
Reliability-Based Design Optimization for
Cloud Migration

Weiwei Qiu, Zibin Zheng, Member, IEEE, Xinyu Wang,
Xiaohu Yang, Member, IEEE, and Michael R. Lyu, Fellow, IEEE

Abstract—The on-demand use, high scalability, and low maintainance cost nature of cloud computing have attracted more and more
enterprises to migrate their legacy applications to the cloud environment. Although the cloud platform itself promises high reliability,
ensuring high quality of service is still one of the major concerns, since the enterprise applications are usually complicated and
consist of a large number of distributed components. Thus, improving the reliability of an application during cloud migration is a
challenging and critical research problem. To address this problem, we propose a reliability-based optimization framework, named
ROCloud, to improve the application reliability by fault tolerance. ROCloud includes two ranking algorithms. The first algorithm ranks
components for the applications that all their components will be migrated to the cloud. The second algorithm ranks components
for hybrid applications that only part of their components are migrated to the cloud. Both algorithms employ the application structure
information as well as the historical reliability information for component ranking. Based on the ranking result, optimal fault-tolerant
strategy will be selected automatically for the most significant components with respect to their predefined constraints. The
experimental results show that by refactoring a small number of error-prone components and tolerating faults of the most significant
components, the reliability of the application can be greatly improved.

Index Terms—Cloud migration, component ranking, fault tolerance, software reliability

Ç

1 INTRODUCTION

CLOUD computing enables convenient, on-demand net-
work access to a shared pool of configurable comput-

ing resources [31]. In the cloud computing environment,
the computing resources (e.g., networks, servers, storage,
etc.) can be provisioned to users on-demand, like the
electricity grid [5], [11]. Startup companies can deploy their
newly developed Internet services to the cloud without the
concern of upfront capital or operator expense [5].
However, cloud computing is not only for startups, its
cost effective, high scalability and high reliability features
also attracted enterprises to migrate their legacy applica-
tions to the cloud [23]. Before the migration, enterprises
usually have the concern to keep or improve the applica-
tion reliability in the cloud environment. Thus, reliability-
based optimization when migrating legacy applications to
the cloud environment is becoming an urgently required
research problem.

In traditional software reliability engineering, there are
four major approaches to improve system reliability: fault
prevention, fault removal, fault tolerance, and fault
forecasting [30]. When turning to the cloud environment,
since the applications deployed in the cloud are usually

complicated and consist of a large number of components,
only employing fault prevention techniques and fault
removal techniques are not sufficient. Another approach
for building reliable systems is software fault tolerance
[29], which is to employ functionally equivalent compo-
nents to tolerate faults [6]. Software fault tolerance
approach takes advantage of the redundant resources in
the cloud environment, and makes the system more robust
by masking faults instead of removing them.

Although the cloud platform is flexible and can provide
resources on-demand, there is still a charge for using the
cloud components (e.g., the virtual machines of Amazon
Elastic Compute Cloud or Simple Storage Service). At the
same time, legacy applications usually involve a large
number of components, so it will be expensive to provide
redundancies for each component. To reduce the cost so as
to assure highly reliability in a limited budget during the
migration of legacy applications to cloud, an efficient
reliability-based optimization framework is needed.

In our previous work [48], [50], FTCloud is proposed to
improve the reliability of newly developed cloud applica-
tions, which identifies the most significant components
depending on the structure information and expert
knowledge of critical components. Compared with newly
developed applications, the reliability-based optimization
of legacy applications has the following difficulties:

1. The failure rate of different components in a legacy
application can vary. For example, some compo-
nents in the legacy application are implemented by
out-dated technology and have not been well
maintained. These components can have great
impact on application reliability. But they may not
be selected as significant component by FTCloud,

. W. Qiu, X. Wang, and X. Yang are with the College of Computer Science
and Technology, Zhejiang University, Hangzhou, China. E-mail:
{qiuweiwei, wangxinyu, yangxh}@zju.edu.cn.

. Z. Zheng and M.R. Lyu are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong. E-mail:
{zbzheng, lyu}@cse.cuhk.edu.hk.

Manuscript received 4 Sept. 2012; revised 24 June 2013; accepted 14 July
2013. Date of publication 5 Aug. 2013; date of current version 13 June 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2013.38

1939-1374 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014 223

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



since FTCloud only employs structure information
and does not take component failure rate informa-
tion into consideration.

2. FTCloud needs expert knowledge to manually
designate critical components. However, the migra-
tion team may not be the creator of the legacy
application. So it will be difficult for them to
manually list the critical components. Furthermore,
the number of legacy applications as well as the
number of components in these applications is
large; it is thus impractical to manually identify
critical components.

3. Some applications may be restricted by enterprise
security polices and only part of their components
can be migrated to the cloud. The component
ranking and fault-tolerant strategy selection algo-
rithms should take these hybrid applications into
consideration.

For these two reasons, FTCloud is not sufficient for
improving the reliability of legacy applications. We need to
take advantage of all materials of the legacy applications at
hand, such as application logs, source code, etc. to
automatically identify the components whose failures
have great impact on the application reliability. Then
provide backups for them using redundant resources in the
cloud to improve the application reliability.

Based on this idea, we proposed Reliability-based
Optimization in Cloud environment (ROCloud), which is
a component ranking framework based on historical
information to identify the significant components that
have great impact on application reliability, and suggest
optimal fault tolerance strategies automatically. ROCloud
can help the designer optimize legacy application design to
get a more reliable and robust cloud application effectively
and efficiently.

The contribution of this paper includes:

. This paper presents a design optimization frame-
work for the cloud migration, named ROCloud. The
main idea of this framework is first to identify
significant components whose failures can have
great impact on application reliability based on the
application structure information and components

reliability properties, and then provide fault-tolerant
mechanism for these components to improve appli-
cation reliability.

. ROCloud includes two ranking algorithms. The first
algorithm ranks components for the applications
that all their components can be migrated to the
cloud. The second algorithm ranks components for
hybrid applications that only part of their compo-
nents can be migrated to the cloud.

. We conduct extensive experiments to evaluate the
impact of significant components and their reliabil-
ity properties on the reliability of the migrated
application using reliability information of real-
world Web services.

The rest of this paper is organized as follows. Section 2
lists the optimization challenges in cloud migration and
proposes a three phase framework. Section 3 illustrates the
details of the optimization framework. Section 4 shows
experiments, Section 5 introduces related work, and
Section 6 concludes the paper.

2 OPTIMIZATION FRAMEWORK FOR CLOUD
MIGRATION

2.1 Optimization Challenges in Cloud Migration
First, we use a motivating example to show the challenging
problems of this paper. Enterprise A wants to reduce
upfront capital investment and system infrastructure
maintainance effort. The cloud computing technology
satisfies these requirements. Enterprise A decides to
migrate its legacy applications to an IaaS cloud, as shown
in Fig. 1. The legacy application consists of a number of
distributed components. Ensuring reliability of the appli-
cation is one of the major concerns for making the
migration.

To enhance the system reliability, the designer wants to
optimize the original design of legacy application by
providing fault tolerance mechanisms for its components
with replication techniques. When designing fault toler-
ance mechanisms for the components, the designer needs
to consider the following problems:

1. Some components of the legacy application may be
implemented by outdated technology and suffer
from high failure rates. These components can have
great impact on system reliability. Replication
techniques are not enough to improve the reliability.
For example, providing one replication for a com-
ponent with failure rate 50 percent can only reduce
the failure rate to 25 percent which is still unaccept-
able. A better approach is refactoring, that is to adopt
new technology to rewrite the component and add
fault prevention logic (e.g., exception handling),
which can dramatically reduce the component’s
failure rate. Trade-offs need to be made when con-
sidering which components should be re-factored
due to cost constraints.

