a low-rank matrix.
This method has to take one extra pass through all
entries in X to compute XŜ. Theoretical and empirical
investigation shows that a single projection matrix for all
data points cannot consistently and accurately estimate
the covariance matrix [9]. The problem of inconsistent
covariance estimation and the restriction of low-rank
matrix assumption also exist in [37] and [47] for fast
approximating matrix products in a single pass.

3) Sampling in a Whole: Other existing methods [21], [30],
[38], [46] leverage column-based sampling to apply the
column norms or leverage scores in the sampling prob-
abilities matrix, while in 3], [4], and [46], element-wise
sampling is applied in the entire matrix. These methods
adopt various sampling distributions to sample entries
from a matrix. However, they require one or more
extra passes over data because computing the sampling
distributions requires to observe all data. Moreover,
the sampling probabilities are created for matrix approx-
imation and cannot be trivially extended to covariance
matrix estimation because it is not allowed to obtain the
exact covariance matrix in advance. Note that although
the uniform sampling is a simple one-pass algorithm for
matrix approximation, the structural non-uniformity in
the data makes it perform poorly [6].

Other than randomized algorithms, researchers also establish
theory to recover the covariance matrix from given data [11],
[13], [17], [18]. However, these methods are only applicable
when the covariance matrix is low-rank, sparse, or follows
a certain statistical assumption, and restrict their application
potentials.

III. OUR PROPOSAL

A. Method and Algorithm

Our proposed DACE utilizes data-aware weighted sampling
matrices {Si }n

i=1 to compress each data via ST
i xi and then

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 15:43:24 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: EFFECTIVE DATA-AWARE COVARIANCE ESTIMATOR FROM COMPRESSED DATA 2443

Algorithm 1 Data-Aware Covariance Estimator (DACE)
Require:

Data X ∈ R
d×n , sampling size m, and 0 < α < 1.

Ensure:
Estimated covariance matrix Ce ∈ R

d×d .
1: Initialize Y ∈ R

m×n , T ∈ R
m×n , v ∈ R

n , and w ∈ R
n with

0.
2: for all i ∈ [n] do
3: Load xi into memory, let vi = ‖xi‖1 = ∑d

k=1 |xki | and
wi = ‖xi‖2

2 = ∑d
k=1 x2

ki
4: for all j ∈ [m] do
5: Pick t j i ∈ [d] with pki ≡ P(t j i = k) = α |xki |

vi
+ (1 −

α)
x2

ki
wi

, and let y j i = xt ji i

6: end for
7: end for
8: Pass the compressed data Y, sampling indices T, v, w, and

α to the fusion center.
9: for all i ∈ [n] do

10: Initialize Si ∈ R
d×m and P ∈ R

d×n with 0
11: for all j ∈ [m] do

12: Let pt ji i = α
|y ji |
vi

+ (1 − α)
y2

j i
wi

, and st j i j,i = 1√
mpt j i i

13: end for
14: end for
15: Compute Ce as defined in Eq. (1).

back-project the compressed data into the original space via
Si ST

i xi . The estimated covariance matrix is computed by

Ce = Ĉ1 − Ĉ2, where bki = 1

1 + (m − 1)pki
(1)

Ĉ1 = m

nm − n

n∑
i=1

Si ST
i xi xT

i Si ST
i (2)

Ĉ2 = m

nm − n

n∑
i=1

D
(
Si ST

i xi xT
i Si ST

i

)
D(bi ). (3)

In (1), at most m entries in each bi have to be calculated
because each Si ST

i xixT
i Si ST

i contains at most m non-zero
entries in its diagonal.

Algorithm 1 outlines the flow of DACE. Steps 1–7 show the
procedure of compressing the data X to Y, where each entry
is retained according to the probability proportional to the
combination of its relative absolute value and the square value.
Step 8 describes the communication procedure to transmit the
compressed data from all the remote sites to the fusion center.
Steps 9–14 reveal the construction of an unbiased covariance
matrix estimator in the fusion center from the compressed data.
It is shown that only one pass is required to load all data
from the external space into the memory, which reveals the
applicability of our DACE for streaming data.

B. Primary Provable Results

Theorem 1 shows that our proposed DACE can attain an
unbiased estimator for the target covariance matrix.

Theorem 1: Assume X ∈ R
d×n and the sampling size

2 ≤ m < d . m entries are sampled from each xi ∈ R
d

with replacement by running Algorithm 1. Let {pki }d
k=1 and

Si ∈ R
d×m denote the sampling probabilities and the sampling

matrix, respectively. Then, the unbiased estimator for the target
covariance matrix C = (1/n)

∑n
i=1 xixT

i = (1/n)XXT can be
recovered by (1).

The detailed proof is provided in Appendix V-B. The
estimation error can also be bounded by Theorem 2.

Theorem 2: Let X, m, C, and Ce be defined as in
Theorem 1. If the sampling probabilities satisfy pki =
α(|xki |/‖xi‖1) + (1 − α)(x2

ki/‖xi‖2
2) with 0 < α < 1 for all

k ∈ [d] and i ∈ [n], then with probability at least 1 − η − δ

‖Ce − C‖2 ≤ log

(
2d

δ

)
2R

3
+
√

2σ 2 log

(
2d

δ

)
(4)

where R = maxi∈[n][(7‖xi‖2
2/n) + log2((2nd/η))

(14‖xi‖2
1/nmα2)] and σ 2 = ∑n

i=1[(8‖xi‖4
2/n2m2(1 −

α)2)+(4‖xi‖2
1‖xi‖2

2/n2m3α2(1 −α))+(9‖xi‖4
2/n2m(1 −α))+

(2‖xi‖2
2‖xi‖2

1/n2m2α(1 − α))]
+‖∑n

i=1(‖xi‖2
1xi x2

i /n2mα)‖2.
The proof of Theorem 2 is in Appendix V-C.
Remark 1: The error bound is linear with R and σ . The

selected pki makes R and σ smaller and tightens the bound.
Remark 2: The balance parameter α can adjust the impact

of the normalized ł1-norm sampling and the square of the nor-
malized ł2-norm sampling. ł2 sampling owns more potential to
select larger entries to decrease error than ł1 sampling, but ł2
sampling is unstable and sensitive to small entries, incurring
incredibly high estimation error if extremely small entries are
picked. Hence, if α varies from 1 to 0, the estimation error
decreases first and then increases gradually.

The explicit bound is represented in terms of n, d , and m
under the constraint of 2 ≤ m < d .

