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Cloud systems, typically comprised of various components (e.g., microservices), are susceptible to performance
issues, which may cause service-level agreement violations and financial losses. Identifying performance issues
is thus of paramount importance for cloud vendors. In current practice, crucial metrics, i.e., key performance
indicators (KPIs), are monitored periodically to provide insight into the operational status of components.
Identifying performance issues is often formulated as an anomaly detection problem, which is tackled by
analyzing each metric independently. However, this approach overlooks the complex dependencies existing
among cloud components. Some graph neural network-based methods take both temporal and relational
information into account, however, the correlation violations in the metrics that serve as indicators of underlying
performance issues are difficult for them to identify. Furthermore, a large volume of components in a cloud
system results in a vast array of noisy metrics. This complexity renders it impractical for engineers to fully
comprehend the correlations, making it challenging to identify performance issues accurately. To address these
limitations, we propose Identifying Performance Issues based on Relational-Temporal Features (ISOLATE),
a learning-based approach that leverages both the relational and temporal features of metrics to identify
performance issues. In particular, it adopts a graph neural network with attention to characterizing the relations
among metrics and extracts long-term and multi-scale temporal patterns using a GRU and a convolution network,
respectively. The learned graph attention weights can be further used to localize the correlation-violated metrics.
Moreover, to relieve the impact of noisy data, ISOLATE utilizes a positive unlabeled learning strategy that tags
pseudo labels based on a small portion of confirmed negative examples. Extensive evaluation on both public and
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industrial datasets shows that ISOLATE outperforms all baseline models with 0.945 F1-score and 0.920 Hit
rate@3. The ablation study also proves the effectiveness of the relational-temporal features and the PU-learning
strategy. Furthermore, we share the success stories of leveraging ISOLATE to identify performance issues in
Huawei Cloud, which demonstrates its superiority in practice.

CCS Concepts: • Software and its engineering → Software post-development issues.

Additional Key Words and Phrases: Performance Issue Identification, Multivariate Monitoring Metrics, Anomaly
Detection, Cloud Reliability, Cloud Service System
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1 Introduction
Cloud computing has surged in popularity in recent years. Large-scale cloud vendors, e.g., Microsoft
Azure, Amazon Web Services, and Google Cloud Platform, provide customers with various services
over the Internet [56]. Due to the scale and complexity, performance issues are inevitable [30]
in cloud systems. Such performance issues may degrade overall availability and increase service
response time, thus causing SLA (Service Level Agreement) violations and substantial economic
losses [2, 39]. Therefore, identifying performance issues accurately is a critical task during the
maintenance of cloud systems [27].

In current practice, cloud vendors typically collect crucial metrics (i.e., Key Performance Indicators,
KPI), such as CPU utilization and network latency, and then analyze the collected metrics to identify
performance issues. Simple as the process might seem, it is a non-trivial task. In particular, a cloud
system is typically vast in scale and consists of tremendous software and hardware components (e.g.,
microservices, and virtual machines and servers) [20, 54, 80]. Each component may have tens of
metrics to be collected in the backend monitoring system, resulting in a large volume of monitoring
metrics [52, 71]. Since analyzing tremendous data manually is labor-intensive and error-prone [12],
automatic approaches that help on-call engineers identify performance issues are preferred.

In the literature, the performance issue identification problem is generally formulated as an anomaly
detection problem based on multivariate metrics [5, 59, 76]. Some existing approaches [62, 65, 87]
detect anomalies based on individual metrics, i.e., they only consider the temporal abnormal patterns
on individual metrics. However, modern cloud service typically consists of various components
(e.g., storage, computing, middleware), whose corresponding monitoring metrics have complicated
inter-dependencies [13, 45, 59]. Take disk I/O operations per second and network throughput as
an example: Under normal operating conditions, there is typically a correlation between these two
metrics; as disk I/O operations increase due to higher data processing and storage demands, network
throughput also increases as more data is being transferred to and from the storage systems. However,
if a performance issue arises, this correlation can be violated. For instance, if disk I/O remains high
while network throughput suddenly drops significantly, it could indicate a network bottleneck, a
network gateway failure, or a network misconfiguration. This deviation from the expected correlation
between disk I/O and network throughput can thus be a strong indicator of underlying performance
issues in the cloud service.

To alleviate the drawback of overlooking correlations, several graph neural network-based ap-
proaches that take the spatial-temporal dependency between multiple metrics [9, 16, 21, 44, 88] are
proposed. Though these approaches consider the correlation between metrics, these correlations are
typically embedded within the latent feature representation in an implicit manner. In other words,
these approaches essentially detect temporal anomalies in these latent representations. In contrast, we
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Identifying Performance Issues in Cloud Service Systems Based on Relational-Temporal Features 3

propose a correlation violation-aware approach that incorporates the correlation violation explicitly.
To effectively detect correlation-violated performance problems, it is essential to account for the
correlation violation among metrics as performance anomaly criteria.

However, there are four challenges in identifying performance issues through correlation violations.
Firstly, it is hard to automatically and effectively model the complicated correlations among a
variety of metrics. A cloud application could comprise tens of microservices. Each microservice
may still have tens of metrics, leading to a large number of metrics. Moreover, the correlation
between metrics is complicated. Even experienced engineers cannot comprehensively clarify the
relations among different metrics. Secondly, even with these correlations extracted, the process
of accurately identifying the correlation violations from these intricate inter-metric correlations
and then determining the happening of performance issues is a non-trivial task. Thirdly, due to the
huge volume of metrics, it is still time-consuming for engineers to investigate the underlying issues
simply given a binary (i.e., normal and abnormal) result. Automatically pinpointing the anomalous
metrics is required. Finally, metric data from large-scale production systems are noisy [11], i.e.,
mild performance issues without obvious anomalies in the metric data. This can blur the distinction
between normal and anomalous instances, leading to more false positives and false negatives.
Unfortunately, it is infeasible to annotate a huge volume of noisy data manually, while simply
neglecting such noises may lead to unsatisfying results.

To address these challenges, we propose Identifying Performance Issues Based on Relational-
Temporal Features (ISOLATE), an automated approach to identify performance issues through both
capturing the violation of relational features and detecting temporal anomalous features of metrics.
To solve the challenge of intricate correlations, ISOLATE utilizes graph neural networks to capture
the complicated relational features among metrics explicitly, namely, it employs the graph attention
mechanism to characterize the correlations between metrics. To effectively identify the correlation
violation between metrics, relational embedding, which is uncoupled from the temporal information
of raw metrics, is utilized and fed to downstream anomaly detection components. The correlation-
violation metrics are highlighted to provide insights to software reliability engineers like the root
cause of the performance issue. Furthermore, to relieve the impact of noisy data, Positive Unlabeled
learning (PU learning) is adopted, which finds positive samples and updates the models iteratively.
Since PU learning produces both negative and positive samples, while traditional Variational Auto
Encoder-based (VAE-based) methods can only take negative examples, ISOLATE employs a novel
LC-VAE (Label-Conditional VAE) to distinguish normal and abnormal patterns from the labeled
inputs effectively.

To evaluate the performance of ISOLATE, we conduct extensive experiments on a widely-used
public dataset and two industrial datasets collected from Huawei Cloud. The experimental results
demonstrate that compared with state-of-the-art baselines, ISOLATE achieves the best performance
issue identification accuracy with an average F1 score of 0.945. ISOLATE also provides anomalous
metrics localization with a Hit rate@3 of 0.920. Moreover, we also conduct ablation studies to
validate the effectiveness of our design. A case study with two real cases in Huawei Cloud further
shows the practical usefulness of our proposed ISOLATE.

We summarize the main contributions of this work as follows:

• We propose an end-to-end model that captures the relational violation among monitoring metrics
explicitly, offering a more precise way to identify correlation-violated performance anomalies. The
violated correlations are utilized to localize the root cause of the performance anomaly. Besides, to
alleviate the negative effect of concealed noise in training data, we adopt positive unlabeled learning
(PU Learning) on metrics performance anomaly detection and propose the Label-Conditional
Variational Autoencoder (LC-VAE) that works seamlessly with PU Learning.
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Fig. 1. A real-world example of performance anomaly

• We conduct extensive evaluations of ISOLATE on two industrial datasets collected from large-scale
online service systems of Huawei Cloud and a publicly available dataset. The results demonstrate
that ISOLATE outperforms eighteen state-of-the-art methods.

• We have successfully deployed ISOLATE into the troubleshooting system of Huawei Cloud. The
success stories of our deployment confirm the applicability and effectiveness of our method.

2 Background
In this section, we first introduce the background knowledge about performance issue detection in
modern cloud systems. Then, we present an example of an industrial scenario that motivates this
work. Finally, we summarize some typical performance issues due to the violation of the correlation
of monitoring metrics, which aims to provide a comprehensive understanding of the performance
issues and how the correlation of metrics plays a crucial role in detecting and diagnosing performance
issues.