2. The legacy application may consist of a large
number of components. It is too expensive to deploy
alternative replicas for all the components, since

Fig. 1. Cloud migration example.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014224

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



there are costs for using cloud resources (e.g., the
virtual machines). To make trade-offs between costs
and reliability, the designer chooses to tolerate
faults of the most important components, whose
failures have great impact on the whole system.
However, it is not easy to identify which compo-
nents have greater impact on system reliability,
because:

/ The reliability properties of each component
may be very different. Some components may
already have fault prevention logic (e.g., error
checking, exception handling, etc.) and thus are
more reliable than others.

/ Failures of different components can have dif-
ferent impacts on the system. Components
fulfilling critical tasks (e.g., payment) are taken
as critical components, while other components
accomplishing non-critical tasks (e.g., providing
decorative pictures on web pages) are taken as
non-critical ones [48]. Failures of critical compo-
nents have greater impact on the system than
failures of non-critical components.

These two characteristics should be considered in
combination. A failure-prone non-critical compo-
nent may have little impact on overall system
reliability, while a component for critical task may
be carefully designed and already have low enough
failure rate. The straightforward approach to only
consider components with high failure rates or
fulfilling critical tasks as important components
may not lead to an optimal solution.

3. Some applications are restricted by enterprise
security polices and only part of their components
can be migrated to the cloud. For these hybrid
applications, the components which are kept in the
private data center are potentially important com-
ponents and they can only use resources in the
private data center for fault tolerance.

4. There are a number of fault tolerance strategies. The
cloud platform itself may also provide recovery
approaches such as virtual machine restart. Differ-

ent strategies have different overheads and costs. It
is a challenging task for the designer to find out the
optimal fault tolerance strategies for the significant
cloud components.

To address the above problems, we first analyze the
legacy application to collect the reliability properties and
application structure information. Then, we proposes two
significant component ranking algorithms in Section 3.2. At
last an optimal fault tolerance strategy selection algorithm
is presented in Section 3.3.2, which suggests optimal fault
tolerance strategies for components with different constraints.

2.2 Optimization Framework
Fig. 2 shows the overview of our reliability optimization
framework (named ROCloud), which includes three
phases: 1) legacy application analysis; 2) automated signif-
icance ranking; and 3) fault tolerance strategy selection. The
processes of each phase are as follows:

1. Both structure and failure information are extracted
during the legacy application analysis phase. The
structure information extraction consists of two sub-
processes: component extraction and invocation
extraction. The failure information including failure
rate and failure impact are collected from the
execution logs and test results of the legacy appli-
cation. Components with a failure rate higher than
the threshold will be re-factored, and their reliability
properties will be updated. A component graph is
built for the legacy application based on the struc-
ture as well as the failure information.

2. In the automated significance ranking phase, two
algorithms are proposed for ordinary applications
that can be migrated to public cloud and hybrid
applications that need to be migrated to hybrid
cloud, respectively.

3. The performance, overhead, and cost of various
fault tolerance strategy candidates are analyzed and
the most suitable fault tolerance strategy is selected
for each significant component based on its pre-
defined constraint.

Fig. 2. Overview of the optimization framework.

QIU ET AL.: RELIABILITY-BASED DESIGN OPTIMIZATION FOR CLOUD MIGRATION 225

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



Section 3 will introduce the technical details of the legacy
application analysis, component ranking algorithms and the
optimal fault tolerance strategy selection algorithm.

3 APPROACH

The ROCloud aims to quantify the importance of each
component from the application reliability aspect based on
available information such as application structure, com-
ponent invocation relationships, components’ reliability
properties, and so on. Thus, the legacy applications need to
be analyzed to collect the information for ranking.

3.1 Legacy Application Analysis

3.1.1 Structure Information Extraction
The structure information includes components and the
invocation information. The components are extracted from
legacy applications by source code and documentation
analysis. The invocation information such as invocation links
and invocation frequencies can be identified from application
trace logs. Source codes and documentations are useful
supplementary materials in addition to trace logs. All the
information are represented in a component graph.

The component graph is modeled as a weighted directed
graph G, which combines together the information of
application structure and the invocation relationships
among components [48], [50]. Node ci in graphG represents
a component and each component has a nonnegative
significance value V ðciÞ, failure rate fðciÞ and failure impact
pðciÞ. A directed edge eij from node ci to node cj represents
component ci invokes cj, the total number of which is
denoted by qij. Each edge eij in the graph has a nonnegative
weight value wij, which can be calculated by

wij ¼
qijPn
j¼1 qij

; (1)

where n is the number of components. The range of weight
value is [0, 1]. If there is no edge from ci to cj, which means
that ci does not invoke cj, qij ¼ 0 and thus wij ¼ 0. In this
way, wij has a larger value if component cj is invoked more
frequently by component ci compared with other compo-
nents invoked by ci.

For a component graph which contains n components,
an n� n transition probability matrixW can be obtained by
employing Eq. (1). Each entry in the matrix is the value of
wij. In the case that a node ci has no outgoing edge, wij ¼ 1

n.
For 8i, the transition probability matrix W satisfies:

Xn
j¼1

wij ¼ 1: (2)

3.1.2 Reliability Property Extraction
Component failure rate and failure impact collection: The fail-
ure rate and failure impact information can be collected
from the execution logs or test results of legacy applications.
Failure rate fðciÞ of component ci can be calculated by:

fðciÞ ¼
�ðciÞPn
j¼1 qji

; (3)

where �ðciÞ is the total times that component ci failed, and
the sum represents the total times that ci has been invoked.
As mentioned in Sections 1 and 2.1, the failures of different
components can have different impacts on system failure.
In [48], prior knowledge provided by the system designer
was employed, and the components were divided into two
sets: critical and non-critical. If a critical component fails,
the application will fail too, while the failure of a non-
critical component will not cause an application failure.
However, this method depends greatly on expert knowl-
edge of the designer, and requires that the designer has
sophisticated understanding of the application business
logic. However, getting acquainted with business logic of
the legacy application can increase the the cost of the
migrating process. At the same time the dichotomy of
component failure impact is not accurate enough. Thus, we
use a value calculated from statistics to estimate the failure
impact pðciÞ of component ci

pðciÞ ¼
�ðajciÞ=�ðciÞ if �ðciÞ 6¼ 0,
0 if �ðciÞ ¼ 0

�
(4)

where �ðajciÞ is the failure times of the legacy application
when failure of component ci occurs.

Component refactoring: During the migration, we found
that some legacy components suffer from high failure rates.
These almost ‘‘dead’’ components are the bottle-necks of the
application reliability and adopting only fault-tolerant
strategies based on replication is not enough to improve
their reliability. Thus component refactory which is also
known as re-engineering or re-implementation is needed.
Almonaies et al. listed the characteristics with which the
legacy systems are particularly applicable to refactoring
from the view point of service-oriented re-engineering [2].

In this paper, the main optimization goal is reliability, so
a more straightforward way is employed to determine
which components should be re-implemented: compo-
nents with failure rates greater than a threshold. The
selection of the threshold is dependent on project budget
and the target application failure rate, since extra devel-
opment and testing effort is required for component re-
implementation. The impact of threshold is tested in
experiments in Section 4.5. After refactoring, the compo-
nent failure rates will be estimated based on test results,
and the component reliability property dataset will be
updated.

3.2 Automated Significance Ranking
Based on the component graph, two component ranking
algorithms are proposed in this section. The first algorithm
ranks components for ordinary applications where all their
components can be migrated to the cloud. The second
algorithm rank components for hybrid applications which
can be partly moved to the cloud.