Corollary 1: Let X, m, C, and Ce be defined as in The-
orem 1. Define (‖xi‖1/‖xi‖2) ≤ ϕ with 1 ≤ ϕ ≤ √

d and
‖xi‖2 ≤ τ for all i ∈ [n]. Then, with probability at least
1 − η − δ, we have

‖Ce−C‖2 ≤min

{
Õ

(
f + τ 2ϕ

m

√
1

n
+ τ 2

√
1

nm

)
,

Õ

(
f + τϕ

m

√
d‖C‖2

n
+ τ

√
d‖C‖2

nm

)}
(5)

where f = (τ 2/n) + (τ 2ϕ2/nm) + τϕ((‖C‖2/nm))1/2, and
Õ(·) hides the logarithmic factors on η, δ, m, n, d , and α.
The proof is given by Appendix V-D.

Remark 3: When ϕ = √
d , the magnitudes of each entry

in all the input data vectors are the same, i.e., highly
uniformly distributed. The error bound in (5) yields
the worst case and derives a bound with a leading
term of order min{Õ((τ 2d/nm) + τ ((d‖C‖2/nm))1/2 +
(τ 2/m)((d/n))1/2), Õ((τ 2d/nm) + (τd/m)((‖C‖2/n))1/2)},
the same as Gauss-Inverse, which ignores logarithmic fac-
tors [39].

Accordingly, as the magnitudes of the entries in each
data vector become uneven, ϕ gets smaller and yields a
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tighter error bound than that in Gauss-Inverse. Furthermore,
when most of the entries in each vector xi have very
low magnitudes, the summation of these magnitudes will
be comparable to a particular constant. This situation is
typical because, in practice, only a limited number of fea-
tures in each input data dominate the learning performance.
Hence, ϕ turns to O(1) and (5) becomes min{Õ((τ 2/n) +
τ 2((1/nm))1/2), Õ((τ 2/n) + τ ((d‖C‖2/nm)))1/2}, which is
tighter than the leading term of Gauss-Inverse by a factor of
at least (d/m)1/2.

Remark 4: As practically, m � d , O(d − m) approximates
to O(d). The error of UniSample-HD is Õ((τ 2d/nm) +
τ ((d‖C‖2/nm))1/2 + (τ 2d/m)((1/nm))1/2), which is asymp-
totically worse than our bound. When n is sufficiently large,
the leading term of its error becomes Õ(τ ((d‖C‖2/nm))1/2 +
(τ 2d/m)((1/nm))1/2), which can be weaker than the leading
term in our method by a factor of 1 to (d/m)1/2 when ϕ = √

d,
and at least d/m when ϕ = O(1).

However, if m is close to d , though not meaningful for prac-
tical applications, O(d −m) = O(1) will hold and the error of
UniSample-HD becomes Õ((τ 2d/nm)+τ ((d‖C‖2/nm))1/2+
(τ 2/m)((d/nm))1/2). This bound may slightly outperform
ours by a factor of (d/m)1/2 = O(1) when ϕ = √

d , but
is still worse than ours when ϕ = O(1).

Note: The derivation and proof of our DACE do not
make statistical nor structural assumptions concerning the
input data or the covariance matrix. Motivated by [9], it is
straightforward to extend our results to the data by a cer-
tain statistical assumption and a low-rank covariance matrix
estimation.

Corollary 2: Let X ∈ R
d×n (2 ≤ d), an unknown pop-

ulation covariance matrix Cp ∈ R
d×d with each column

vector xi ∈ R
d i.i.d. generated from the Gaussian distribution

N (0, Cp), and Ce be constructed by Algorithm 1 with the
sampling size 2 ≤ m < d . Then, with probability at least
1 − η − δ − ζ

‖Ce − Cp‖2

‖Cp‖2
≤ Õ

(
d2

nm
+ d

m

√
d

n

)
. (6)

Additionally, assuming rank (Cp)≤ r , with probability at least
1 − η − δ − ζ , we have

‖[Ce]r − Cp‖2

‖Cp‖2
≤ Õ

(
rd

nm
+ r

m

√
d

n
+
√

rd

nm

)
(7)

where [Ce]r is the solution to minrank(A)≤r ‖A − Ce‖2 and
Õ(·) hides the logarithmic factors on η, δ, ζ , m, n, d ,
and α.

Corollary 3: Given X, d , m, Cp , and Ce as defined in
Corollary 2. Let

∏
k = ∑k

i=1 ui uT
i and

∏̂
k = ∑k

i=1 ûi ûT
i with

{ui }k
i=1 and {ûi }k

i=1 being the leading k eigenvectors of Cp

and Ce, respectively. Denote by λk the kth largest eigenvalue
of Cp . Then, with probability at least 1 − η − δ − ζ

‖∏̂k −∏
k ‖2

‖Cp‖2
≤ 1

λk − λk+1
Õ

(
d2

nm
+ d

m

√
d

n

)
(8)

where the eigengap λk − λk+1 > 0 and Õ(·) hides the
logarithmic factors on η, δ, ζ , m, n, d , and α.

TABLE I

COMPUTATIONAL COSTS ON COMMUNICATION (COMM.) AND TIME,
WHERE THE STORAGE OF THE STANDARD METHOD IS O(nd + d2)

WHILE OTHER METHODS CONSUME O(nm + d2)

The sketch proof of the above two corollaries is provided in
Appendix V-E. Corollary 2 shows the (low-rank) covariance
matrix estimation on Gaussian data and Corollary 3 indicates
that the derived covariance estimator also guarantees the
accuracy of the principal components regarding the learned
subspace. In particular, setting n = 
(d) in (7) reveals that
m = �̃(r/ε2) entries can achieve an ε spectral norm error
for the low-rank covariance matrix estimation, which is also
polynomially equal to the literature that leverages low-rank
structure to derive methods for the low-rank (covariance)
matrix recovery [13], [17].

C. Computational Complexity

In Table I, TG and TS represent the time taken by
fast pseudorandom number generators such as Mersenne
Twister [36] to generate the Gaussian matrices and sparse
matrices, which can be proportional to nmd and nd2, respec-
tively, up to a certain small constant. When d is large, our
method exhibits the most efficient method. By applying the
smallest m to achieve the same estimation accuracy as the
other methods, our DACE incurs the least computational cost.

D. Analysis on Multiclass Classification

We turn to multiclass classification problem rather than
image recovery [5] because multiclass classification is popular
in many real-world applications whose performance heavily
depends on the estimated covariance of each individual class.

1) Multiclass Classification Solution: Following the setup
in [32], we are given data from T classes and compute the
corresponding covariance matrix for each class, denoted by
{Ct }T

t=1. Let
∏

k,t = ∑k
j=1 u j,t uT

j,t , where {u j,t }k
j=1 are the

leading k eigenvectors of Ct corresponding to the principal
components. For a test data x, we fix k and predict the class
label by maxt xT ∏

k,t x. If the mean vector in each class is
zero, then the class label will purely be determined by the
class covariance matrices rather than the mean vectors.