2.1 Monitoring Metrics in Cloud Service Systems
In recent years, cloud service systems have gained significant attention due to their ability to provide
scalable, on-demand resources and services. Typically, coupled multivariate metrics are collected in
run-time to monitor the overall status of the cloud service systems. The collected metrics provide
insights into the performance of logical and physical resources within the system, allowing operators
to identify and address performance issues before they lead to service disruptions. However, due to
the complex inter-dependencies between system components [19], these metrics are often strongly
correlated with each other, reflecting the interconnected nature of the system that makes it challenging
to isolate and identify specific performance issues. For example, the performance of a virtual machine
may be influenced by the workload placed on the underlying physical server, and the performance
of a microservice may depend on the performance of other microservices it interacts with. As a
result, the metrics collected from different components can exhibit strong correlations with each
other, reflecting the complex inter-dependencies within the system.

2.2 Performance Issues due to Correlation Violation
Performance issues have emerged as a primary concern, potentially undermining the effectiveness of
cloud service systems. Some typical factors contributing to these performance issues are resource
overload and network latency. Resource overload occurs when the demand for resources exceeds
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Fig. 2. The latent embedding of graph attention layer

the available capacity, resulting in performance degradation and potential service disruptions [49].
Network latency, exacerbated by the distributed nature of cloud systems, can result in reduced
application responsiveness, impacting the overall user experience [4]. While these performance
issues can be detected by considering single metrics, there are other performance issues that are
caused by the violation of correlations between different system metrics, which do not arise from a
single metric exceeding a threshold but from a violation in the expected correlation between metrics.
Considering the intrinsic correlations between metrics in cloud service systems, accurately capturing
and localizing these correlation violation metrics is of great significance to performance issue
identification. By localizing anomalous metrics, we gain valuable insights into the specific metrics
that deviate from normal behavior (i.e.,violation of correlation to other metrics). Through accurate
metric localization, system engineers can swiftly identify the entities that undergo performance
anomalies, facilitating prompt troubleshooting and proactive issue resolution.

An industrial case in the online service system of Huawei Cloud is shown in Figure 1. Three metrics
of the elastic load balance (ELB) service are shown in the figure for convenience of presentation.
Specifically, the first metric represents the network interface card (NIC) receiving packets per second
(PPS) from a virtual machine running microservice X, and the second metric represents the NIC
receiving PPS from a virtual machine running microservice Y, which is the downstream microservice
that processes the outputs of X. The third metric is the average CPU usage of all virtual machines of
the ELB service. We can observe that the variation tendencies between the first and second metrics
are somehow consistent during the anomaly-free period. The third metric is used to monitor the
resource usage of the service and can raise alerts when there are resource overload issues. However,
with the existence of load balance [18], a sudden spike in CPU usage will not necessarily lead to a
performance issue. Thus, if we trigger alerts based on pre-defined thresholds (as the red dashed line
shows), many false alarms will be reported and cause an alert storm that aggravates the burden of
engineers [89].

The red areas in Figure 1 denote a confirmed network congestion issue by engineers. This issue
is caused by a network device failure affecting communication between virtual machines running
microservices X and Y. As a result, the NIC receiving PPS from the virtual machine running Y
suddenly drops even if the NIC receiving PPS from the virtual machine running X increases. In this
case, the correlation between the first and second metrics is critical to rapidly identifying this issue.

Some of the typical performance issues due to correlation violation are listed in Table 1. Specifi-
cally, we take the memory leak as another example to illustrate how the correlation violation reflected
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Table 1. A List of Typical Performance Issues Caused by Correlation Violation

Performance
Issues Metrics Description

Disk Read/Write
Delay

CPU I/0 wait time
Disk I/O

High CPU I/O wait time with low Disk I/O
indicates potential disk failure or disk controller
problems

Memory Leak Memory slab size
Garbage collection time

High memory slab size with high garbage
collection time indicates potential memory leak

API Server Issue API requests
CPU usage

High API requests processed with low CPU usage
indicates a potential problem with the API server
or an overly efficient request handling mechanism

Network
Congestion

NIC 𝐴 receiving PPS
NIC 𝐵 receiving PPS

High NIC 𝐴 receiving PPS with low receiving
PPS of NIC 𝐵 or vice versa can indicate potential
network congestion

Hardware
Interrupt Issue

Interrupt requests
CPU usage

High CPU interrupt requests with low CPU usage
indicates potential hardware issue or inefficient
interrupt handling

Software
Interrupt Issue

Soft interrupt requests
CPU usage

High CPU soft interrupt request with low CPU
usage indicates potential software issue or
inefficient interrupt handling

Network
Buffering Issue

NAT gateway PPS
Memory usage

High NAT gateway PPS with low memory usage
indicates potential efficient network buffering
mechanism or a network issue

Database
Indexing Issue

Database query
Memory usage

Slow database query latency with low memory
usage indicates potential issues with database
indexing or query optimization

on system monitoring metrics can imply performance issues. In cloud service systems, efficient
memory management is of great importance and has a direct impact on both the scalability and
the operational costs of the cloud environment [48]. A crucial part of the memory management
strategy is using slab memory allocation [31], which are pre-allocated extents in persistent memory
and containers of free blocks [14] that aid in efficient memory usage. While the garbage collection
manages application memory automatically in virtual machines [15], works to obtain the lifetime
of the data objects and then allocates and releases memory space accordingly [63]. Memory leaks
occur when a program fails to track and release allocated memory back to the system after it’s no
longer needed [72]. Usually, it is observed that garbage collection time or slab size increases under
heavy workloads. An increase in slab size, with a relatively stable garbage collection time, could
indicate that the system is effectively managing memory by creating new slabs to handle the increased
workload. Similarly, a rise in garbage collection time, with a relatively stable slab size, might suggest
that the system reuses existing memory efficiently, resulting in more objects being created and, hence,
more garbage to collect. Generally speaking, software systems should efficiently manage memory
under heavy workloads, either by creating new memory blocks (indicated by increased slab size) or
working harder to clear up unused objects (indicated by increased garbage collection time). Thus,
these two cases are not typically considered performance anomalies. However, when both the slab
size and garbage collection time consistently increase, even when the workload has reduced, it could
suggest a memory leak because memory is being allocated faster than it’s being released. It should
be noted that a heavy workload can cause these two metrics to increase, hinting at a memory leak
when such a leak exists. However, a heavy workload itself will not cause a memory leak, as the root
cause of memory leaks lies in programming errors.

It is worth noting that a straightforward way to identify this issue is to build a new metric that
combines the first metric and the second metric. However, since a cloud service system typically has
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a variety of metrics, it is infeasible for engineers to design such combined metrics comprehensively.
To alleviate this problem, some GNN-based methods like Graph Attention (GAT) attempt to embed
these correlations into latent representations. Nevertheless, we have identified that these methods
incorporate correlation information into the latent feature representation implicitly through the
combination of all metrics with attention weights. Then the temporal anomalies in these latent
representations are detected. The GAT embedding of the example in Figure 1 is shown in Figure 2,
where we can observe that the correlation violation between the first and second metrics is even
impaired, as the uptrend of the first metric and the downtrend of the second metric are counteracted.
Thus, it is crucial to isolate the correlation from the temporal information to detect violation-related
performance anomalies.

3 METHODOLOGY
In this section, we present ISOLATE, an approach for identifying performance issues based on
multivariate metrics in cloud systems. First, we will give a formal definition of the problem. Then,
we introduce the overview of ISOLATE and illustrate the design details of our proposed relational-
temporal embedding, Label-Conditioned Variational Auto-encoder (LC-VAE), and a novel positive
unlabeled strategy. Eventually, we will introduce how to localize the problematic metrics with the
correlations obtained in the previous stage.

3.1 Problem Formulation
Our objective is to identify performance issues from a variety of monitoring metrics by identifying
when the performance anomalies happen and pinpointing the metrics that exhibit temporal or
relational anomalies. Specifically, a group of metrics can be seen as a multivariate time series
𝑋 ∈ 𝑅𝑁×𝑀 , where 𝑁 denotes the number of observations collected at an equal interval, i.e., the
length of a time series [65] and 𝑀 is the number of metrics. 𝑥𝑡 = [𝑥1𝑡 , 𝑥2𝑡 , ..., 𝑥𝑀𝑡 ] is an 𝑀-dimensional
vector [26] that reflects the running status of the system at timestamp 𝑡 . While the 𝑁 -dimensional
vector 𝑥𝑘 = [𝑥𝑘1 , 𝑥𝑘2 , ..., 𝑥𝑘𝑁 ] is the 𝑘𝑡ℎ metric during the whole monitoring period. In addition, a
sliding window of historical values 𝑥𝑘𝑡−𝑐 :𝑡 = [𝑥𝑘𝑡−𝑐+1, 𝑥𝑘𝑡−𝑐+2, ..., 𝑥𝑘𝑡 ] is used for modeling the pattern of
a current observation, where 𝑐 is the length of the sliding window.