3.2.1 ROCloud1: Component Ranking for Ordinary
Applications

In a distributed application, the failures of the components
which are frequently invoked by many other components
tend to have greater impact on the system compared with

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014226

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



the components which are rarely invoked by others. Thus
these components are considered to be more important
from the reliability aspect and should be ranked at the front
of component list. Inspired by the PageRank algorithm [9],
we propose an algorithm to calculate the significance value
of each component of the migratory application employing
the component invocation relationships and reliability
properties. Based on the component graph and component
reliability information, the component ranking algorithm
includes the following steps:

1. Initialize by randomly assigning a numerical value
between 0 and 1 to each component in the compo-
nent graph.

2. Compute the significance value for a component ci
by:

V ðciÞ ¼
1� d
n

fðciÞpðciÞ þ d
X

k2NðciÞ
V ðckÞwki; (5)

where n is the number of components in the appli-
cation, and NðciÞ is the set of components which
invoke component ci. The parameter d ð0 � d � 1Þ in
Eq. (5), also known as damping factor, is employed
to adjust the significance values derived from other
components, and is generally set around 0.85. fðciÞ
is the component failure rate which is obtained by
employing Eq. (3). pðciÞ is the component failure im-
pact on the application, which is calculated by Eq. (4).
Consequently, the significance value of ci is composed
of the basic value of itself (i.e., 1�d

n fðciÞpðciÞ) and the
derived values from the components that invoked ci.
By Eq. (5), a component ci will have a larger signif-
icance value if the values of fðciÞ, pðciÞ, jNðciÞj, V ðckÞ,
and wki are larger, indicating that component ci is
invoked by a lot of other significant components fre-
quently and tends to cause application failures.
In vector form, Eq. (5) can be written as

V ðc1Þ
..
.

V ðcnÞ

2
64

3
75 ¼

x1

..

.

xn

2
64

3
75þ dWt

V ðc1Þ
..
.

V ðcnÞ

2
64

3
75; (6)

where

xi ¼
1� d
n

fðciÞpðciÞ: (7)

3. The significance values can be calculated either
iteratively or algebraically. The iterative method is
repeating the computation until all significance
values become stable, that is, jV ðtþ 1Þ � V ðtÞj G �,
for some small �. Since weight matrix W is a
stochastic matrix which is shown in Section 3.1.1,
Eq. (6) can also be solved by computing the
eigenvector with eigenvalue equal to 1.

With the above approach, the significance values of the
components can be calculated by considering the applica-
tion structure information, the invocation relationships,
and the knowledge of component reliability properties in
combination. A component with a larger significant value
is considered to be more significant. The failures of these

significant components will have great impact on other
components and thus tend to cause application failures.

3.2.2 ROCloud2: Component Ranking for Hybrid
Applications

Hybrid applications are the applications that only part of
their components can be migrated to the public cloud.
Restricted by enterprise security policies, some compo-
nents (e.g., the components related to custom private data,
components implementing core business logic, etc.) of
these applications cannot be opposed to third-parties and
need to be kept in the private data center. The decision that
which components should be kept local mainly depends on
the enterprise security policies and the contracts with
customs. For these hybrid applications, the components
which are kept in the private data center are potentially
important components. Inspired by the work of [44],
relative importance are calculated for each component. The
components of a hybrid application are divided into two sets
by their nature. One set for the components deployed in a
private data center, denoted as P , and the other for the
components moved to the cloud, denoted as C.

For each component ci, the significance value can be
calculated by

V ðciÞ ¼ ð1� dÞ�þ d
X

k2NðciÞ
V ðckÞwki; (8)

where

� ¼
1
jP j if ci 2 P ,
fðciÞpðciÞ
jCj if ci 2 C.

(
(9)

jP j and jCj are the numbers of components in the private
data center and the cloud respectively, jP j þ jCj ¼ n. fðciÞ
is the component failure rate which is obtained by employ-
ing Eq. (3). pðciÞ is the component failure impact on the
application, which is calculated by Eq. (4). When jCj ¼ n,
RCloud2 degrades to ROCloud1. By employing Eq. (8) and
following the steps listed in Section 3.2.1, the significance
values of all the components can be calculated.

Based on the ranked list of components with significance
values, the top k ð1 � k � nÞ components can be identified
by the designer at the design optimization stage of
migration. Various techniques (e.g., fault tolerant techni-
ques or recovery approaches which is illustrated in
Section 3.3) can be employed to improve the reliability of
these components, and therefore improving the application
reliability. The greater the value of top k is, the more
reliable the application tends to be, while at the same time
the more cloud resources are needed. The impact of top k
on application reliability is shown in detail in Section 4.7.

3.3 Fault Tolerance Strategy Selection

3.3.1 Strategy Characteristic Analysis
Software fault tolerance is widely adopted for critical
systems (e.g., airplane flight control systems, nuclear
power station management systems, etc.). At the same
time, a cloud platform also provides approaches such as
virtual machine restart, virtual machine migration, etc. to
improve components reliability. By employing these

QIU ET AL.: RELIABILITY-BASED DESIGN OPTIMIZATION FOR CLOUD MIGRATION 227

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



techniques to provide functionally equivalent components,
the component failures can be tolerated and thus the
overall system reliability can be increased. Three well-
known software fault tolerance strategies as well as the
approaches taking advantage of cloud platform features
are introduced in the following with formulas for calculat-
ing the failure rate, response time and resource cost.

Software fault tolerance strategies: Recovery Block (RB)
[36], N-Version Programming (NVP) [6] and Parallel are
three widely used strategies in software fault tolerance.
Their features and failure rate calculation have been
summarized in [48], [50]. In this paper, the formulas to
calculate response time t and resource cost r are given in
Eqs. (8), (9), and (10) in Table 1 (the equations to calculate
failure rate f are also listed for reference). In these equa-
tions, n is the number of redundant components, fi is the
failure rate, ti is the response time, and ri is the resource
allocated for the ith component.

Since RB strategy invokes standby components sequen-
tially when the primary component fails, its response time
is the summation of the execution time of all failed versions
and the first successful one. NVP strategy needs to wait for
all n responses from the parallel invocations to determine
the final result, thus its response time depends on the
slowest version. While Parallel strategy employs the first
returned response as the final result, its response time is the
minimum one of all replications. So it can be concluded
from Eqs. (8), (9), and (10) that the response time
performance of RB is generally worse than that of NVP,
which in turn is worse than that of the parallel strategy.
Since NVP and Parallel use parallel component invocations
and all the resources need to be allocated before the
execution, while in RB extra resources will be allocated
only when the primary component fails, the required
resources of NVP and Parallel are much higher than those
of RB. All three strategies can tolerate crash faults, and
NVP strategy can also mask value faults [48], [50].

Strategies based on cloud features: Cloud platforms often
provide approaches such as virtual machine restart, virtual
machine migration [1], [25], etc. to improve reliability.
These approaches can also tolerate crash faults. The
strategy based on virtual machine (VM) restart is similar
to the RB strategy, but it introduces overhead (OH in Eq. (11))
to initialize virtual machines and thus its response time is

larger than that of RB, as shown in Eq. (11) in Table 1.
However, VM restart requires no extra resources, since it is
based on restart. The strategy based on virtual machine
migration can tolerate non-transient hardware crash faults
such as disk failures but it can also increases the response
time. Strategy based on node restart must be used carefully,
since the restart may affect other components.

In summary, strategies based on cloud features can also
improve components reliability by tolerating crash faults.
They have much lower demand on extra resource com-
pared to the software fault tolerance strategies, while they
have considerable overheads which can increase the
response time.