2) Analysis: Let the target covariance matrix Ct in the tth
class be calculated from {xi,t }nt

i=1; by Corollary 1, we derive
the error of our estimator Ce,t as follows:

‖Ce,t − Ct‖2

‖Ct‖2
≤ 1

‖Ct‖2
min{A, B} (9)

where A = Õ( ft + (τ 2ϕ/m)((1/nt))
1/2 + τ 2((1/ntm))1/2),

B = Õ( ft +(τϕ/m)((d‖Ct‖2/nt ))
1/2+τ ((d‖Ct‖2/nt m))1/2),
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and ft = (τ 2/nt ) + (τ 2ϕ2/nt m) + τϕ((‖Ct‖2/nt m))1/2,
(‖xi,t ‖1/‖xi,t ‖2) ≤ ϕ with 1 ≤ ϕ ≤ √

d , and ‖xi,t ‖2 ≤ τ
for all i ∈ [nt ].

Compared with the estimator Ce obtained from the entire
data consisting of n = ∑T

t=1 nt data points, the error Ce,t

is dominated by 1/
√

nt and 1/(‖Ct‖2)
1/2 (not 1/‖Ct‖2).

Suppose nt is the same for all classes, the term 1/
√

nt

in (9) becomes
√

T/n, which is
√

T times as large as 1/
√

n
in (5) of Corollary 1. Meanwhile, if all Ct have very similar
principal components as those of C (i.e., all {Ct }T

t=1 and C are
calculated from the same data distributions, and thus, the data
tend to be difficult to classify), then 1/(‖Ct‖2)

1/2 nearly
equals 1/(‖C‖2)

1/2. If all Ct have totally different principal
components from each other, 1/(‖Ct‖2)

1/2 will become 1/
√

T
times as large as 1/(‖C‖2)

1/2.
Thus, compared with the estimation error derived in Corol-

lary 1 over n data with T classes, the estimation error for each
class covariance estimator roughly increases with O(

√
T ) if

all class covariance matrices yield nearly the same leading
principal components while the error remaining nearly the
same if all class covariance matrices have totally different
leading principal components.

Remark 5: The above result does not contradict with our
statement in Theorem 2 or Corollary 1 that the estimation
error approaches zero (i.e., decreases with the number of data)
when receiving more data, because the data follow only one
category of distribution result in a stable 1/‖C‖2)

1/2. When
the data follow different distributions, they practically come
randomly and yield a stable 1/‖C‖2)

1/2.
Remark 6: In Section III-D1, the performance is deter-

mined only by Ce,t or the principal components
∏

k,t of Ce,t .
Via Corollaries 1 and 3, the compressed data obtained by our
method guarantee a superior approximation for Ce,t and

∏
k,t

and yield a comparable classification performance compared
with Ct . In other words, if each nt or the target compressed
dimension m is not too small, the distances between individual
class estimators will approach to those among the original
class covariance matrices with high probability and guarantee
the classification performance.

IV. EXPERIMENTS

In this section, we conduct empirical evaluation to address
the following issues.

1) How the dimension, the data size, and the compression
ratio affect the estimation precision of our DACE?

2) What performance of our DACE can be attained in
real-world data sets?

3) What performance of our DACE can be attained in
multiclass classification problems?

To provide fair comparisons, we compare our DACE with
three representative algorithms: Gauss-Inverse [39], Sparse [7],
and UniSample-HD [6]. In our DACE, the hyper-parameter α
is empirically set to 0.9 due to good empirical performance.
The hyper-parameter settings in Gauss-Inverse, Sparse, and
UniSample-HD simply follow the original work in [6], [7],
and [39].

All algorithms are implemented in C++ and run in a single
thread mode on a standard workstation with Intel CPU at

Fig. 1. Accuracy comparisons of covariance matrix estimation on synthetic
data sets. The estimation error is measured by ‖Ce − C‖2/‖C‖2 with Ce
calculated by all compared methods and cf = m/d is the compression ratio.

Fig. 2. Rescaled time cost (plotted in the log scale) of covariance matrix
estimation on synthetic data sets. The time is normalized to the Standard way
of calculating C = XXT /n on the original data.

2.90 GHz and 128-GB RAM to record the time consumption
measured by FLOPS.

A. Covariance Estimation on Synthetic Data Sets

Following the generation procedure [35], we construct six
synthetic data sets: 1) {Xi }3

i=1, d = 1024 and n = 20 000;
2) X4, d = 1024 and n = 200 000; and 3) X5, d = 2048,
200 000, and X6, d = 65536 and n = 200 000. More
specifically, X = UFG, where U ∈ R

d×k (UT U = Ik , k ≤ d)
defines the signal column space, the square diagonal matrix
F ∈ R

k×k contains the diagonal entries fii = 1−(i−1)/k with
linearly diminishing signal singular values, and G ∈ R

k×n is
the Gaussian signal, i.e., gi j ∼ N (0, 1). In X1, k ≈ 0.005d .
X2 = DX, where D is a square diagonal matrix with dii =
1/βi and integer βi is uniformly sampled from range 1–15.
X3 is constructed the same way as X1 except that F is set by
an identity matrix. {Xi }6

i=4 follow the same generation scheme
of X2 by only setting different n and d values.

Fig. 1 shows the average relative estimation error with its
standard deviation on ten runs with respect to the compression
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Fig. 3. Convergence analysis of CACE in terms of different n, cf , and k.
The legend of (b) is the same as (a). The legend of (d) is the same as (c).
The legend of (f) is the same of (e).

ratio cf = m/d . Note that the performance of Gauss-Inverse
has been revealed on X1–X5 and is not provided on X6 due to
enormous computation time. Fig. 2 reports the rescaled time
cost in both the compressing and recovering stages. The results
show the following.

1) Our DACE exhibits the least estimation error and devi-
ation for all data sets when the dimension d increases.
When applying more data, the error decreases gradually.
The error decreases dramatically with slightly increasing
cf and becomes flat soon. It indicates that our DACE
can achieve sufficient estimation accuracy by using
substantially fewer data entries than other methods.

2) When the compression ratio cf increases, the estimation
error decreases gradually while the time cost increases
accordingly. Gauss-Inverse, though good for smaller
storage and less communication, consumes significantly
much more time than Standard due to the computa-
tion of non-sparse projection. Sparse, though without
error analysis of the estimator, generally consumes less
time than Standard, but performs worse than the other
methods. UniSample-HD beats other two methods, but
it performs slightly worse than our DACE and consumes
more time than DACE. Especially, the inferiority is
remarkable when cf is small.