To determine whether there is an occurrence of performance issues at observation 𝑥𝑡 , the anomaly
score 𝑠𝑡 ∈ [0, 1] that represents the degree of being anomalous for each 𝑥𝑡−𝑐 :𝑡 is calculated. Then, the
anomaly result can be obtained by comparing the anomaly score against a pre-defined threshold 𝜃 .
If 𝑠𝑡 > 𝜃 , the approach will predict the observation 𝑥𝑡 as an anomaly. However, it is still unclear to
engineers how the anomaly happens. Thus, a kind of anomaly interpretation can be achieved through
anomalous metrics localization, i.e., pinpointing a set of metrics {𝑥𝑘1 , 𝑥𝑘2 , ...𝑥𝑘𝑟 }, that is helpful for
engineers to find the monitored components that are related to anomaly by the degree of deviation of
temporal pattern or break of correlation with other metrics, where 𝑟 is the number of metrics that are
recommended as the anomalous metrics.

Normalization is performed on each individual metric to unify the range of all metrics and improve
the robustness of our model. We normalize the metrics with the maximum and minimum values first:

𝑥𝑘𝑝𝑟𝑒 =
𝑥𝑘 −𝑚𝑖𝑛(𝑥𝑘 )

𝑚𝑎𝑥 (𝑥𝑘 ) −𝑚𝑖𝑛(𝑥𝑘 )
(1)

Where𝑚𝑎𝑥 (𝑥𝑘 ) and𝑚𝑖𝑛(𝑥𝑘 ) represent the maximum and the minimum value of the training set,
are computed within the training data and will be used for testing data. For simplicity, we omit the
"pre" subscript in the following elaboration.
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Fig. 3. The Overview of the Proposed Method ISOLATE

3.2 Overview
We propose ISOLATE, an automated method that learns correlations among metrics, detects perfor-
mance anomalies, and locates anomalous metrics. The overview of ISOLATE is shown in Figure 3,
which contains two main parts: the relational-temporal embedding part and the performance is-
sue identification with the LC-VAE part. Specifically, since both abnormal temporal patterns and
correlation violations between metrics can indicate performance issues, in the relational-temporal
embedding part, ISOLATE captures the relational and temporal patterns from the original metrics
(Section 3.3). In particular, due to the lack of information about the correlation among metrics, a
complete graph is constructed, then ISOLATE employs graph attention to extract the correlation
among metrics. ISOLATE also captures the temporal pattern of each metric through GRU and
temporal convolution. In the performance issue identification part, given the inevitable presence of
background noise within the data, we propose to use the positive unlabeled learning (PU Learning)
strategy during the training phase of ISOLATE (Section 3.4.1), which identifies positive samples in
unlabeled training data, avoiding the impact of noisy data. As PU learning leads to pseudo-labeled
data, a novel label-conditional-VAE (LC-VAE) is adopted to distinguish anomalies from normal
patterns (Section 3.4.2). Unlike existing VAE-based methods that solely learn from normal samples,
the LC-VAE can learn features from normal and abnormal samples, achieving better performance.
Upon the detection of an anomaly, the correlation learned from relational-temporal embedding can
aid in localizing the correlation-violating metrics (Section 3.5).

3.3 Relational-Temporal Embedding
The relational-temporal embedding part takes a group of metrics as inputs. Relational embedding
is designed to extract the intrinsic dependencies between metrics and embed the dependencies as a
feature vector. Temporal embedding is used to obtain the temporal patterns of metrics as another
feature vector because metrics are time series.

3.3.1 Relational Embedding. Specifically, for multivariate metrics with size 𝑀×𝑁 , we can treat
each metric 𝑥𝑖 , (𝑖 = 1, 2, ...𝑀) as a feature vector. The correlations between nodes can be depicted
by an adjacency matrix 𝐴 ∈ 𝑅𝑀×𝑀 . Since we don’t have prior knowledge about the correlation
between different metrics, we should construct a fully connected graph. We then adopt graph attention
networks (GAT) [7] to learn the correlation between metrics. The attention score is calculated as
follows:
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𝑎𝑖 𝑗 =
exp(𝑝𝑇 LeakyReLU(𝑤 · (𝑥𝑖 ⊕ 𝑥 𝑗 )))∑𝑀
𝑘=1 exp(𝑝𝑇 LeakyReLU(𝑤 · (𝑥𝑖 ⊕ 𝑥𝑘 )))

(2)

The symbol ⊕ represents the concatenation operator between two metrics 𝑥𝑖 and 𝑥 𝑗 ,𝑤 ∈ 𝑅2𝑁×𝑑 is
a matrix of learnable parameters to aggregate the two features. After a nonlinear activation function
LeakyReLU [75], another learnable vector 𝑝 ∈ 𝑅𝑑 is applied. To make the training process more
robust and reduce the impact of noise, a threshold 𝛼 is set to make the adjacency matrix a sparse
binary matrix. In other words, the edge between two nodes will be removed if the attention score is
below the threshold 𝛼 . Then, a widely used graph convolution layer [35] is adopted. The formula of
graph convolution is shown as follows:

ℎ̂ (𝑙+1) =𝜎 (𝐷− 1
2

𝑙
𝐴𝑙𝐷

− 1
2

𝑙
ℎ (𝑙 )Θ𝑙 ) (3)

where 𝜎 is the ReLU activation function and 𝐴𝑙 = 𝐴𝑙 + 𝐼 is the adjacency matrix at the layer 𝑙 ,
𝐷 ∈ 𝑅𝑀×𝑀 is the degree matrix of 𝐴𝑙 , ℎ (𝑙 ) is the output representation of the hidden layer 𝑙 and
Θ𝑙 ∈ 𝑅𝑀×𝐹 is a learnable parameter. Due to the limitation of space, we only show one layer in Figure
3.

We further apply graph pooling layers between the graph convolution layers to reduce the number
of parameters, which can also avoid overfitting. Specifically, as proposed by [38], self-attention [67]
is utilized to focus more on important features and less on unimportant features. Thus, self-attention
scores can be obtained by using another graph convolution. After obtaining the attention scores 𝑍 , a
portion of the nodes and features will be reserved according to the scores. A hyperparameter 𝑘 refers
to the pooling ratio, and the corresponding nodes with the top ⌊𝑘𝑀⌋ value of 𝑍 will be retained.

Readout layer [8] is useful to aggregate all node features and get a summarized representation,
which is used to output the relational embedding. The output of the readout layer is as follows:

𝑟𝑙 =
1
𝑁𝑙

𝑁𝑙∑︁
𝑛=1

ℎ
(𝑙 )
𝑛 ⊕ 𝑁𝑙max

𝑛=1
ℎ
(𝑙 )
𝑛 (4)

where 𝑁𝑙 denotes the node number of layer 𝑙 , ℎ (𝑙 )𝑛 is the 𝑛𝑡ℎ node feature of ℎ (𝑙 ) and ⊕ is
concatenation operator. The outputs of each layer will go through readout layers and will be added
up as the output of the relational embedding module because the features of different graphs with
different sparsities can be combined.

3.3.2 Temporal Embedding. Existing metrics anomaly detection works [26, 87] utilize LSTM to
acquire sequential information as Long-term temporal dependency inherently exists in monitoring
metrics [25]. However, LSTM suffers from the gradient vanishing problem incurred by long-time
lags [17]. To overcome the drawbacks of LSTM, we apply a GRU to capture the sequential infor-
mation 𝑡𝑔, especially the long-term pattern in the metrics. Then, global average pooling layers are
applied on the time series dimension of the output of GRU to get the temporal embedding.

Temporal convolution is useful for capturing the multi-scale temporal information of metrics.
Unlike the existing methods that embed metrics with only recurrent neural networks, we also deploy
causal convolution implemented by shifting the output of the 1D convolution. To further increase the
receptive field of the convolutions, we use dilated convolutions. Dilated convolution is equivalent to
filling the convolution kernel with zero padding so as to get a larger convolutional filter. Thus, we
adopt dilated causal convolution (DC convolution) [51] to extract the temporal embedding of the
metrics as it has advantages over the original convolutional operation with a larger receptive field,
which is beneficial to our temporal embedding module as it can capture the behaviors of monitoring
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metrics at multi-scale. A block that consists of DC convolution, batch normalization [28], and
activation function (i.e. ReLU) is utilized to form the temporal convolution. Eventually, the temporal
embedding will be concatenated to the relational embedding and go through a fully connected layer
to get the relational-temporal embedding.