Different strategies have different resource requirement
and different effects on response time. RB strategy can
affect the response time and resource allocation if there is a
failure. While the parallel and NVP strategies have little
effect on the response time but will affect the resource
allocation in all cases. The virtual machine restart strategy
will not affect resource allocation but can affect the
response time if there is a failure. Employing a suitable
fault tolerance strategy for the significant components can
help achieve optimal resource allocation while improving
application reliability. Each fault tolerance strategy has a
number of variations, thus selecting an optimal strategy for
each significant component is time consuming. An auto-
matic optimal fault tolerance strategy selection algorithm is
therefore required to reduce the workload of application
designers.

In summary, four candidates are employed for fault toler-
ance in this paper, which include recovery block, N-version
programming, parallel, and virtual machine restart. These
strategies can be employed to tolerate crash and value faults.
Other types of fault tolerance mechanisms can be added to
ROCloud without fundamental changes.

3.3.2 Automatic FT Strategy Selection
The software fault tolerance strategies have a number of
variations based on different redundant component con-
figurations [48], [50]. Analogy can be made to strategies
based on cloud features (e.g., restart times). These varia-
tions are candidates for each significant component in the
application, and the optimal FT strategy selection algo-
rithm introduced in [48], [50] can be employed to identify
the optimal one.

First, the aggregated failure rate f , response-time t, and
the resource cost r of each fault tolerance strategy can-
didate are calculated by employing Eqs. (8), (9), (10), and
(11) in Table 1. And the strategies which could not satisfy
the response-time constraints will be removed. Second, list
the Top-K significant components according to the des-
cending order of their significance value. Third, the
strategy with minimum resource cost will be selected for
each of the components as their initialization strategy to
make sure all of them are fault-tolerant. Then for each
component, select the candidate with the lowest aggregat-
ed failure rate as the optimal one. By repeating the last step
until it meets the user resource cost constraints, the
reliability-based design optimization can be achieved.

Currently, each component in the cloud is considered as
independent and the fault tolerance strategy selection is

TABLE 1
Formulas for Fault Tolerance Strategies

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014228

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



carried out separately on component basis. However, in
practice, some components can be interrelated, and coor-
dinating among these components has the potential of
providing fault tolerance with lower cost. But the coordi-
nating process requires information of failure dependency
and impact among the interrelated components, which is
beyond the scope of this paper. In the future work, we will
study failure dependency on interrelated components and
provide more sophisticated strategy selection model.

4 EXPERIMENTS

4.1 Case Study
A simple case of migrating a reporting application to the
cloud is given in this section to illustrate the process of
ROCloud, as shown in Fig. 3.

. Step 1 Legacy application analysis: First, browse
source code and documents to identify the modules/
components of the application, which include Input
Validation, Process Fail Data, Data Formatting,
Query Service, Excel report Service and PDF report
service. Then extract the invocation and reliability
information from the application logs. Based on
these information, a component graph is built. The
number pairs in each component denote the failure
rate and failure impact, and the weight on each line is
calculated by Eq. (1).

. Step 2 Significance Ranking: The significance value
of each component is calculated by employing the
algorithms introduced in Section 3.2 on the compo-
nent graph built in Step 1. Components are ranked

according to their significance values, and the most
significant components are selected (Query Service
and Process Fail Data in this case).

. Step 3 Fault tolerance strategy selection: Optimal
fault tolerance strategies are provided for the Query
Service and Process Fail Data components, with
respect to their time and cost constraints. And the
optimized design is shown in the left bottom of
Fig. 3, each service instance will be deployed in
separate virtue machines.

4.2 Experimental Setup
The significant component ranking algorithm is imple-
mented by C++ language. To study the performance of
reliability improvement, five approaches are compared,
which are:

. NoFT: No fault tolerance strategy is employed.

. RandomFT: Fault tolerance strategies are employed
to mask faults of randomly selected K percent
components.

. FTCloud: FTCloud is a component ranking frame-
work for cloud applications presented in our
previous work [48], [50] which ranks the compo-
nents by only employing the structure information
of the application. Fault tolerance strategies are
employed to mask faults of top K percent compo-
nents of the ranked list.

. ROCloud1: Fault tolerance strategies are employed
to mask faults of the top K percent significant
components. The components are ranked by em-
ploying the component ranking algorithm, which
considers the structure information as well as the
prior knowledge of component reliability properties
such as failure rate and failure impact.

. ROCloud2: The components related to custom
private data are kept locally in ROCloud2, which
is one of the best practice used by enterprises. Fault
tolerance strategies are employed to mask faults of
the top K percent significant components relative to
the local components. The components are ranked
by employing the component ranking algorithm for
hybrid applications.

. AllFT: Fault tolerance strategies are employed for
all components.

The internal structures of software programs (e.g., call
graphs for procedural code, class collaboration graphs, etc.) are
shown to exhibit approximate scale-free properties in several
previous work [12], [18]. Thus we use Pajek [7] to generate
scale-free directed component graphs for experimental studies.

Each component in a cloud-based application can be
considered as a separate Service. Thus we use the failure
rate data of real-world services to simulate that of
components. We deployed 150 different services on
PlanetLab, and recorded the invocation times and failures
of each service which was invoked and tested from 100
different locations around the world. The failure rates were
calculated based on the log, and assigned randomly to the
nodes of component graphs generated by Pajek [7]. When a
component was selected to be fault-tolerant, the fault
tolerance strategy determination algorithm was employed

Fig. 3. Case study.

QIU ET AL.: RELIABILITY-BASED DESIGN OPTIMIZATION FOR CLOUD MIGRATION 229

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



to automatically select the optimal fault tolerance strategy
for tolerating faults. If a fault tolerance strategy was
applied for this component, the component failed only
when the primary and back up copies all failed. Random
walk on the component graph is used to simulate the
execution of each application. 10,000 sequences are gener-
ated by random walk for each experimental setting to
guarantee each component will be covered. The sequence
execution is considered as failed if an invoked component
fails and no fault tolerance strategy was provided or the
whole strategy failed. All the sequences are executed for
200 times and the application failure rate is collected based
on the execution result.

4.3 Performance Comparison
With the above settings, six types of fault tolerance
mechanisms (i.e., NoFT, RandomFT, FTCloud, ROCloud1,
ROCloud2, and AllFT) were applied on these invocation
sequences, each for 200 times, and the average results are
reported in Table 2.

In Table 2, Top-K (K ¼ 10%, 20%, and 30%) indicates
that fault tolerance mechanisms are applied for K percent
components (K percent most significant components in
FTCloud, ROCloud1 and ROCloud2; K percent randomly
selected components in RandomFT). The numbers of
components in applications (represented by Node Numb-
ers) increase from 100 to 10,000. The experimental results in
Table 2 show that:

. Among the four approaches, AllFT provides smal-
lest failure rate, which means the application is the
most reliable with all its components being fault-
tolerant. NoFT performs the worst, which provides
the highest failure rate, because no fault tolerance
strategy is provided for the components.

. Compared with RandomFT, FTCloud obtains better
failure rate performance in all experimental settings.
FTCloud identifies significant components based on
the structure information. Components which are

invoked most frequently are considered to be
significant, and their failures have greater impact
on the application. The experimental result indicates
that tolerating failures of these components can
achieve better system reliability than tolerating
failures of randomly selected components.

. Compared with FTCoud, both ROCloud1 and
ROCloud2 obtain better average failure rate in all
experimental settings. In addition to structure
information, ROCloud also considers component
reliability in component ranking. The experimental
result shows that the component ranking algorithms
of ROCloud achieves more accurate results when
taking advantage of the prior knowledge of compo-
nent reliability as well as the system structure
information in combination.