3) In X1, ϕ is measured empirically as 0.81
√

d , the magni-
tudes of the data entries are more uniformly distributed,

Fig. 4. Accuracy comparisons of covariance matrix estimation on real-world
data sets.

and our DACE can be regarded as uniform sampling
with replacement and may perform slightly worse than
UniSample-HD and Gauss-Inverse. In X2, ϕ = 0.55

√
d ,

the magnitude varies in a moderately larger range,
and our DACE outperforms the three other methods
significantly. The improvement lies in that our DACE
is only sensitive to ϕ and a smaller ϕ produces a
tighter estimation, which confirms the elaboration in
Remarks 3 and 4.

4) The error of each method in X3 [τ/(‖C‖2)
1/2 =

5.5, ϕ = 0.81
√

d] is larger than that in X1
[τ/(‖C‖2)

1/2 = 4.3, ϕ = 0.81
√

d]. It is because of that
almost all methods are sensitive to τ/(‖C‖2)

1/2, and
the error ‖Ce − C‖2/‖C‖2 increases when τ/(‖C‖2)

1/2

increases. Such phenomenon is demonstrated via divid-
ing numerous error bounds in Remarks 3 and 4 by ‖C‖2.
Our method also achieves the best performance in X4.
Although ϕ and τ/(‖C‖2)

1/2 in X4 are approximately
equal to those in X2, yet the proved error bounds with
Remarks 3 and 4 reveal that a larger n in X4 will lead
to smaller estimation errors given the same cf.

To verify the theoretical results in Corollaries 2 and 3,
we generate two new synthetic data sets from multivariate
normal distribution {Xt ∼ N (0, Cpt )}8

t=7 ∈ R
d×d . In X7,
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Fig. 5. (a) Covariance estimation error over all data. (b)–(d) Estimation error
over the data of three different classes. (e) Classification accuracy averaged
over all test data. (f)–(h) Classification accuracy over the test data of three
different classes.

the (i, j)th element of Cp7 is 0.5|i− j |/50, while Cp8 being a
low-rank matrix, which is the solution to minrank(A)≤r ‖A −
Cp7‖2. We take d = 1000, r = 5, m/d = {0.02, 0.05, 0.15},
and k = {5, 10, 15} and vary n from 1000 to 100 000.

Fig. 3(a), (c), and (e) reports the errors defined
in the LHS of (6)–(8) under different settings, while
Fig. 3(b), (d) and (f) records the errors divided by 1/

√
n. The

results show that the errors decrease with the increase of n.
Especially, the roughly flat curves in Fig. 3(b), (d), and (f)
indicate that the error bounds induced by our DACE converge
rapidly in the rate of 1/

√
n, which coincides with the results

in (6)–(8). Fig. 3(a) also exhibits that our DACE can attain
more accurate estimation precision from a low-rank gener-
ated covariance matrix than that from a high-rank covariance
matrix, and enlarging n can improve all the estimation pre-
cisions. Fig. 3(e) shows that the estimated errors increase
with the increase of k, and these results cohere with (8) by

considering the empirical findings that the eigengap λk −λk+1
in Cp7 decreases with k.

B. Covariance Estimation on Real-World Data Sets

Fig. 4 reports the estimation errors on eight publicly avail-
able real-world data sets and shows that the errors decrease
dramatically with the increase of cf. Our DACE consistently
exhibits superior accuracy with the least deviation in all cases.

C. Evaluation on Multiclass Classification

To guarantee that the classification performance is purely
determined by the class covariance matrices rather than the
mean vectors, we generate a new data set, namely MNIST-ZM,
which centers the MNIST data set in each class. The data set
consists of ten classes of data with around 7000 data points
in each class. 100 data points from each class are randomly
picked for test while the remaining are applied to calculate
{Ct }10

t=1 and {Ce,t }10
t=1. The parameter k is set to 30 because

Standard can obtain good classification results. The ratio m/d
is varied from 0.01 to 0.5.

Fig. 5(a), (c), (e), and (g) presents the results of class
covariance matrix estimation. We can observe that the esti-
mation error of each individual class covariance matrix Ce,t is
around twice (below

√
T = √

10) to that of Ce. Accordingly,
Fig. 5(d), (d), (f), and (h) shows the compared classification
results using the estimated covariance matrices derived from
different methods. We observe that the classification accuracy
of our DACE is comparable with Standard without performing
data compression. Moreover, our DACE slightly outperforms
Standard at some m/d value in Fig. 5(f), which depicts that
our DACE can select informative features to achieve better
generalization. Finally, our DACE also outperforms the other
three methods learned from compressed data in terms of both
estimation precision and classification accuracy.

V. CONCLUSION

We present a data-aware weighted sampling method for
tackling covariance matrix recovery and multiclass classifi-
cation problems. We theoretically prove that our proposed
DACE is an unbiased covariance matrix estimator and can
employ less data than other representative algorithms to attain
the same performance. The empirical results on both synthetic
and real-world data sets support our theory and demonstrate
the superior performance over other state-of-the-art methods.

APPENDIX A
PRELIMINARIES

Lemmas 1 and 2 and the recited theorems set the foundation
of proving our main theoretical results.

Lemma 1: Given a vector x ∈ R
d , sample m (m < d)

entries from x with replacement by running Algorithm 1. Let
{pk}d

k=1 and S ∈ R
d×m define as in Algorithm 1. {ek ∈ R

d}d
k=1

denote the standard basis vectors. Then, we have

E[SST xxT SST ] =
d∑

k=1

x2
k

mpk
ekeT

k + m − 1

m
xxT (10)
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E[D(SST xxT SST )] =
d∑

k=1

(
1

mpk
+ m − 1

m

)
x2

k ekeT
k (11)

E[(D(SST xxT SST ))2]

=
d∑

k=1

[
1

m3 p3
k

+ 7(m − 1)

m3 p2
k

+6(m2 − 3m + 2)

m3 pk

+m3 − 6m2 + 11m − 6

m3

]
x4

k ekeT
k (12)

× E[SST xxT SST
D(SST xxT SST )]

= (E[D(SST xxT SST )SST xxT SST ])T

=
d∑

k=1

[
1

m3 p3
k

+ 6(m − 1)

m3 p2
k

+ 3(m2 − 3m + 2)

m3 pk

]
x4

k ekeT
k

+m − 1

m3 xxT
D

({
x2

k

p2
k

})
+ 3(m2 − 3m + 2)

m3 xxT

·
[

D

({
x2

k

pk

})
+ m − 3

3
D
({

x2
k

})]
(13)

E[(SST xxT SST )2]

=
d∑

k=1

[
4(m − 1)

m3 p2
k

+ 1

m3 p3
k

]
x4

k ekeT
k

+
d∑

k=1

[
‖x‖2

2(m
2 − 3m + 2)

m3 + m − 1

m3

d∑
k=1

x2
k

pk

]
x2

k

pk
ekeT

k

+
[

‖x‖2
2(m

3−6m2+11m−6)

m3 + m2−3m+2

m3

d∑
k=1

x2
k

pk

]
xxT

+ xxT

[
2(m2 − 3m + 2)

m3 D

({
x2

k

pk

})