3.4 Performance Issues Identification with LC-VAE
With the extracted relational-temporal embedding, we then use a novel Label Conditional VAE to
detect performance issues. Unlike traditional autoencoder-based methods [5, 65, 76, 78, 93] that only
take normal samples as input to capture the distribution of metrics, our proposed Label Conditional
VAE takes the label obtained from positive unlabeled learning as a part of the input to further help the
model differentiate anomalies from normal data because there exist some mild performance issues
that are ignored by engineers in training data.

3.4.1 Positive Unlabeled Learning. Unsupervised methods assume that the training data is
anomaly-free. However, there are inevitably some unlabeled anomalies that are ignored by engineers.
This assumption can lead to a decline in the overall accuracy as the presence of these hidden
anomalies can skew the model’s understanding of normal behavior. In our scenario, we only have a
small portion of negative data (representing normal, anomaly-free metrics) with high confidence, but
we don’t have positive data (representing anomalous samples) because finding positive from a large
number of unlabeled samples is like looking for a needle in the ocean.

To tackle this, ISOLATE tries to find out the anomalous samples using the idea of positive
unlabeled learning (PU learning) [36]. Specifically, as shown in Figure 4, a small amount of negative
samples (around 5%) labeled by engineers is utilized for training the model. These labels are obtained
by initially randomly selecting 5% of the entire training dataset. Engineers then meticulously filter
out the noise in these samples and label them as true negatives. This manual labeling process is
feasible due to the high confidence in the selected data and can be completed within a few minutes.
Consequently, we incorporate human expertise into our method.

With the model trained on these labeled negatives, the remaining unlabeled training data can be
predicted. Intuitively, the anomalous samples concealed in the training data are hard to reconstruct
with this model and, thus, have a high anomaly score. After obtaining the anomaly score, the samples
with an anomaly score that exceeds a pre-defined threshold 𝛽 will be labeled as positive. All the data
with pseudo labels are used to update the model. Finally, this updated model will be used to detect
performance issues from metrics.

3.4.2 Label-Conditional VAE. Though the posterior of the distribution 𝑝𝜃 (𝑧 |𝑦, 𝑒) is critical for
training and prediction of the model, it is hard to obtain. Thus, the variational inference is used
to fit a neural network as the approximation posterior 𝑞𝜙 (𝑧 |𝑦, 𝑒). Suppose the prior of the latent
variable 𝑍 is Gaussian distribution N(0, 1) and 𝑦 is the true label of the input sliding windows.
Then both posteriors of 𝑒 and 𝑧 are chosen to be Gaussian distribution: 𝑝𝜃 (𝑒 |𝑦, 𝑧) = N(𝜇𝜃 (𝑧), 𝜎2𝜃 (𝑧))
and 𝑞𝜙 (𝑧 |𝑦, 𝑒) = N(𝜇𝜙 (𝑒), 𝜎2𝜙 (𝑒)), where 𝜇𝜃 (𝑧), 𝜎𝜃 (𝑧) and 𝜇𝜙 (𝑒), 𝜎𝜙 (𝑒), are the means and standard
deviations of input embedding and latent variable. The input embedding 𝑒 will be concatenated with
the one-hot label vector 𝑦, and then the latent variable 𝑧 will be sampled from a posterior 𝑞𝜙 (𝑧 |𝑦, 𝑒)
at the encoder, which is usually derived by linear layers [34]. Eventually, the latent variable will also
be concatenated with 𝑦, and the input embedding will be reconstructed from 𝑝𝜃 (𝑒 |𝑦, 𝑧) at the decoder.
The reconstructed embedding can be denoted as 𝑒.

In general, the parameters of the LC-VAE can be estimated efficiently with the stochastic gradient
variational Bayes (SGVB) algorithm [58]. The evidence-lower bound (ELBO) is a surrogate objective
function that can help the estimation. Besides, to better capture the latent pattern of normal sliding
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Fig. 4. Positive Unlabeled Learning

windows, we add an additional reconstruction error term. The loss function of the proposed LC-VAE
is shown as follows:

L𝐿𝐶𝑉𝐴𝐸 =𝑠𝑔𝑛(0.5 − 𝑦) ∗ (−𝐾𝐿(𝑞𝜙 (𝑧 |𝑦, 𝑒)∥𝑝𝜃 (𝑒 |𝑦, 𝑧))

+ 1
𝑆

𝑆∑︁
𝑠=1

(log𝑝𝜃 (𝑒𝑠 |𝑦) + 𝜆 · ∥𝑒𝑠 − 𝑒𝑠 ∥2))
(5)

Where 𝑆 is the number of sliding window samples, the first two terms are from evidence-lower
bound (ELBO), and the third term is the reconstruction error of the embedding. In this way, we
combine the strength of reconstruction and probabilistic estimation together. The coefficient 𝜆 > 0
is to trade off the loss terms. As mentioned above, metrics anomaly detection works by learning
the normal patterns of sliding windows of metrics; thus, we should minimize the loss function for a
coming normal sliding window. However, when there is an anomalous sample input, we should avoid
the model to learn the pattern of anomaly by maximizing the loss function. Thus, we denote the loss
function with the Signum function to control the sign. In this way, during the detection phase, the
anomalies are easy to differentiate by ISOLATE. The reconstruction error ∥𝑒𝑠 − 𝑒𝑠 ∥2 will be used as
the anomaly score during the detection phase.

3.5 Correlation Violation Metrics Localization
Once an anomaly has been detected in a service system, further analyses will be enacted to determine
the possible causes for such a performance anomaly [40, 61, 92]. This allows application operators
to determine which part of the service this performance issue reported is related to. For monitoring
metrics, to further understand the mechanism of performance issues, pinpointing a few metrics that
are highly correlated with the root cause is crucial [79, 81]. For example, when we observed that
the throughput metrics of two devices were highlighted, it seemed to be a performance issue related
to the communication between two devices. While our model highlights the CPU utilization of a
service, it is likely to occur due to a lack of computing resources in the run-time environment [50].

However, existing methods regarding monitoring metrics have not integrated anomaly detection
and metric localization, namely root cause localization together in a unified pipeline [64]. In this
case, the knowledge during the anomaly detection phase cannot be shared with the localization. We
integrate these two closely related tasks into a unified framework to provide more hints to system
operators.

Since there exist correlations between metrics of service in modern online service systems, the
learned correlation graph between metrics during the anomaly detection phase is useful for localizing
the metrics that reveal the cause of the anomaly [46, 68, 73]. Regarding localizing anomalous metrics,
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Table 2. Statistics of Industrial Dataset

Industrial Dataset A Dataset B

Services 21 31

Metrics 4∼23 3∼25

Train Length 366,513 541,043

Test Length 244,356 360,716

Anomaly Ratio 6.71% 5.88%

correlation information can be more indicative than temporal information. It is straightforward to
understand that no matter whether the anomaly is a temporal anomaly that happens on some specific
metrics or an anomaly due to the contravention of correlation compared with the anomaly-free stage,
the correlation between anomalous metrics and others will undergo drastic changes. However, when
some metrics collectively spike, they do not violate the correlations and thus are not anomalous
metrics. So, we only utilize the correlations in metrics localization. Particularly based on the above
assumption, we can calculate the correlation change as follows:

Δ𝐴𝑖 =
∑︁
𝑗≠𝑖

∥𝐴𝑎
𝑖 𝑗 −𝐴𝑛

𝑖 𝑗 ∥1 (6)

Where Δ𝐴𝑖 is the variation of correlation between normal and abnormal periods for metric 𝑖, the
𝐴𝑛
𝑖 𝑗 is computed by averaging 𝑎𝑖 𝑗 on the training period, while the 𝐴𝑎

𝑖 𝑗 is the mean of 𝑎𝑖 𝑗 during
the anomaly segment. Eventually, ISOLATE would highlight a few metrics with high Δ𝐴𝑖 and
recommend them to engineers to help them get fine-grained information on the performance issue
and double-check the devices related to these metrics.

4 EVALUATION
To comprehensively evaluate the effectiveness of our proposed approaches ISOLATE, we use both a
public dataset and two real-world monitoring metric datasets from the online services of Huawei
Cloud Company. Particularly, we aim to answer the following research questions (RQs):
• RQ1: How effective is ISOLATE compared with performance anomaly detection baselines?
• RQ2: How effective is each component of ISOLATE in performance anomaly identification?
• RQ3: How effective is ISOLATE in localizing the anomalous metrics?
• RQ4: How sensitive is ISOLATE to the parameters?
• RQ5: How efficient is ISOLATE regarding the number of metrics?

4.1 Datasets
We conduct experiments on a publicly available dataset. To confirm the practical significance of
ISOLATE, we collect two datasets from large-scale online services of Huawei Cloud. The statistics
of our industrial datasets are shown in Table 2

Public Dataset The public dataset for our experiments is SMD (Server Machine Dataset), which is
collected from a large Internet company containing a 5-week-long monitoring metrics of 28 machines
[65]. The authors divided the SMD into two subsets of equal size: the first half for the training set
and the second half for the testing set. Domain experts labeled anomalies in the SMD testing set
based on incident reports.