. Since the components kept in the private data center
are usually critical components in essence, RO-
Cloud2 actually take advantage of simple business
logic information in addition than ROCLoud1,
which brings about better accuracy in component
ranking and thus achieves lower failure rate.

. With the increase of threshold from 1 percent to
10 percent the average failure rate of all the
approaches are increased. Because only components
with failure rate higher than threshold are re-factored,
a larger threshold indicates a higher average com-
ponent failure rate, which leads to a higher appli-
cation failure rate.

. With the increase of the node number from 100 to
10,000, the average failure rate of all approaches
increases (even ALLFT), since large-scale systems
are prone to frequent failures, which is also
presented by [33]. ROCloud1 and ROCloud2 can
consistently provide better performance compared
with RandomFT and FTCloud with different node
numbers, indicating that ROCloud1 and ROCloud2
can identify the components which have great
impact on application reliability, and by tolerating

TABLE 2
Performance Comparison of Average Application Failure Rate

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014230

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



faults of the these components, the application
reliability can be greatly improved for different
sizes of cloud applications.

4.4 Comparison of FT Strategies
We introduced four types of fault tolerance strategies in
Section 3.3.1. The aggregated failure rate, response time,
and the resource cost of each fault tolerance strategy are
shown in Table 1. Among the four strategies, NVP has the
most resource cost, so it is mainly used to tolerate value
faults, while the other strategies are often used to tolerate
crash faults. However, the VM restart strategy has have
considerable time overhead, which can not satisfy the time
constraint of components in this experiment. Since it
requires no extra resource, the VM restart strategy is used
as an supplementary strategy to Parallel and Recovery
Block (RB) in this experiment. To compare the performance
of Parallel, RB and the optimal selection between Parallel
and RB, we collected the response time and failure rate of
150 services deployed on PlanetLab. Following the exper-
imental setup instructions presented in Section 4.2, we
assign the response time and failure rate pairs randomly to
a 1000-node component graph. The average response time
of all components is used as the time constraint in optimal
fault tolerance strategy selection. The number of redundant
components in each strategy is set as 1.

Fig. 4 shows the required resources of different fault
tolerant strategies for AllFT, FTCloud and ROCloud1 and
ROCloud2 to achieve the same application reliability. As
shown in Fig. 4:

. When parallel strategy is adopted, AllFT needs 1000
extra VMs since it provides backup copy for each
component, while FTCloud requires 900 extra VMs
to achieve the same reliability level, ROCloud1
needs 500, and ROCloud2 needs 480. The result
is consistent with that shown Fig. 7. When the top
90 percent components are selected by FTCloud
whereas the top 50 percent selected by ROCloud1
and top 48 percent selected by ROCloud2 are

provided with fault-tolerant strategy, they achieve
the same reliability level as AllFT.

. The Recover Block (RB) strategy reduces the
requirement of extra resources dramatically. Since
extra resources are consumed when the primary
components fails. However, the response time of the
failed components will increase. In this experiment,
the total increased response time of failed compo-
nents is 742s for AllFT, 736s for FTCloud and 720s
for ROCloud1 and 712s for ROCloud2.

. Taken the average response time as time con-
straint, components with lower response time
ð2� responsetime G ¼ averageresponsetimeÞ take
RB as their fault-tolerant strategy. Components
with longer response time ð2� responsetime G ¼
averageresponsetimeÞ take parallel strategy. The
resource requirement falls between the parallel
and RB strategy. The total increased response time
is 177s for both AllFT and FTCloud, 174s for
ROCloud1 and 171s for ROCloud2.

. The selection of different strategies is a trade-off
between cost and application service quality (e.g.,
response time). The parallel strategy provides the
shortest average response time but costs the most,
while the RB strategy has the longest average re-
sponse time but cost the least. Optimal selection falls
between the two. The cost and response time benefit
of optimal selection can be affected by the constraint
factor (time constraint in this experiment). A higher
constraint (shorter response time in this case) leads
to higher resource cost, and vice versa.

. For all the strategy selection settings, ROCloud1 and
ROCloud2 require fewer resources than AllFT and
FTCloud to achieve the same application reliability
level. Furthermore, ROCloud provides better appli-
cation service quality with the same resource
consumption while maintaining the same applica-
tion reliability level. As shown in the figure,
ROCloud1 with optimal selection costs almost the
same amount of resources as AllFT with PB strategy,
and ROCloud2 with optimal selection costs almost
the same as FTCloud with PB strategy. While with
optimal selection, both ROCloud1 and ROCloud2
have much shorter increased response time (174s
and 171s, respectively) than AllFT (742s) and
FTCloud (736s).

4.5 Impact of Threshold
In the component ranking approach ROCloud1 and
ROCloud2, the parameter threshold determines which
components should be re-factored. The value of threshold
is set as 0.01 to 0.1 with a step value of 0.01 in this experi-
ment. Four groups of experiments are conducted with
Top-K values (k ¼ 10%, 20%, 30% and 40%) and the node
number is set as 1000. Fig. 5 shows the experimental results:

. With the increase of threshold value from 0.01 to 0.1,
the application average failure rate also increases,
indicating that a higher average failure rate of
components can lead to a higher application failure

Fig. 4. Required resources of different FT strategies.

QIU ET AL.: RELIABILITY-BASED DESIGN OPTIMIZATION FOR CLOUD MIGRATION 231

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



rate. In all the four figures with different Top-K
value settings, ROCloud1 and ROCloud2 perform
better than RandomFT and FTCloud.

. With the increase of Top-K value from 10 percent to
40 percent, the application failure rate becomes smaller,
since faults of more significant system components
are masked by the fault tolerance mechanism. This
indicates that a larger K can relieve the increased
application failure rate caused by a larger threshold.

The value of threshold not only affects the application
failure rate, but also affects the migration cost. A smaller
threshold means more components need to be re-factored.
Table 3 shows the detailed results when threshold increases
from 0.01 to 0.1, the number of components that need to be
re-factored. The refactoring of a component requires extra
effort on components logic extraction, re-design, imple-
mentation and testing, which can increase the cost of
migration. Thus the determination of value threshold is a
trade-off between cost and application reliability.

4.6 Impact of Component Failure Impacts
Component Failure Impact (CFI) is defined by Eq. (4) in
Section 3.1.2, which indicates the probability that the
component failure may cause the application failure. For
example, CFI ¼ 1 means any component failure can cause
the application failure. To study the impact of CFI on the
application reliability, we compare NoFT, RandomFT,
FTCloud, ROCloud1, ROCloud2 and AllFT under average
CFI settings of 0.1, 0.5 and 1, respectively. The node
number in this experiment is 1000. The threshold is set as
0.04, which is the average component failure rate before
refactoring in the experiment. Fig. 6 shows the experimental
results of cloud application failure rate under different
Top-K settings.

Fig. 6 illustrates that:

. As shown in Figs. 6a, 6b, and 6c, ROCloud1 and
ROCloud2 outperform FTCloud and RandomFT in
Top-K settings from 10 percent to 40 percent. With
the increase of Top-K value, the application failure
rate of ROCloud1 and ROCloud2 decrease faster
than those of FTCloud and RandomFT, indicating
that ROCloud1 and ROCloud2 have more effective
use of the redundant components than FTCloud and
RandomFT.

. When the components have a greater average CFI,
the application failure rate is also larger, since the
components with larger CFIs mean their failures

have greater impact on the application. This is
consistent with the definition of CFI in Eq. (4). On
the other hand, as shown in Figs. 6a, 6b, 6c, the
curves have similar tendencies, which indicates that
under different CFI settings, ROCloud1 and RO-
Cloud2 achieve better performance compared with
FTCloud and RandomFT.