+m − 1

m3 D

({
x2

k

p2
k

})]

+
[

2(m2 − 3m + 2)

m3 D

({
x2

k

pk

})
+ m−1

m3 D

({
x2

k

p2
k

})]
xxT

(14)

where D({x2
k }) denotes a square diagonal matrix with {x2

k }d
k=1

on its diagonal and likewise for other notations.
Lemma 2: Following the same notations defined in

Lemma 1, with probability at least 1 −∑d
k=1 ηk , we have:

‖SST xxSST ‖2 ≤
∑
k∈�

f 2(xk, ηk, m) (15)

where � is a set containing at most m different elements
of [d] with its cardinality |�| ≤ m and f (xk, ηk, m) =
|xk| + log((2/ηk))[(|xk|/3mpk) + |xk |((1/9m2 p2

k ) +
(2/ log(2/ηk))((1/mpk) − (1/m)))1/2].

Theorem 3 ( [44, p. 76]): Let {Ai }L
i=1 ∈ R

d×n

be independent random matrices with E[Ai ] = 0
and ‖Ai‖2 ≤ R. Define the variance σ 2 =
max{‖∑L

i=1 E[Ai AT
i ]‖2, ‖∑L

i=1 E[AT
i Ai ]‖2}. Then,

P(‖∑L
i=1 Ai‖2 ≥ ε) ≤ (d + n) exp((−ε2/2/σ 2 + Rε/3)) for

all ε ≥ 0.

Theorem 4 ( [25, p. 396]): If A ∈ R
d×d and A+E ∈ R

d×d

are symmetric matrices, then

λk(A) + λd (E) ≤ λk(A + E) ≤ λk(A) + λ1(E) (16)

for k ∈ [d], where λk(A + E) and λk(A) designate the kth
largest eigenvalues.

APPENDIX B
THEORETICAL PROOFS

A. Proof of Lemma 2

Proof: According to the notion defined in Lemma 1,
we have

‖SST xxT SST ‖2

(a)= ‖SST x‖2
2 =

∥∥∥∥∥∥
m∑

j=1

st j s
T
t j

x

∥∥∥∥∥∥
2

2

=
∥∥∥∥∥∥

m∑
j=1

1

mpt j

xt j et j

∥∥∥∥∥∥
2

2

=
∥∥∥∥∥∥

m∑
j=1

d∑
k=1

δt j k

mpk
xkek

∥∥∥∥∥∥
2

2

=
d∑

k=1

⎛⎝ m∑
j=1

δt j k xk

mpk

⎞⎠2

(b)=
∑
k∈�

⎛⎝ m∑
j=1

δt j k xk

mpk

⎞⎠2

(17)

where � = {γt }|�|
t=1 is a set with the cardinality |�| ≤ m

containing at most m different elements of [d].
In (17), (a) holds because SST xxT SST is a positive semi-

definite matrix of rank 1. δt j k returns 1 only when t j = k and 0
otherwise. P(δt j k = 1) = P(t j = k) = pk . (b) holds because
we perform random sampling with replacement m times on
the d entries of x ∈ R

d , and consequently, at most m different
entries from x are sampled.

Let k = γ1, γ1 ∈ �, and we first bound
|∑m

j=1(δt jγ1 xγ1/mpγ1)|. Let a j = (δt jγ1 xγ1/mpγ1) −
(xγ1/m), j ∈ [m], and we can easily check that {a j }m

j=1 are
independent with E[a j ] = 0, where Theorem 3 can be applied
for our analysis. Furthermore, we have

max
j∈[m] |a j | = max

{ |xγ1 |
m

(
1

pγ1

−1

)
,
|xγ1|

m

}
≤ |xγ1|

mpγ1

(:= R)

(18)

and
m∑

j=1

E
[
a2

j

] = x2
γ1

mpγ1

− x2
γ1

m
(:=σ 2). (19)

Thus, by applying Theorem 3, we obtain P(|∑m
j=1 a j | ≥

ε) ≤ ηγ1 , where ηγ1 = 2 exp((−ε2/2/x2
γ1

/(mpγ1)− x2
γ1

/m +
|xγ1|ε/(3mpγ1))). Then, with probability at least 1 − ηγ1 ,
we have |∑m

j=1 a j | ≤ ε, i.e., |∑m
j=1(δt jγ1 xγ1/mp1)| ≤

|xγ1| + ε. We then replace ε and obtain the function,
f (xγ1, ηγ1, m), defined in Lemma 4.

Similarly, we bound |∑m
j=1(δt j k xk/mpk)| for k ∈ [d].

The lemma holds by using the union bound over cases for
all k ∈ [d]. �
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B. Proof of Theorem 1

Proof: First, we have

E[Ĉ1] = m

nm − n
E

n∑
i=1

Si ST
i xixT

i Si ST
i

= by (10) m

nm − n

n∑
i=1

[
d∑

k=1

x2
ki

mpki
ekeT

k + m − 1

m
xi xT

i

]

= 1

nm − n

n∑
i=1

d∑
k=1

x2
ki

pki
ekeT

k + 1

n
XXT . (20)

Second, by (11) in Lemma 1, we have

E[Ĉ2] = m

nm − n

n∑
i=1

E
[
D
(
Si ST

i xi xT
i Si ST

i

)]
D(bi )

= 1

nm − n

n∑
i=1

d∑
k=1

x2
ki

pki
ekeT

k . (21)

Hence, by (20) and (21), we immediately conclude that Ce =
Ĉ1 − Ĉ2 is unbiased for C. �

C. Proof of Theorem 2

Proof: For simplicity, we define Ai = Ai1 − Ai2 −
Ai3 , where Ai1 = (mSi ST

i xi xT
i Si ST

i /nm − n), Ai2 =
(mD(Si ST

i xi xT
i Si ST

i )D(bi )/nm − n), and Ai3 = (xi xT
i /n).

Then, Ce − C = ∑n
i=1 Ai .

Obviously, {Ai }n
i=1 are independent zero-mean random

matrices. Hence, Theorem 3 can be directly applied. To bound
‖Ce − C‖2, we then calculate the corresponding parameters
R and σ 2 that characterize the range and variance of Ai ,
respectively.