Industrial Dataset To evaluate the effectiveness of ISOLATE in production scenarios, we collect
metrics Application CPU Usage, Memory Usage, Interface Throughput, and so on from the online
service of the company. We collect metrics with a sampling interval of one minute for more than one
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Fig. 5. An Illustration of the Point Adjustment Process in Our Evaluation

week from two regions of the company. The anomalies representing the performance issues of the
service are labeled by experienced software engineers with incidents associated with the metrics. The
performance issues consist of correlation-violated issues like memory leaks or network congestion
listed in Table 1 and non-correlation-violated issues like resource overload. Based on the incident
reports, engineers also label the metrics that are correlated to the performance issues. Using these
labels, we can also evaluate the accuracy of metrics localization of ISOLATE.

4.2 Experiment Setting
4.2.1 Baselines. The following methods are compared to evaluate the effectiveness of ISOLATE.
All the baselines are implemented from the open-sourced codes released by the authors. For both the
public dataset SMD and our industrial datasets in Huawei Cloud, we employed a grid search strategy
to explore the most suitable parameter configurations. A summary of the baseline methods is shown
in Table 3.

Table 3. A Summary of the Baseline Methods

Method Category Supervision Type Reference Baseline Methods

Signal Processing-based Unsupervised JumpStarter [47]

Machine Learning-based Unsupervised LOF [6], IForest [41], OCSVM [60]

LSTM-based Unsupervised LSTM [26, 87], LSTM-VAE [53], THOC [62]

Autoencoder-based Unsupervised DAGMM [93], OmniAnomaly [65], ACVAE [85]
TranAD [66], MTSAD [69], MSCRED [82]

Semi-supervised SLA-VAE [24]

Graph Neural Network-based Unsupervised MTAD-GAT [88], GDN [16], GTA [9], FuSAGNet [21]

• OCSVM [60]. OCSVM is a clustering-based anomaly detection method that learns the boundary
for the normal data points and identifies the data outside the border as anomalies. The input in
this baseline is the observation of time series at each timestamp and the output is the anomalous
timestamps.

• IForest [41]. Isolation Forest ensembles a number of isolation trees and recursively partitions
the feature space to detect anomalies. The samples with awfully shorter heights are likely to be
anomalies. In this baseline, the input is the observation at each timestamp and the output is the
anomalous timestamps.

• LOF [6]. Local Outlier Factor (LOF) is based on density estimation that calculates the local density
deviation of a given sample with respect to its neighbors. The anomalies have a substantially lower
density than their neighbors. The input is the observation at each timestamp and the output is the
anomalous timestamps.
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• DAGMM [93]. DAGMM is a model that utilizes an autoencoder to generate a low-dimensional
representation and a Gaussian Mixture Model to go through a probabilistic estimation to obtain
the anomaly score.

• LSTM [26, 87]. LSTM neural network captures the normal behaviors of metrics by forecasting
the next values of metrics based on historical observations. Anomalies will be reported if the
differences between predicted values and real values exceed a pre-defined threshold

• LSTM-VAE [53]. LSTM-VAE detects anomalies by integrating LSTM and VAE. It projects ob-
servations at each timestamp into a latent space and then estimates the distribution of it using
VAE.

• OmniAnomaly [65]. OmniAnomaly is a model that captures the normal patterns by learning
robust representations of metrics with stochastic Recurrent Neural Network (RNN) and planar
normalizing flow based on the reconstruction error.

• THOC [62]. THOC is a model that captures the multi-scale temporal features from dilated recur-
rent layers by a hierarchical clustering mechanism and detects the anomalies by the multi-layer
distances.

• MTSAD [69]. MTSAD is a deep unsupervised anomaly detection model that incorporates the
strength of active learning, including three feedback strategies, namely denominator penalty,
negative penalty, and metric learning.

• MSCRED [82]. MSCRED utilizes convolutional LSTM layers to capture the temporal information
and embed the inter-metric information through a signature matrix. It detects anomalies with
reconstruction errors of the input metric.

• MTAD-GAT [88]. MTAD-GAT is a graph attention-based model that captures both feature and
temporal correlations. It passes these correlations to a Gated-Recurrent-Unit (GRU) network for
reconstruction and forecast.

• GDN [16]. GDN learns the graph of relationships between metrics through graph structure learning.
It then uses attention-based forecasting and deviation scoring to output anomaly scores.

• GTA [9]. GTA is a transformer-based model that employs graph structure learning to learn the
relationship among multiple IoT time series, and the Transformer for temporal modeling and the
reconstruction error for anomaly detection.

• TranAD [66]. TranAD is a transformer-based model that detects anomalies with reconstruction
error by incorporating attention mechanisms and adopting adversarial training.

• SLA-VAE [24]. SLA-VAE is a semi-supervised VAE-based anomaly detection model for online
service systems, which employs active learning to update the model.

• ACVAE [85]. ACVAE is a self-adversarial variational autoencoder combined with a contrast
learning mechanism that allows the encoder to obtain more training samples.

• FuSAGNet [21]. FuSAGNet jointly optimizes reconstruction using a sparse autoencoder and
forecasting using a graph neural network. It captures the interdependencies between time series in
sensors.

• JumpStarter [47]. JumpStarter is a compressed sensing-based method combined with shape-
based clustering and an outlier-resistant sampling algorithm. This combination ensures a shorter
initialization time.

4.2.2 Evaluation Metrics. The anomaly detection problem is modeled as a binary classification
problem, so the widely-used binary classification measurements can be applied to evaluate the
performance of models. We employ Precision: 𝑃𝐶 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , Recall: 𝑅𝐶 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 , F1 score: 𝐹1 =

2 · 𝑃𝐶 ·𝑅𝐶
𝑃𝐶+𝑅𝐶 . Specifically, 𝑇𝑃 is the number of abnormal samples that the model correctly discovered;

𝐹𝑃 is the number of normal samples that are incorrectly classified as anomalies; 𝐹𝑁 is the number
of anomalous samples that failed to be detected by the model. F1 score is the harmonic mean of
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Table 4. Experimental Results of Different Anomaly Detection Methods.

Methods SMD Dataset A Dataset B
Precision Recall F1 Precision Recall F1 Precision Recall F1

OCSVM 0.4434 0.7672 0.5619 0.8639 0.5491 0.6446 0.8979 0.5955 0.6547
IForest 0.4231 0.7329 0.5364 0.9375 0.5782 0.6726 0.9443 0.6713 0.7431
LOF 0.5634 0.3986 0.4668 0.9218 0.5744 0.6693 0.9583 0.4302 0.6160

DAGMM 0.5951 0.8782 0.7094 0.7514 0.8108 0.7792 0.8112 0.9073 0.8421
LSTM 0.7855 0.8528 0.8178 0.9177 0.8107 0.8366 0.9166 0.6994 0.7665

LSTM-VAE 0.8698 0.7879 0.8083 0.8753 0.7443 0.7936 0.7969 0.7714 0.7839
OmniAnomaly 0.8368 0.8682 0.8522 0.8769 0.9084 0.8892 0.9437 0.7985 0.8607

THOC 0.7976 0.9095 0.8499 0.9502 0.8022 0.8347 0.9613 0.8400 0.8866
MTSAD 0.8745 0.9395 0.9042 0.8719 0.9171 0.8950 0.9377 0.8765 0.9026

MSCRED 0.7876 0.9374 0.8434 0.8928 0.8451 0.8570 0.9554 0.8522 0.8838
MTAD-GAT 0.8210 0.9215 0.8683 0.8519 0.9019 0.8682 0.9329 0.8769 0.9012

GDN 0.7670 0.9362 0.8312 0.8831 0.9109 0.9018 0.9614 0.8662 0.8994
GTA 0.8768 0.8987 0.8822 0.8671 0.9098 0.8784 0.9431 0.8791 0.8554

TranAD 0.8882 0.9023 0.8953 0.9275 0.8703 0.8867 0.8816 0.8929 0.8874
SLA-VAE 0.8672 0.9371 0.9019 0.9523 0.8605 0.8975 0.9361 0.8859 0.8937
ACVAE 0.8779 0.8384 0.8612 0.8988 0.8405 0.8645 0.9151 0.8432 0.8563

FuSAGNet 0.8319 0.9473 0.8736 0.9011 0.8736 0.8790 0.9038 0.8941 0.8978
JumpStarter 0.8913 0.9174 0.9063 0.8427 0.7959 0.8295 0.8697 0.7869 0.8435

ISOLATE 0.8998 0.9745 0.9346 0.9871 0.9435 0.9497 0.9759 0.9367 0.9514

the precision and recall, which symmetrically represents both precision and recall in one metric.
Following [3], we get the anomaly threshold by grid search for all baselines and ISOLATE to evaluate
the performance.