4.7 Impact of Top-K
To study the impact of the parameter Top-K on the
application reliability, we compare NoFT, RandomFT,
FTCloud, ROCloud1, ROCloud2 and AllFT according to
different Top-K value settings. The node number in this
experiment is 1000. Fig. 7 shows the experimental results of
application failure rate under three different threshold
settings: 0.01, 0.04 and 0.1.

Fig. 7 shows that:

. Under different threshold settings (i.e., 0.01, 0.04,
and 0.1), ROCloud1 and ROCloud2 outperform
FTCloud and RandomFT from Top-K ¼ 10% to
Top-K ¼ 90% consistently. When Top-K ¼ 100%,
since fault tolerance strategies are applied to all
the components, the performance of the three
approaches are the same.

. With the increase of Top-K value, the failure rate of
ROCloud1 and ROCloud2 decreases much faster
than those of FTCloud and RandomFT, indicating
that ROCloud1 and ROCloud2 provide more accu-
rate ranking results of significant components. By
tolerating faults of the components suggested by
ROCloud, the application reliability can be im-
proved greatly.

TABLE 3
Number of Refactored Nodes for Different Threasholds

Fig. 5. Impact of threshold. (a) Top-K ¼ 10%. (b) Top-K ¼ 20%. (c) Top-K ¼ 30%. (d) Top-K ¼ 40%.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014232

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



. ROCloud1 and ROCloud2 obtain a smaller applica-
tion failure rate than FTCloud and RandomFT ap-
proaches consistently under different Top-K value
settings. As shown in Figs. 7a, 7b, and 7c, when
Top-K ¼ 50% for ROCloud1 and Top-K ¼ 48%
for ROCloud2 can almost get the same application
failure rate as AllFT (which has the same effect as
Top-K ¼ 100%). FTCloud can achieve roughly the
same performance until Top-K ¼ 90%. The results
indicate that ROCloud1 and ROCloud2 can improve
the application reliability greatly by tolerating the
important part of the application components.

. With the increase of threshold from 0.01 to 0.1, the
application failure rate of all three approaches
become larger. This is because the average failure
rate of components increases since a larger threshold
indicates fewer components will be re-factored. A
larger Top-K value is required to achieve good
application failure rate performance under large
threshold settings. The experimental results in this
section and Section 4.5 show that Top-K and
threshold are complementary parameters. Designers
can choose the one which costs less to improve the
application reliability.

The above experimental results show, again, that
ROCloud1 and ROCloud2 achieve better application
reliability under different experimental settings.

5 RELATED WORK AND DISCUSSION

Cloud computing [4] is becoming a mainstream aspect of
information technology. A number of tasks have been
carried out on cloud computing, including virtualization
[17], [21], [28], resource provision and monitoring [20], [43],
privacy and trust [3], [10], [35] service level agreement [22],
[42], storage management [40], data consistency and
replication [8], [14], etc. In recent years, research investiga-
tions have been conducted on migrating legacy applica-
tions to cloud environment. [23] presented a case study of
migrating enterprise IT system to IaaS cloud, which
illustrated the benefits and major concerns of cloud
migration. [2] surveyed various approaches for moving
legacy system to SOA environment, including wrapping,
replacement, etc. [46] proposed the main processes for
migrating a legacy system to cloud. However, few work
has been done towards improving the reliability of
migrated cloud applications which is one of the major
concerns during cloud migration. Complementary to the
previous research efforts which were mainly focused on
the procedure of migration, strategies on legacy system
modernization and methods to improve the cloud plat-
form’s reliability, this paper focuses on the re-design phase
during the migration and proposes an optimization
framework to improve the cloud application’s reliability.

The main approaches in traditional software engineer-
ing include fault prevention, fault removal [41], fault

Fig. 7. Impact of Top-K. (a) Threshold ¼ 0:01. (b) Threshold ¼ 0:04. (c) Threshold-K ¼ 0:1.

Fig. 6. Impact of component failure impacts. (a) Average CFI ¼ 0:1. (b) Average CFI ¼ 0:5. (c) Average CFI ¼ 1.

QIU ET AL.: RELIABILITY-BASED DESIGN OPTIMIZATION FOR CLOUD MIGRATION 233

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



tolerance [29], [47], and fault forecasting [16], [45]. For the
reason of cost consideration, software fault tolerance is
often employed for critical systems. While in the cloud
environment, redundant components are easier to be ob-
tained, which makes fault tolerance a feasible solution to
improve application reliability. The major techniques of soft-
ware fault tolerance include recovery block [36], N-Version
Programming (NVP) [6], N self-checking programming [26],
distributed recovery block [24], etc. Based on these tech-
niques, passive and active strategies are adopted by dif-
ferent systems: passive strategies in FT-SOAP [15] and
FT-CORBA [39], while active strategies in FTWeb [38],
Thema [32], WS-Replication [37], SWS [27], and Perpetual
[34]. Instead of focusing on design of fault tolerant strategies,
this paper aims to select the optimal fault tolerant strategies
for components and to improve the application reliability.
The cloud platforms also provide techniques to improve
reliability, the frequently used techniques are illustrated in
[1], [13], [25]. However, only depending on these techniques
are not sufficient, since not all legacy applications can be re-
implemented by using map-reduce while the virtual ma-
chine restart or migration based methods can introduce
latency which may not be acceptable for time-constrained
applications.

Component ranking is an important research problem in
cloud computing [49], [50]. Inspired by Google PageRank
[9] (a ranking algorithm for Web page searching) and
SPARS-J [19] (a software product retrieving system for
Java), a component ranking approach for cloud applica-
tion, FTCloud, is presented in [48], [50] based on the
intuition that components invoked frequently by other
important components are more important. Different from
FTCloud, component invocation frequencies as well as
the prior knowledge of component reliability (e.g., fail-
ure rate, etc.) are taken into consideration in our ROCloud
approach.

The ROCloud framework is proposed for design opti-
mization during the cloud migration process, since

1. It is time consuming to dig into the logic of legacy
applications and identify significant components
manually. Automatically ranking components for
legacy applications becomes important, which can
aid the designer to optimize the application.

2. Cloud environment is highly dynamic since its
resources can scale up or scale down on-demand.
Therefore, the structure of application deployed in
the cloud should adapt to this highly dynamic
context and be reliable and robust, which makes
fault tolerance of significant components necessary.

3. The high scalability feature of the cloud makes
redundant components easier be obtained. Thus,
software fault tolerance becomes a feasible ap-
proach to improve the application reliability. At
the same time, approaches provided by the cloud
platform(e.g., virtual machine restart) can also help
to build reliable cloud applications.

4. The reliability properties and the invocation rela-
tions of the legacy application can be collected since
the components are running on the same server or
cluster.

6 CONCLUSION

This paper presents a reliability-based design optimization
framework for migrating legacy applications to the cloud
environment. The framework consists of three parts: legacy
application analysis, significant component ranking and
automatic optimal fault-tolerant strategy selection. Two algo-
rithms are proposed in the ranking phase: the first ranks
components for the applications where all the components can
be migrated to the cloud; the second ranks components for the
applications where only part of the components can be
migrated to the cloud. In both algorithms, the significance
value of each component is calculated based on the application
structure, component invocation relationships, component
failure rates, and failure impacts. A higher significance value
means the component imposes higher impact on the applica-
tion reliability than others. After finding the most significant
components, an optimal fault-tolerant strategy can be selected
automatically with respect to the time and cost constraints. The
experimental results show that ROCloud1 and ROCloud2
outperform other approaches and can greatly improve the
application reliability.