We first derive R, i.e., the bound of ‖Ai‖2 for i ∈ [n].
By expanding ‖Ai‖2, we get

‖Ai‖2 = ‖Ai1 − Ai2 − Ai3 ‖2 ≤ ‖Ai1 − Ai2 ‖2 + ‖Ai3 ‖2

≤ ‖Ai1 ‖2 + ‖Ai3 ‖2. (22)

The last inequality in (22) results from

‖Ai1 − Ai2 ‖2

= max
k∈[d] |λk(Ai1 − Ai2 )|

(a)≤ max{|λd(Ai1 ) − λ1(Ai2 )|, |λ1(Ai1 ) − λd(Ai2 )|}
(b)= max{λ1(Ai2 ), |λ1(Ai1 ) − λd (Ai2 )|}
(c)= max{λ1(Ai2 ), λ1(Ai1 ) − λd (Ai2 )}
(d)≤ λ1(Ai1)

(e)= ‖Ai1 ‖2

where λk(·) is the kth largest eigenvalue. The inequality (a)
holds because λk(Ai1 )−λ1(Ai2) ≤ λk(Ai1 −Ai2 ) ≤ λk(Ai1 )−
λd (Ai2 ) for any k ∈ [d], which is attained by applying
Theorem 4 with the fact that λd (−Ai2) = −λ1(Ai2 ) and
λ1(−Ai2 ) = −λd(Ai2 ) for Ai2 ∈ R

d×d . The equality (b) holds
because λk≥2(Ai1) = 0 from the fact that Ai1 is a positive
semidefinite matrix of rank 1 and λk∈[d](Ai2 ) ≥ 0 since Ai2
is positive semidefinite. The equality (c) follows the fact that

λ1(Ai1) = Tr(Ai1 ) ≥ Tr(Ai2 ) = ∑d
k=1 λk(Ai2 ) ≥ λd(Ai2 ) ≥

0, where the first equality holds because λk≥2(Ai1) = 0,
the first inequality results from the fact that the diagonal matrix
Ai2 is constructed by the diagonal elements of Ai1 multiplied
by positive scalars not bigger than 1, and the second inequality
is the consequence of λk∈[d](Ai2 ) ≥ 0. The equality (d) results
from that λk∈[d](Ai2 ) ≥ 0. The equality (e) holds due to the
fact that Ai1 is positive semidefinite.

Now, we only need to bound ‖Ai1 ‖2 and ‖Ai3 ‖2. We have

‖Ai3 ‖2 =
∥∥∥∥∥xi xT

i

n

∥∥∥∥∥
2

= ‖xi‖2
2

n
. (23)

Applying Lemma 2 gets with probability at least 1−∑d
k=1 ηki

‖Ai1 ‖2 ≤ m

nm − n

∑
k∈�i

f 2(xki , ηki , m) (24)

where �i = {γt i}|�i |
t=1 is a set occupying at most m dif-

ferent elements of [d] with its cardinality |�i | ≤ m
and f (xki , ηki , m) = |xki | + log((2/ηki ))[(|xki |/3mpki) +
|xki |((1/9m2 p2

ki ) + (2/ log(2/ηki ))((1/mpki) − (1/m)))1/2].
We can derive similar bounds for all {xi }n

i=1. Then,
by applying the union bound, with probability at least 1 −∑n

i=1
∑d

k=1 ηki , we have

R = max
i∈[n]

⎡⎣ m

nm − n

∑
k∈�i

f 2(xki , ηki , m) + ‖xi‖2
2

n

⎤⎦ . (25)

Applying the inequality (
∑n

t=1 at )
2 ≤ n

∑n
t=1 a2

t , we have

f 2(xki , ηki , m)

≤ 3x2
ki + 3 log2

(
2

ηki

)
x2

ki

9m2 p2
ki

+ 3 log2
(

2

ηki

)
x2

ki

9m2 p2
ki

+ 6 log

(
2

ηki

)(
x2

ki

mpki
− x2

ki

m

)

≤ 3x2
ki + log2

(
2

ηki

)
2x2

ki

3m2 p2
ki

+ log

(
2

ηki

)
6x2

ki

mpki
. (26)

Before continuing characterizing R in (25), we set the
sampling probabilities as pki = α(|xki |/‖xi‖1) + (1 −
α)(x2

ki/‖xi‖2
2). It is easy to check that

∑d
k=1 pki = 1. For

0 < α < 1, we also have pki ≥ α(|xki |/‖xi‖1), then plugging
it in the second and the third term of (26), respectively, we get

f 2(xki , ηki , m) ≤ Uki

Uki:=3x2
ki +log2

(
2

ηki

)
2‖xi‖2

1

3m2α2

+ log

(
2

ηki

)
6|xki |‖xi‖1

mα
. (27)

Equipped with (25) and setting ηki = (η/nd) for all i ∈
[n] and k ∈ [d], we bound R with probability at least
1 −∑n

i=1
∑d

k=1 ηki = 1 − η by

R ≤ max
i∈[n]

⎡⎣ m

nm − n

∑
k∈�i

Uki + ‖xi‖2
2

n

⎤⎦
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≤ max
i∈[n]

[
2

n

(
3‖xi‖2

2 + log2
(

2nd

η

)
2‖xi‖2

1

3mα2

+ log

(
2nd

η

)
6‖xi‖2

1

mα

)
+ ‖xi‖2

2

n

]

≤ max
i∈[n]

[
7‖xi‖2

2

n
+ log2(

2nd

η
)
14‖xi‖2

1

nmα2

]
(28)

where the second inequality follows from that (m/m − 1) ≤ 2
for m ≥ 2 and |�i | ≤ m and the last inequality results from
that α ≤ 1 and log((2nd/η)) ≥ 1 for n ≥ 1, d ≥ 2, and η ≤ 1.

We then derive σ 2 by only bounding for ‖∑n
i=1 E[Ai Ai ]‖2

since Ai is symmetric. By expanding E[Ai Ai ], we obtain

0 � E[Ai Ai ]
= E

[
Ai1 Ai1 + Ai2 Ai2 + Ai3 Ai3 − Ai1 Ai2

−Ai2 Ai1 − Ai1 Ai3 − Ai3 Ai1 + Ai2 Ai3 + Ai3 Ai2

]
.