In real-world applications, anomalies will last for a while, leading to consecutive anomalies in
the monitoring metrics. Therefore, it is acceptable for the model to trigger an alert for any point
in a contiguous anomaly segment if the delay is within the acceptable range. Thus, we adopt the
evaluation strategy following [57, 65, 66] that marks the whole segment of continuous anomalies as
an anomaly. In other words, we consider the model to correctly predict an anomalous segment if at
least one timestamp is successfully predicted as an anomaly. An example of the point adjustment
strategy is shown in Figure 5. The first anomaly segment is treated as correctly predicted, so the
second point of the segment is adjusted to correctly predicted as anomalous.

4.2.3 Implementations. We run all the experiments on a Linux server with Intel Xeon Gold
6140 CPU @ 2.30GHZ and Tesla V100 PCIe GPU. The proposed model is implemented under
the PyTorch framework and runs on the GPU. The hidden sizes of the GAT layer, GRU layer, and
temporal convolution layers are 256, 128, and 128. The coefficient of loss function 𝜆 is 0.5. The
dimension of the latent variable in LC-VAE is 10. The threshold of positive learning is 0.9. We
train ISOLATE with the Adam optimizer [33] with a learning rate of 0.001, a batch size of 128,
and an epoch number of 50. We have released the artifacts and data for future research purposes on
https://github.com/WenweiGu/ISOLATE.

4.3 Experimental Results
4.3.1 RQ1 The effectiveness of ISOLATE. To answer this research question, we compare the
performance of ISOLATE with other state-of-the-art baselines on a public dataset and two industrial
datasets. First, We train ISOLATE on a small portion of negative samples. Then, ISOLATE will
assign pseudo labels to the remaining training data according to the anomaly score and threshold
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Table 5. Experimental Results of the Ablation Study

Methods SMD Dataset A Dataset B
Precision Recall F1 Precision Recall F1 Precision Recall F1

ISOLATE w/o RT 0.8512 0.9079 0.8723 0.9791 0.8285 0.8738 0.9465 0.8879 0.9035
ISOLATE w/o PU 0.8730 0.9407 0.9062 0.9912 0.8405 0.8869 0.9396 0.9189 0.9231

ISOLATE 0.8998 0.9745 0.9346 0.9871 0.9235 0.9497 0.9759 0.9367 0.9514

𝛽. During the test phase, the anomaly score for each timestamp will be computed. The anomaly
threshold will be searched following [3] to produce the prediction result.

The results are shown in Table 4, where the best F1 scores are marked with boldface. We can
see the average F1 score of ISOLATE outperforms all baseline methods in three datasets. The
experimental results are shown in Table 2. In Dataset B, the improvement achieved by ISOLATE is
more significant as the metrics correlations between metrics in Dataset B are more complicated and
the ratio of performance anomalies caused by correlation violation is higher. Generally speaking,
ISOLATE ’s good performance can be attributed to two reasons: Firstly, the utilization of relational-
temporal embedding, as the anomalies can be caused by the violation of correlation, which can
hardly be detected by finding the spikes on a single metric, it can also help facilitate localization of
the anomalous metrics. Thus, there is a significant improvement in the recall of ISOLATE compared
to other baselines. Secondly, ISOLATE effectively learns potential anomalous samples from the
training data, thereby mitigating the risk of overfitting anomalous patterns during the training process.
Consequently, ISOLATE achieves remarkable precision, ranking among the best when compared to
other baseline methods.

Typically, the baseline methods have higher precision than recall because there are some anomalies
that are not very apparent. We can observe that machine learning-based methods, namely OCSVM,
IForest, and LOF have relatively low performance compared with other baseline models since
these methods learn the metrics pattern at each timestamp independently without considering the
temporal dependency. While LSTM-based methods and autoencoder-based methods, including
LSTM, DAGMM, and LSTM-VAE, perform notably better than OCSVM, IForest, and LOF and
achieve 0.7094∼0.8421 F1 score because these models take the historical observation window of
the data, that helps to retain valuable historical temporal pattern. Among the baselines, we can
find OmniAnomaly, THOC, MTSAD, MSCRED, TranAD, ACVAE, and SLA-VAE can achieve
relatively better performance (especially MTSAD can achieve an F1 score like 0.9042) because these
methods introduce some mechanisms to extract temporal information of metrics and ensure robust
anomaly detection. It should be noted that SLA-VAE is a semi-supervised VAE-based method and it
employs active learning to update the model. However, our proposed method outperforms SLA-VAE,
suggesting that the improved performance of our model is not solely due to the semi-supervised
mechanism, i.e., PU learning, but also the design of combining correlational violation detection
with temporal information. Specifically, OmniAnomaly models the metrics through stochastic
variables and uses reconstruction probabilities to determine anomalies. As for MSCRED, the temporal
information is also captured through convolutional LSTM. Meanwhile, in MTSAD, active learning
has been incorporated into a variational autoencoder to ensure capability against noise. SLA-VAE
is also a variational autoencoder-based architecture that employs both active learning and semi-
supervised learning. Adversarial training is incorporated in the VAE-based model ACVAE and the
transformer-based model TranAD, which assures their robustness. In THOC, the complex nonlinear
temporal dynamics of the system’s normal behavior are captured. Though extracting temporal
information well, the limitation of these approaches lies in not taking the correlation features into
consideration, which is essential to successfully detecting anomalies from multivariate metrics.
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Table 6. Performance on Metrics Localization

Methods Dataset A Dataset B
Hit@1 Hit@3 Hit@1 Hit@3

DAGMM 0.5714 0.6667 0.5806 0.7419
LSTM-VAE 0.6190 0.7142 0.6451 0.7741

ISOLATE-Cor 0.7419 0.8387 0.7142 0.8571
ISOLATE 0.8095 0.9048 0.8387 0.9354

Graph Neural Network (GNN)-based approaches offer some mitigation to this issue through jointly
extracting the relational and temporal information of raw metrics, e.g., MTAD-GAT, GDN, GTA,
and FuSAGNet. However, without explicitly capturing the correlation violation, these approaches
still achieve suboptimal performance compared with ISOLATE.

4.3.2 RQ2 The effectiveness of components in ISOLATE. To answer this research question,
we conducted an extensive ablation study on ISOLATE. Particularly, we derive two baseline models
based on removing the relational-temporal embedding and positive unlabeled learning parts of
ISOLATE to investigate the contribution of these two components.

• ISOLATE w/o RT This baseline is a variant of ISOLATE that removes relational-temporal em-
bedding that captures both information of metrics. Instead, only an LSTM layer is utilized in this
baseline to embed the temporal information of the raw metrics, which will be further fed into the
CVAE.

• ISOLATE w/o PU This baseline removes the positive unlabeled learning that finds anomalous
samples from a large number of normal samples. All the training data are considered normal in
this baseline.

Table 5 shows the experimental results of ISOLATE and its variants. Overall, relational-temporal
embedding and positive unlabeled learning help to improve the effectiveness of ISOLATE as it
performs the best, while the degree of contribution of relational temporal embedding is larger. We
attribute this to the good capability of relational temporal embedding in extracting both the temporal
information of each metric and correlational information between metrics. When an anomaly happens
due to a breach of relationship during the anomaly-free period, it can be easily identified by ISOLATE,
while other methods have difficulty identifying it as they are more effective on temporal outliers.
We observe that even without PU learning, our model is not worse than all baselines, which further
demonstrates the effectiveness of explicitly extracting correlation violation.

The variant without relational-temporal embedding is similar to LSTM-VAE, which employs
LSTM to extract the sequential information and VAE to differentiate the anomaly from normal.
However, due to the design of positive unlabeled learning and conditional VAE, the variant can
identify the noise of training data and label them as positive. Thus, the performances on three datasets
of ISOLATE without relational-temporal embedding in terms of F1 score are improved compared to
LSTM-VAE, respectively. We believe that in some scenarios with a higher ratio of noise, positive
unlabeled learning would play a greater role in improving performance.

4.3.3 RQ3 The effectiveness of ISOLATE in localizing the anomalous metrics. To further
demonstrate the capability of ISOLATE, experiments on localizing the metrics are conducted.
Specifically, we localize the metrics by following four methods:

• DAGMM. This baseline uses the anomaly score of each metric output by DAGMM as the degree of
the metric being anomalous. The metrics with the highest scores will be highlighted as anomalous
metrics.
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(a) Sensitivity of 𝛼 on Dataset
A

(b) Sensitivity of 𝛼 on Dataset
B

(c) Sensitivity of 𝛽 on Dataset
A

(d) Sensitivity of 𝛽 on Dataset
B

Fig. 6. The Sensitivity Analysis of Threshold 𝛼 and 𝛽

• LSTM-VAE. This baseline uses the anomaly score output by LSTM-VAE as the degree of being
anomalous for the metrics.