In ROCloud, each component is considered as independent
and the fault-tolerant strategy selection is carried out on
component basis. In the future, we will study the fault
tolerance of interrelated components. In addition, ROCloud
uses the ratios of component failure to application failure to
measure the failure impact of components. While the relation-
ship between component failures and application failures can
be complicated, more sophisticated models (e.g., Markov
models, fault trees, etc.) will be investigated in the future work.

Our future work also includes:

1. Considering more factors (such as data transfer,
invocation latency, etc.) when computing the
weights of invocations links.

2. Taking the constraint factors such as cost into
consideration during the ranking phase, and letting
the designer know intuitively which components can
make the biggest improvement while cost the least.

3. More experimental analysis on the impact of in-
correct prior knowledge such as invocation frequen-
cies and component failure rates.

ACKNOWLEDGMENT

The work described in this paper was fully supported by
the National Basic Research Program of China (973 Project
No. 2011CB302603), the National Natural Science Founda-
tion of China (Project Nos. 61103032, 61100078), National
Key Technology R&D Program of the Ministry of Science
and Technology of China (Project No. 2013BAH01B01), and
the Shenzhen Basic Research Program (Project Nos.
JCYJ20120619153834216, JC201104220300A). X. Wang is the
corresponding author.

REFERENCES

[1] S. Al-kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu,
‘‘VMFlock: Virtual Machine Co-Migration for the Cloud,’’ in
Proc. 20th Int. Symp. High Perform. Distrib. Comput., New York,
NY, USA, 2011, pp. 159-170.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014234

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



[2] A.A. Almonaies, J.R. Cordy, and T.R. Dean, ‘‘Legacy System
Evolution Towards Service-Oriented Architecture,’’ in Proc. Int.
Workshop SOAME, Madrid, Spain, Mar. 2001, pp. 53-62.

[3] G. Anthes. (). Security in the Cloud. Commun. ACM [Online].
53(11), pp. 16-18. Available: http://doi.acm.org/10.1145/1839676.
1839683

[4] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘A View
of Cloud Computing,’’ Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010.

[5] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski,
G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
‘‘Above the Clouds: A Berkeley View of Cloud Computing,’’
EECS Dept., Univ. California, Berkeley, CA, USA, Tech. Rep.
EECS-2009-28, 2009.

[6] A. Avizienis, ‘‘The Methodology of N-Version Programming,’’ in
Software Fault Tolerance, M.R. Lyu, Ed. Chichester, U.K.: Wiley,
1995, pp. 23-46.

[7] V. Batagelj and A. Mrvar, ‘‘PajekVPajek: Analysis and Visualization
of Large Networks,’’ Graph Drawing Softw., vol. 21, pp. 47-57, 2003.

[8] N. Bonvin, T.G. Papaioannou, and K. Aberer, ‘‘A Self-Organized,
Fault-Tolerant and Scalable Replication Scheme for Cloud
Storage,’’ in Proc. 1st ACM Symp. Cloud Comput., ser. SoCC’10,
New York, NY, USA, 2010, pp. 205-216.

[9] S. Brin and L. Page, ‘‘The Anatomy of a Large-Scale Hypertextual
Web Search Engine,’’ in Proc. 7th Int’l Conf. WWW, 1998, pp. 1-20.

[10] C. Cachin, I. Keidar, and A. Shraer. (). Trusting the Cloud.
SIGACT News [Online]. 40(2), pp. 81-86. Available: http://doi.
acm.org/10.1145/1556154.1556173

[11] M. Creeger, ‘‘Cloud Computing: An Overview,’’ ACM Queue,
vol. 7, no. 5, pp. 1-5, June 2009.

[12] A.P.S. de Moura, Y.-C. Lai, and A.E. Motter, ‘‘Signatures of
Small-World and Scale-Free Properties in Large Computer
Programs,’’ Phys. Rev. E, vol. 68, p. 017102, 2003.

[13] J. Dean and S. Ghemawat, ‘‘Mapreduce: Simplified Data
Processing on Large Clusters,’’ Commun. ACM, vol. 51, no. 1,
pp. 107-113, Jan. 2008.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
‘‘Dynamo: Amazon’s Highly Available Key-Value Store,’’ in Proc.
21st ACM SIGOPS Symp. Oper. Syst. Principles, ser. SOSP ’07, New
York, NY, USA, 2007, pp. 205-220.

[15] C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin, ‘‘Fault Tolerant Web
Services,’’ J. Syst. Architure, vol. 53, no. 1, pp. 21-38, 2007.

[16] S.S. Gokhale and K.S. Trivedi, ‘‘Reliability Prediction and
Sensitivity Analysis Based on Software Architecture,’’ in Proc.
ISSRE, 2002, pp. 64-78.

[17] F. Hao, T.V. Lakshman, S. Mukherjee, and H. Song, ‘‘Enhancing
Dynamic Cloud-Based Services Using Network Virtualization,’’
in Proc. 1st ACM Workshop Virtualized Infrastruct. Syst. Archit., ser.
VISA’09, New York, NY, USA, 2009, pp. 37-44.

[18] D. Hyland-Wood, D. Carrington, and Y. Kaplan, ‘‘Scale-Free Nature
of Java Software Package, Class and Method Collaboration Graphs,’’
in Proc. 5th Int’l Symp. Empirical Softw. Eng., 2005, pp. 439-446.

[19] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto,
‘‘Ranking Significance of Software Components Based on Use
Relations,’’ IEEE Trans. Softw. Eng., vol. 31, pp. 213-225, Mar. 2005.

[20] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, ‘‘Quincy: Fair Scheduling for Distributed Computing
Clusters,’’ in Proc. ACM SIGOPS 22nd Symp. Oper. Syst. Principles,
ser. SOSP ’09, New York, NY, USA, 2009, pp. 261-276. [Online].
Available: http://doi.acm.org/10.1145/1629575.1629601

[21] F. Kamoun, ‘‘Virtualizing the Datacenter Without Compromis-
ing Server Performance,’’ Ubiquity, vol. 2009, p. 2, Aug. 2009.

[22] A. Kertesz, G. Kecskemeti, and I. Brandic, ‘‘An Sla-Based
Resource Virtualization Approach for On-Demand Service Provi-
sion,’’ in Proc. 3rd Int. Workshop Virtualization Technol. Distrib. Comput.,
ser. VTDC’09, New York, NY, USA, 2009, pp. 27-34.

[23] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, ‘‘Cloud
Migration: A Case Study of Migrating an Enterprise IT Sstem to
IaaS,’’ in Proc. IEEE 3rd Int. Conf. CLOUD, 2011, pp. 450-457.

[24] K. Kim and H. Welch, ‘‘Distributed Execution of Recovery
Blocks: An Approach for Uniform Treatment of Hardware and
Software Faults in Real-Time Applications,’’ IEEE Trans. Com-
put., vol. 38, no. 5, pp. 626-636, May 1989.

[25] H.A. Lagar-cavilla, J.A. Whitney, A. Scannell, P. Patchin, S.M. Rumble,
E.D. Lara, M. Brudno, and M. Satyanarayanan, ‘‘SnowFlock: Rapid
Virtual Machine Cloning for Cloud Computing,’’ in Proc. 4th ACM
Eur. Conf. Comput. Syst., New York, NY, USA, 2009, pp. 1-12.

[26] J. Laprie, J. Arlat, C. Beounes, and K. Kanoun, ‘‘Definition and
Analysis of Hardware- and Software-Fault-Tolerant Architec-
tures,’’ Computer, vol. 23, no. 7, pp. 39-51, July 1990.

[27] W. Li, J. He, Q. Ma, I.-L. Yen, F. Bastani, and R. Paul, ‘‘A
Framework to Support Survivable Web Services,’’ in Proc. 19th
IEEE Int’l Symp. Parallel Distrib. Process., 2005, p. 93.2.