In the following, we bound the expectation of each term.
Specifically, invoking Lemma 1, we have

n2
E[Ai Ai ]

=
11∑

i=1

i© −
22∑

i=12

i©, where (29)

1© :=
d∑

k=1

[
4

m(m − 1)p2
ki

+ 1

(m − 1)2mp3
ki

]
x4

ki ekeT
k

2©:=
d∑

k=1

[
‖xi‖2

2(m − 2)

m(m − 1)
+ 1

m(m − 1)

d∑
k=1

x2
ki

pki

]
x2

ki

pki
ekeT

k

3©:=
[

‖xi‖2
2(m

2 − 5m + 6)

m(m − 1)
+ m − 2

m(m − 1)

d∑
k=1

x2
ki

pki

]
xi xT

i

4©:= 2(m − 2)

m(m − 1)
xi xT

i D

({
x2

ki

pki

})

5©:= 1

m(m − 1)
xi xT

i D

({
x2

ki

p2
ki

})

6©:= 2(m − 2)

m(m − 1)
D

({
x2

ki

pki

})
xi xT

i

7©:= 1

m(m − 1)
D

({
x2

ki

p2
ki

})
xi xT

i

8©:=D(bi )D(bi )

d∑
k=1

[
1

m(m − 1)2 p3
ki

+ 7

m(m − 1)p2
ki

+ 6(m − 2)

m(m − 1)pki
+ (m − 2)(m − 3)

m(m − 1)

]
× x4

ki ekeT
k

9©:=‖xi‖2
2xi xT

i

10©:=
d∑

k=1

(
1

(m − 1)pki
+ 1

)
x2

ki ekeT
k D(bi )xi xT

i

11©:=xi xT
i

d∑
k=1

(
1

(m − 1)pki
+ 1

)

× x2
ki ekeT

k D(bi )

12©:=2
d∑

k=1

[
1

m(m − 1)2 p3
ki

+ 6

m(m − 1)p2
ki

+ 3(m − 2)

m(m − 1)pki

]
× x4

ki ekeT
k D(bi )

13©:= 3(m − 2)

m(m − 1)
xi xT

i D

({
x2

ki

pki

})
D(bi )

14©:= (m − 2)(m − 3)

m(m − 1)
xi xT

i D
({

x2
ki

})
D(bi )

15©:= 3(m − 2)

m(m − 1)
D(bi )D

({
x2

ki

pki

})
xi xT

i

16©:= (m − 2)(m − 3)

m(m − 1)
D(bi )D

({
x2

ki

})
xi xT

i

17©:=
d∑

k=1

x2
ki

(m − 1)pki
ekeT

k xi xT
i , 18©:=‖xi‖2

2xi xT
i

19©:=
d∑

k=1

x2
ki

(m − 1)pki
xi xT

i ekeT
k , 20©:=‖xi‖2

2xi xT
i

21©:= 1

m(m − 1)
xi xT

i D

({
x2

ki

p2
ki

})
D(bi )

22©:= 1

m(m − 1)
D(bi )D

({
x2

ki

p2
ki

})
xi xT

i .

In Eq. (29), for m ≥ 2, we have

10© − 17© = 0, 11© − 19© = 0

4© − 13© + 5© − 14© − 21©
= xi xT

i

m(m−1)
D

({
((m − 1)/pki )x2

ki

1 + (m − 1)pki

+(m−2)(m+1−1/pki)x2
ki

1 + (m − 1)pki

})
6© − 15© + 7© − 16© − 22©
= D

({
((m−1)/pki)x2

ki

1+(m−1)pki
+ (m−2)(m+1−1/pki)x2

ki

1 + (m − 1)pki

})

× xi xT
i

m(m−1)
3© + 9© − 18© − 20©

=
[

(6−4m)‖xi‖2
2

m2 − m
+ m − 2

m2 − m

d∑
k=1

x2
ki

pki

]
xixT

i �
d∑

k=1

x2
ki

mpki
xi xT

i ;
8© − 12© � 0

1© �
d∑

k=1

[
8x4

ki

m2 p2
ki

+ 4x4
ki

m3 p3
ki

]
ekeT

k

2© �
d∑

k=1

[
‖xi‖2

2x2
ki

mpki
+ 2x2

ki

m2 pki

d∑
k=1

x2
ki

pki

]
ekeT

k . (30)

Then, by applying (29) and (30), we obtain

0 � E[Ai Ai ]

� 1

n2

d∑
k=1

[
8x4

ki

m2 p2
ki

+ 4x4
ki

m3 p3
ki

+ ‖xi‖2
2x2

ki

mpki
+ 2x2

ki

m2 pki

d∑
k=1

x2
ki

pki

]
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× ekeT
k

+ xi xT
i

n2m(m−1)

× D

({
m−1
pki

x2
ki

1+(m−1)pki
+ (m−2)

(
m+1− 1

pki

)
x2

ki

1 + (m − 1)pki

})

+ D

({
((m−1)/pki)x2

ki

1+(m−1)pki
+ (m−2)(m+1−1/pki)x2

ki

1+(m−1)pki

})

· xi xT
i

n2m(m − 1)
+ 1

n2m

d∑
k=1

x2
ki

pki
xi xT

i . (31)

With (31) in hand, we can formulate σ 2 as

σ 2

=
∥∥∥∥∥

n∑
i=1

E[Ai Ai ]
∥∥∥∥∥

2

≤
n∑

i=1

max
k∈[d]

1

n2

[
8x4

ki

m2 p2
ki

+ 4x4
ki

m3 p3
ki

+‖xi‖2
2x2

ki

mpki
+ 2x2

ki

m2 pki

d∑
k=1

x2
ki

pki

]

+
n∑

i=1

max
k∈[d]

1

n2

[
2‖xi‖2

2

m(m − 1)

(
((m − 1)/pki )x2

ki

1 + (m − 1)pki

+ (m − 2) (m + 1 + 1/pki ) x2
ki

1 + (m − 1)pki

)]

+ 1

n2m

∥∥∥∥∥
n∑

i=1

d∑
k=1

x2
ki

pki
xixT

i

∥∥∥∥∥
2

≤
n∑

i=1

max
k∈[d]

1

n2

[
8x4

ki

m2 p2
ki

+ 4x4
ki

m3 p3
ki

+‖xi‖2
2x2

ki

mpki
+ 2x2

ki

m2 pki

d∑
k=1

x2
ki

pki

]

+
n∑

i=1

max
k∈[d]

1

n2

[
8‖xi‖2

2x2
ki

mpki

]
+ 1

n2m

∥∥∥∥∥
n∑

i=1

d∑
k=1

x2
ki

pki
xi xT

i

∥∥∥∥∥
2

.