• ISOLATE-Cor. This baseline sums up the correlation of a specific metric between other metrics as
the degree of being the root cause. Metrics with a high correlation with other metrics would be
reported as anomalous metrics.

• ISOLATE. Different from ISOLATE-Cor, it uses the discrepancy between the anomaly-free period
and anomaly period since the correlation between metrics may undergo drastic changes compared
to the normal period when an anomaly happens.

As mentioned in Section 2, a metric that shows very abnormal behaviors compared to the normal
period is not necessarily the most anomalous metric because it can have a small influence on other
metrics and will self-heal. Using the correlation score itself can also cause inaccurate results because
some metrics show consistently high correlations with others, no matter whether it is during an
anomaly period or not. Indeed, the correlation difference between normal and abnormal time is a
stronger indicator of anomalous metrics because when an anomaly happens, the correlation would be
obeyed and cause a huge correlation change.

Table 6 presents the comparison of four methods, and we can observe that metrics localization
using ISOLATE outperforms the other three baselines with a Hit@1 of 80.95%, 83.87%, and Hit@3
of 90.48%, 93.54% on two industrial datasets. Thus, our method can provide accurate hints for
engineers on which part of the service system they can remedy to ensure the system’s reliability.
Compared to using the anomaly score of DAGMM and LSTM, using the correlation score to
localize metrics (ISOLATE-Cor) is more effective as the anomaly scores of these two methods are
computed on a single metric and are not aware of other metrics, while correlation considers the
global information of metrics. Usually, the metrics that have a higher correlation with other metrics
seem to play a greater influence on the service system and are more likely to be anomalous metrics
when an anomaly happens.

4.3.4 RQ4 The sensitivity of ISOLATE to the parameters. The threshold 𝛼 is the parameter
that determines the sparsity of the relational learning, while the threshold 𝛽, i.e., the parameter that
determines the label of training data during positive unlabeled learning, may affect the performance
by affecting the label distribution of training samples. We hereon evaluate the sensitivity of ISOLATE
to these two hyper-parameters on two industrial datasets. We change the value of 𝛼 and 𝛽 while
keeping all other parameters unchanged in our experiments to guarantee fairness. Specifically, we
choose the value of 𝛼 in an appropriate range from 0.3 to 0.7 at a step of 0.1. The value of 𝛽 is
selected, ranging from 0.6 to 1 at a step of 0.1. When the value of 𝛽 is 1, it is equivalent to the variant
without positive unlabeled learning since all samples will be seen as normal. When the value of 𝛽 is
lower than 0.5, a large portion of samples will be labeled as anomalous and introduce severe noise to
training data, which is not the case in the real scenario.
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(a) Training Time versus Metric Numbers (b) Testing Time versus Metric Numbers

Fig. 7. The Efficiency Analysis of ISOLATE

Figure 6 presents the experimental results of RQ4. For the threshold 𝛼 , the performance is relatively
stable under different settings. It can be attributed to the distribution of learned graph attention scores,
which are either close to 0 or 1. The polarization of graph attention scores means that the threshold
chosen within the aforementioned range tends not to impact the performance in a significant manner,
thus stable across different values of 𝛼 . This makes ISOLATE easy to deploy in practice. For
parameter 𝛽, a good threshold indeed helps improve the accuracy of our model. In dataset A, the
best threshold is between 0.7 and 0.8, while in dataset B, the best threshold is between 0.8 and 0.9.
This is because the anomaly ratio of Dataset B is slightly lower than Dataset A, so a lower amount
of unlabeled anomalous samples exist in the training part. Compared to without positive unlabeled
learning, a properly selected threshold would improve recall because some abnormal behaviors
have been labeled as positive, and these abnormal patterns would be reported in the testing set, thus
reducing false negatives.

4.3.5 RQ5 The efficiency of ISOLATE. In this section, we evaluate the efficiency of ISOLATE
regarding the number of metrics. We perform our method on the industrial dataset A and B and record
the training and testing costs. The training time is defined as the total time of feeding the preprocessed
data to the model, and the testing time is the total time used to predict whether there are performance
anomalies on all the sliding windows in the test set. All the data samples are trained with the same
batch size for 20 epochs. The correlation between training/testing time and metrics number is shown
in Figure 7, where we can observe that both of them are near quadratic correlations. In our scenario,
the metrics collected for node-level and service-level performance anomaly detection are typically
smaller than 100. According to the polynomial approximation, the training and testing time for data
that contains 100 monitoring metrics is 192.9 seconds and 3.89 seconds, respectively. Typically,
model retraining will not be triggered more frequently than once per day due to the computation
cost. Thus, the training time of 192.9 seconds is affordable for industrial deployment. Furthermore,
since the monitoring metrics are typically collected at an interval of 1 minute, the testing time of
3.89 seconds in the online detection phase is enough for real-time performance issues identification.
It should be noted that all the experiments are run on a Linux server with only one Tesla V100 PCIe
GPU, however, the efficiency is even further enhanced when utilizing the significant computational
power that can be harnessed from thousands of GPUs available in cloud service systems.

4.4 Case Study
To further demonstrate the effectiveness of ISOLATE, we conduct a case study concerning two
industrial cases on identifying performance anomalies and localizing the anomaly on metrics that
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Fig. 8. A case that ISOLATE finds false negative

Fig. 9. A Case that ISOLATE avoids false positive

violate their intrinsic correlation. The first case is shown in Figure 8, which is the same example
in Section 2.2. The first three rows show the monitoring metrics of the NIC receiving PPS from a
virtual machine running microservice X, the NIC receiving PPS from a virtual machine running
microservice Y, and the average CPU usage of all virtual machines of the ELB service. The last two
rows show the anomaly score of the baseline method LSTM-VAE and our proposed ISOLATE for
comparison. This anomaly can hardly be discovered when observing each metric individually, as the
correlation violation is critical to identifying this performance issue. However, our ISOLATE can
find the false negative that is neglected by baseline models. The first and second metrics can also be
highlighted to provide engineers with further insight into the performance issue.

Another example is shown in Figure 9. The first metric is the soft interrupt request rate of a virtual
machine 𝑉𝑀1 running on an Elastic Cloud Server (ECS). The second metric is the CPU usage of
𝑉𝑀1. We can observe that the green segment seems like a performance issue, as the soft interrupt
request rate of both 𝑉𝑀1 and the CPU usage all encounter spikes. However, this is usually caused
by increased user requests and should not be regarded as a performance issue. In contrast, since the
correlations between these metrics are not violated, an anomaly alert should not be triggered. The red
segment represents a soft interrupt issue because the CPU usage of 𝑉𝑀1 is not synchronized with the
increase of the soft interrupt request rate of 𝑉𝑀1. Compared with the baseline method LSTM-VAE,
ISOLATE can produce a significantly higher anomaly score in the true anomaly labeled with the red
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Table 7. A Summary of the Node Types in the Huawei Cloud

Node Type Description

Management Nodes

Management nodes are used to deploy FusionSphere OpenStack, an
enterprise-level platform to enhance computing, storage, network

management, installation and maintenance, security, and reliability while
supporting multiple infrastructure virtualization technologies at the

resource pool layer. Management nodes use UVP as the host OS. The
Computing cloud services, storage cloud services, network cloud services,
common components, and management domain components are deployed

on VMs.

Network Nodes The network node uses the UVP as the host OS. The virtual Router,
L3NAT, L3 service, and VPN components are deployed on VMs.

Compute Nodes

Compute nodes can be divided into two subtypes. The first is the KVM
compute node for general-purpose Elastic Computing Services (ECS) in
tenant VMs. The second is the KVM compute node for GPU-accelerated
ECSs which provision GPUs for deep learning jobs in tenant VMs. These

two types of KVM compute nodes use the UVP as the host OS, and
FusionSphere OpenStack (role compute) is also deployed.

Storage Nodes

Distributed storage nodes in Huawei typically support Elastic Volume
Service (EVS). After the deployment of Huawei Distributed Block Storage,

this node is utilized by the EVS service to provision EVS instances in
tenant EVS disks.

area, thus being more effective. In this case, though both ISOLATE and baseline methods like LSTM-
VAE can detect the true anomaly, our ISOLATE can avoid sending a false alarm to engineers. This is
helpful for the engineers to mend the service system because it prevents unnecessary interventions.

5 DISCUSSION
In this section, we share the success story of our deployment of ISOLATE in the industrial en-
vironment of the service system of Huawei Cloud and discuss the threats and limitations of our
approach.