[28] X. Lu, H. Wang, J. Wang, J. Xu, and D. Li, ‘‘Internet-Based Vir-
tual Computing Environment: Beyond the Datacenter as a Com-
puter,’’ Future Gener. Comput. Syst., vol. 29, no. 1, pp. 309-322,
Jan. 2013.

[29] M.R. Lyu, ‘‘Software Fault Tolerance,’’ in Trends in Software. Hoboken,
NJ, USA: Wiley, 1995.

[30] M.R. Lyu, Handbook of Software Reliability Engineering. New
York, NY, USA: McGraw-Hill, 1996.

[31] P. Mell and T. Grance, ‘‘The NIST Definition of Cloud Computing
Recommendations of the National Institute of Standards and Technol-
ogy,’’ National Institute of Standards and Technology, Gaithers-
burg, MD, USA, NIST Special Publication 800-145, 2011.

[32] M.G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and
P. Narasimhan, ‘‘Thema: Byzantine-Fault-Tolerant Middleware
Forweb-Service Applications,’’ in Proc. 24th IEEE SRDS, 2005,
pp. 131-142.

[33] D. Oppenheimer and D.A. Patterson, ‘‘Studying and Using
Failure Data from Large-Scale Internet Services,’’ in Proc. 10th
Workshop ACM SIGOPS Eur. Workshop, 2002, pp. 255-258.

[34] S.L. Pallemulle, H.D. Thorvaldsson, and K.J. Goldman, ‘‘Byzan-
tine Fault-Tolerant Web Services for N-Tier and Service Oriented
Architectures,’’ in Proc. 28th ICDCS, 2008, pp. 260-268.

[35] S. Pearson, ‘‘Taking Account of Privacy When Designing Cloud
Computing Services,’’ in Proc. ICSE Workshop Softw. Eng.
Challenges CLOUD, May 2009, pp. 44-52.

[36] B. Randell and J. Xu, ‘‘The Evolution of the Recovery Block
Concept,’’ in Softw. Fault Tolerance, M.R. Lyu, Ed. Chichester,
U.K.: Wiley, 1995, pp. 1-21.

[37] J. Salas, F. Perez-Sorrosal, N.-M. Marta Pati, and R. Jiménez-Peris,
‘‘Ws-Replication: A Framework for Highly Available Web Services,’’
in Proc. 15th Int’l Conf. WWW, 2006, pp. 357-366.

[38] G.T. Santos, L.C. Lung, and C. Montez, ‘‘FTWeb: A Fault Tolerant
Infrastructure for Web Services,’’ in Proc. 9th IEEE Int’l Conf.
Enterprise Comput., 2005, pp. 95-105.

[39] G.-W. Sheu, Y.-S. Chang, D. Liang, S.-M. Yuan, and W. Lo, ‘‘A
Fault-Tolerant Object Service on Corba,’’ in Proc. 17th ICDCS,
1997, pp. 393-366.

[40] S. Sivathanu, L. Liu, M. Yiduo, and X. Pu, ‘‘Storage Management
in Virtualized Cloud Environment,’’ in Proc. 3rd IEEE Int’l Conf.
Cloud, 2010.

[41] W.-T. Tsai, X. Zhou, Y. Chen, and X. Bai, ‘‘On Testing and
Evaluating Service-Oriented Software,’’ IEEE Comput., vol. 41,
no. 8, pp. 40-46, Aug. 2008.

[42] I. Ul Haq and E. Schikuta, ‘‘Aggregation Patterns of Service Level
Agreements,’’ in Proc. 8th Int. Conf. Frontiers Inf. Technol., ser.
FIT’10, New York, NY, USA, 2010, pp. 40:1-40:6.

[43] K.V. Vishwanath and N. Nagappan, ‘‘Characterizing Cloud
Computing Hardware Reliability,’’ in Proc. 1st ACM Symp. Cloud
Comput., ser. SoCC’10, New York, NY, USA, 2010, pp. 193-204.
[Online]. Available: http://doi.acm.org/10.1145/1807128.
1807161

[44] S. White and P. Smyth, ‘‘Algorithms for Estimating Relative
Importance in Networks,’’ in Proc. SIGKDD, 2003, pp. 266-275.

[45] S.M. Yacoub, B. Cukic, and H.H. Ammar, ‘‘Scenario-Based
Reliability Analysis of Component-Based Software,’’ in Proc.
ISSRE, 1999, pp. 22-31.

[46] W. Zhang, A. Berre, D. Roman, and H. Huru, ‘‘Migrating Legacy
Applications to the Service Cloud,’’ in Proc. 14th Conf. Companion.
Object Oriented Programm. Syst. Languages Appl., ser. OOPSLA09,
2009, pp. 59-68.

[47] Z. Zheng and M.R. Lyu, ‘‘A Distributed Replication Strategy
Evaluation and Selection Framework for Fault Tolerant Web
Services,’’ in Proc. 6th ICWS, 2008, pp. 145-152.

[48] Z. Zheng and M.R. Lyu, ‘‘Component Ranking for Fault-Tolerant
Cloud Applications,’’ IEEE Trans. Serv. Comput. (TSC), vol. 5,
no. 4, pp. 540-550, 2012.

[49] Z. Zheng, Y. Zhang, and M.R. Lyu, ‘‘CloudRank: A QoS-Driven
Component Ranking Framework for Cloud Computing,’’ in Proc.
Int’l SRDS, 2010, pp. 184-193.

[50] Z. Zheng, T.C. Zhou, M.R. Lyu, and I. King, ‘‘FTCloud: A
Ranking-Based Framework for Fault Tolerant Cloud Applica-
tions,’’ in Proc. ISSRE, 2010, pp. 398-407.

QIU ET AL.: RELIABILITY-BASED DESIGN OPTIMIZATION FOR CLOUD MIGRATION 235

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



Weiwei Qiu received the BEng degree in
computer science and technology from Zhejiang
University, Hangzhou, China, in 2008. Currently,
she is a PhD candidate in the College of
Computer Science and Technology, Zhejiang
University. Her research interests include soft-
ware engineering, software reliability, distributed
computing, and cloud computing.

Zibin Zheng received the PhD degree from The
Chinese University of Hong Kong, New Territo-
ries, Hong Kong, in 2011. He is a postdoctoral
fellow at The Chinese University of Hong Kong.
His research interests include service comput-
ing, cloud computing, and software reliability
engineering. Dr. Zheng received the ACM
SIGSOFT Distinguished Paper Award at
ICSE’2010 and the Best Student Paper Award
at ICWS’2010. He is a member of the IEEE.

Xinyu Wang received the BE and PhD degrees
from Zhejiang University, Hangzhou, China, in
2002 and in 2007. He is an Associate Professor
in the College of Computer Science and Tech-
nology, Zhejiang University. His primary research
interests include software engineering, distributed
software architecture, and distributed computing.

Xiaohu Yang received the BS, MS, and PhD
degrees all in computer science at Zhejiang
University, Hangzhou, China, in 1988, 1990, and
1993, respectively. Currently, he is a Professor
of Computer Science and Vice Dean of Software
College at Zhejiang University. His research
interests include software engineering, large-
scale software architecture, and cloud comput-
ing. He is a member of the IEEE.

Michael R. Lyu received the PhD degree in
computer science from the University of Califor-
nia, Los Angeles, CA, USA, in 1988. Currently,
he is a Professor in the Department of Computer
Science and Engineering, Chinese University of
Hong Kong, New Territories, Hong Kong, China.
Dr. Lyu is a Fellow of the IEEE and an AAAS
Fellow for his contributions to software reliability
engineering and software fault tolerance. He is
also a Croucher Senior Research Fellow.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2014236

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:55:04 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