(32)

As pki = α(|xki |/‖xi‖1) + (1 − α)(x2
ki/‖xi‖2

2) with 0 < α <
1, and by plugging pki ≥ α(|xki |/‖xi‖1) and pki ≥ (1 −
α)(x2

ki/‖xi‖2
2) into (32), we have

σ 2 ≤
n∑

i=1

max
k∈[d]

1

n2

[
8‖xi‖4

2

m2(1 − α)2 + 4‖xi‖2
1‖xi‖2

2

m3α2(1 − α)
+ ‖xi‖4

2

m(1 − α)

+ 2‖xi‖2
2

m2(1 − α)

d∑
k=1

|xki |‖xi‖1

α

]

+
n∑

i=1

max
k∈[d]

1

n2

[
8‖xi‖4

2

m(1 − α)

]

+ 1

n2m

∥∥∥∥∥
n∑

i=1

d∑
k=1

|xki |‖xi‖1

α
xi xT

i

∥∥∥∥∥
2

=
n∑

i=1

[
8‖xi‖4

2

n2m2(1 − α)2 + 4‖xi‖2
1‖xi‖2

2

n2m3α2(1 − α)
+ 9‖xi‖4

2

n2m(1 − α)

+ 2‖xi‖2
2‖xi‖2

1

n2m2α(1 − α)

]
+
∥∥∥∥∥

n∑
i=1

‖xi‖2
1xi x2

i

n2mα

∥∥∥∥∥
2

. (33)

By invoking Theorem 3, we obtain that for ε ≥ 0

P(‖Ce − C‖2 ≥ ε) ≤ 2d exp

( −ε2/2

σ 2 + Rε/3

)
(:= δ) (34)

and the following quadratic equation in ε:

ε2

2 log(2d/δ)
− Rε

3
− σ 2 = 0. (35)

Solving (35), we get the positive root

ε = log

(
2d

δ

)⎡⎣ R

3
+
√(

R

3

)2

+ 2σ 2

log(2d/δ)

⎤⎦
≤ log

(
2d

δ

)
2R

3
+
√

2σ 2 log

(
2d

δ

)
. (36)

Thus, ‖Ce −C‖2 ≤ log((2d/δ))(2R/3)+(2σ 2 log((2d/δ)))1/2

holds with probability at least 1 − η − δ and we complete the
proof. �

D. Proof of Corollary 1

Proof: By setting ‖xi‖2 ≤ τ for all i ∈ [n], ϕ :=
(‖xi‖1/‖xi‖2), where 1 ≤ ϕ ≤ √

d and m < d into
Theorem 2, we obtain

‖Ce − C‖2

≤ Õ

(
τ 2

n
+ τ 2ϕ2

nm

+
√

τ 4

nm2 + τ 4ϕ2

nm3 + τ 4

nm
+ τ 4ϕ2

nm2 + ‖C‖2τ 2ϕ2

nm

⎞⎠
≤ Õ

(
τ 2

n
+ τ 2ϕ2

nm
+ τ 2ϕ

m

√
1

n
+τ 2

√
1

nm
+τϕ

√‖C‖2

nm

)
(37)

where the first inequality invokes
∑n

i=n ‖xi‖4
2 ≤ nτ 4 and C =∑n

i=1(xi xT
i /n) is the original covariance matrix.

We can adopt
∑n

i=1 ‖xi‖4
2 ≤ ndτ 2‖C‖2, which holds

because
∑n

i=1 ‖xi‖4
2 ≤ τ 2∑n

i=1 ‖xi‖2
2 and

∑n
i=1 ‖xi‖2

2 =
nTr(C) ≤ nd‖C‖2, and derive

‖Ce − C‖2

≤ Õ

(
τ 2

n
+ τ 2ϕ2

nm
+τ
√‖C‖2

×
√

d

nm2 + dϕ2

nm3 + d

nm
+ dϕ2

nm2 + ϕ2

nm

⎞⎠
≤ Õ

(
τ 2

n
+ τ 2ϕ2

nm
+ τϕ

m

√
d‖C‖2

n
+τ

√
d‖C‖2

nm
+τϕ

√‖C‖2

nm

)
(38)

Finally, assigning the smaller one of (37) and (38) to ‖Ce−C‖2
completes the proof. �

E. Proof of Corollaries 2 and 3

Proof: The proof follows [9, Corollaries 4–6], where
the key component ‖Ce − Cp‖2 is upper bounded by
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‖Ce − (1/n)
∑n

i=1 xi xT
i ‖2 +‖(1/n)

∑n
i=1 xi xT

i − Cp‖2. Then,
via Theorem 2 and the Gaussian tail bounds in [9, Proposition
14], we can show that with probability at least 1−ζ for d ≥ 2

max
i∈[n] ‖xi‖2 ≤

√
2Tr(Cp) log(nd/ζ )

‖1

n

n∑
i=1

xi xT
i − Cp‖2 ≤ O(‖Cp‖2

√
log(2/ζ )/n). (39)

Applying them and Corollary 1 along with the fact that
‖xi‖1 ≤ √

d‖xi‖2 and Tr(Cp) ≤ d‖Cp‖2, we establish

‖Ce − Cp‖2

≤
∥∥∥∥∥Ce − 1

n

n∑
i=1

xi xT
i

∥∥∥∥∥
2

+
∥∥∥∥∥1

n

n∑
i=1

xi xT
i − Cp

∥∥∥∥∥
2

≤ Õ

(
τ 2

n
+ τ 2ϕ2

nm
+ τ 2ϕ

m

√
1

n
+τ 2

√
1

nm

+τϕ

√∥∥ 1
n

∑n
i=1 xi xT

i

∥∥
2

nm

⎞⎠
+ Õ

(
‖Cp‖2

√
1

n

)

≤ Õ

(
d2‖Cp‖2

nm
+ d‖Cp‖2

m

√
d

n

)
(40)

with probability at least 1 − η − δ − ζ , where we invoke (39)
to get ‖(1/n)

∑n
i=1 xi xT

i ‖2 ≤ ‖(1/n)
∑n

i=1 xi xT
i − Cp‖2 +

‖Cp‖2 ≤ Õ(‖Cp‖2).
Let rank(Cp)≤ r , and we have the result for the low-rank

case

‖[Ce]r − Cp‖2 ≤ ‖[Ce]r − Ce‖2 + ‖Ce − Cp‖2

≤ ‖[Cp]r − Ce‖2 + ‖Ce − Cp‖2

≤ ‖[Cp]r −Cp‖2+‖Cp−Ce‖2+‖Ce−Cp‖2

= 2‖Ce − Cp‖2 (41)

where the last equality holds because rank(Cp) ≤ r . Then,
armed with Tr(Cp) ≤ rank(Cp)‖Cp‖2 ≤ r‖Cp‖2, we have

‖[Ce]r − Cp‖2

≤ O(‖Ce − Cp‖2)

≤ O

(∥∥∥∥∥Ce − 1

n

n∑
i=1

xi xT
i

∥∥∥∥∥
2

+
∥∥∥∥∥1

n

n∑
i=1

xi xT
i − Cp

∥∥∥∥∥
2

)

≤ Õ

(
rd‖Cp‖2

nm
+ r‖Cp‖2

m

√
d

n
+‖Cp‖2

√
rd

nm

)
(42)

with probability at least 1 − η − δ − ζ .
Due to the symmetry of Cp and Ce, following [9],

we can combine Davis–Kahan Theorem [19], ‖∏̂k −∏k ‖2 ≤
(1/λk − λk+1)‖Ce − Cp‖2, with the result from Corollary 2
and immediately derive the desired bound in Corollary 3. �
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