5.1 Industrial Experience
In this section, we share our experience in applying ISOLATE to the real-world cloud system of
Huawei Cloud, a full-stack cloud system that consists of an infrastructure layer, a platform layer,
and an application layer, aiming to demonstrate the practical usefulness of ISOLATE. Huawei Cloud
serves hundreds of millions of cloud service tenants, offering them low-latency and high-performance
services that span computing, storage, networking, and database solutions. Among them, ELB is
a crucial service that is tasked with the automatic distribution of incoming network traffic across a
multitude of targets, including Elastic Cloud Server (ECS) instances, containers, and IP addresses
across different Availability Zones (AZs). Relational Database Service (RDS) is another reliable
and scalable managed DB service that frees up developers from handling time-consuming database
administration tasks. In addition, the API Gateway Service (APIG), is an API management service
that serves as a single point of entry into cloud systems, sitting between the user and a collection of
backend services. It receives requests from an application user, routes the request to the appropriate
services, gathers the appropriate data, and combines the results for the user in a single package.
The Object Storage Service (OBS) provides stable, secure, efficient, and easy-to-use object storage.
It enables storage and retrieval of any amount of data at any time, facilitating cloud storage for
applications, big data analysis, and backup and archiving scenarios. The reliability of these services
is among the most crucial concerns for Huawei Cloud and its tenants.
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Fig. 10. The Pipeline of Deploying ISOLATE in Huawei Cloud System

ISOLATE has been successfully incorporated into the performance issue detection system of
large-scale online service systems in Huawei Cloud since November 2022, specifically, the overall
pipeline of deployment is shown in Figure 10. The clusters in Huawei Cloud represent a collection
of nodes that work together to provide various services, ensuring high availability, reliability, and
scalability. Particularly, there are four types of nodes in Huawei Cloud: Management node, network
node, compute node, and storage node, where the details of them are elaborated in Table 7. For
clusters in cloud service systems, it has been a common practice for monitoring metrics used to profile
the runtime status [29, 57, 77]. Thus, software reliability engineers usually collect tens of monitoring
metrics (like CPU usage, network traffic, disk I/O, request rates, and memory usage) in nodes of the
cluster through monitoring tools like Grafana, Prometheus, etc [1]. Then, these monitoring metrics
are stored in the Data Lake of Huawei Cloud, a highly scalable and flexible storage system that
consists of the Data Lake Storage, the Data Warehouse, and the Data Lake Governance Center (DGC).
Data Lake Storage is the actual storage space where all the data, including the monitoring metrics,
are stored while the Data Warehouse is an enterprise system used for reporting and data analysis. On
top of these two components, the DGC is responsible for managing the data stored in the data lake
that oversees the lifecycle of the data, from ingestion and storage to usage and deletion. With Huawei
Cloud’s data lake, real-time data analysis is enabled, i.e., as soon as monitoring metrics are collected
and stored in the data lake, they can be immediately accessed and analyzed by the performance
issue diagnosis system empowered with ISOLATE. The results of ISOLATE provide not only the
timing of a performance issue but also the metrics that are most related to this issue. Then, alerts will
be triggered immediately and sent to the SREs for further investigation. The SREs first inspect the
alert and the associated metrics to understand the mechanism of the problem and find the root cause.
Once the root cause has been identified, the SREs prepare a diagnosis report, including a detailed
description of the performance issue, the associated metrics, the identified root cause, and potential
mitigation strategies. For instance, if the performance issue is a memory leak, engineers may need to
perform software debugging involving tracing the program’s execution and implementing appropriate
code fixes to prevent the leak from happening again. As another example, if the problem is network
congestion, the mitigation strategies may include hardware repair like replacement of the NICs.

Due to frequent service updates and changes in user behavior, monitoring metric patterns may
also evolve, a phenomenon known as concept drift. This drift can gradually weaken the effectiveness
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Fig. 11. The Performance of deploying ISOLATE in Huawei Cloud System

of ISOLATE over time. To alleviate this issue, ISOLATE is retrained on a weekly basis with newly
collected data. Figure 11 illustrates the performance issue identification accuracy of both the retrained
and offline versions over 20 weeks. A noticeable downward trend in the accuracy of the offline version
can be observed, attributed to pattern drift. Conversely, the version that is periodically retrained
displays relatively stable performance. This adaptability to new patterns in online deployment
scenarios underscores the robustness and effectiveness of ISOLATE within dynamically evolving
cloud systems. More specifically, take one of the services R for example, the time proportion of
undergoing performance issues during this period is 3.4%, and the online version of ISOLATE
achieves a precision of 0.904, recall of 0.951, and F1 of 0.926. Another interesting observation is
that though the anomaly ratio analyzed by engineers ranges from 0.7% to 5.6% during the 20-week
period, the performance remains relatively stable in the retrained version of ISOLATE, demonstrating
that the performance of ISOLATE is not sensitive to the anomaly ratio. It should be noted that the
weekly retraining enhances the adaptiveness of our method, with an additional cost of human labeling
of the potential performance anomaly data. However, it has been a common practice in cloud systems
that on-call SREs manually verify some reported suspicious performance anomaly [10, 43, 70].
Specifically, according to the interview with SREs, they typically spend approximately one hour per
week checking these data and they consider it to be affordable.

The ability to timely alert operation engineers after a performance issue happens is also of great
significance. The delay time of ISOLATE in Huawei Cloud is the time delay between the detection
of performance issues and the happening time of the issues confirmed by customer tickets [42]. The
delay time of ISOLATE is shown in Figure 12, where we can observe that most of the performance
issues can be captured 5 to 20 minutes after the happening and SREs can take mitigation strategies to
avoid continuously compromising the user experience. Consequently, the potential negative impacts
on the QoS can be significantly mitigated, enhancing system reliability and ensuring high availability.

5.2 Limitations of ISOLATE
Our approach ISOLATE employs graph attention to extract the correlation between metrics and the
PU Learning strategy to identify positive samples in unlabeled training data. Though satisfactory
performance in detecting performance anomalies is achieved in our experiments, we have identified
several limitations of our approach and the challenges that arise in real-world applications.

Firstly, our approach is not adaptive to the evolving metric patterns and correlation in cloud
systems due to rapid software and application upgrades [11]. Thus, our model can result in false
positives when new patterns or correlations are not included in the training dataset. Fortunately,
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Fig. 12. The Delay Time of ISOLATE in Identifying Performance Issues

we found that regular model retraining, e.g., retraining every week, works well to learn the new
behaviors of the cloud system and thus overcome this limitation [22].

Secondly, the complexity of large-scale cloud systems results in a vast number of monitoring
metrics, which escalates the computational costs of ISOLATE. Fortunately, our approach is deployed
at the node level or service level, where the number of metrics is typically fewer than 100. This
reduces computational demands and enhances efficiency. It’s important to note that performance
issues detected at the node or service level can serve as indicators of system-level performance
anomalies, offering valuable insights and early warnings about potential system failures, which is
useful for SREs.

Thirdly, our approach lacks interpretability in traditional methods such as decision trees, which can
be a limitation to some content. However, it’s worth noting that our method is not entirely without
interpretability. The correlation violations between metrics can provide engineers with more granular
information about anomalous metrics, offering some level of insight into the root cause localization
of performance issues, and making it partially interpretable.

5.3 Threats to Validity
Internal threats. The correctness of the implementation of baselines constitutes one of the internal
threats to our study’s validity. For the baselines, we utilized the open-sourced code released by the
authors of the papers or packages on GitHub like [91]. As for our proposed approach, the source code
has been reviewed meticulously by the authors, as well as several experienced software engineers,
to minimize the risk of errors and increase the overall confidence in our results. For parameter
selection, we conducted extensive experiments with different parameters to find the most suitable
configurations for both baselines and our proposed method. We chose the parameters based on the
best results obtained in these experiments. To make our results reproducible, we have also made our
code and partial data available.
External threats. The external threats to the validity of our study mainly lie in the generalizability of
our experimental results. We conduct experiments on the large-scale online systems of two regions
within a prominent cloud service company. In addition to this, our approach is also evaluated on a
publicly available dataset containing monitoring metrics from an Internet company, further expanding
the scope of our evaluation. While the diversity of the experimental settings provides some confidence
in the generality of our findings, it is essential to acknowledge that results might vary when applied
to different cloud service providers, industries, or specific use cases. Nevertheless, we believe that
our experimental results, obtained from these multiple sources, can demonstrate the generality and
effectiveness of our proposed approach, ISOLATE.
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6 RELATED WORK
Detecting performance issues on monitoring metrics for online service systems has been a hot topic.
Monitoring metrics used to reflect the run-time status of the whole system are usually denoted as
multivariate time series. The main challenge of multivariate metrics anomaly detection is twofold:
First, effective modeling of complex relational and temporal dependency [74]. Second, noise data
will be introduced inevitably during the manual labeling process. It is hard to get rid of these
noises. Related studies can be categorized into machine learning or signal processing-based and deep
learning-based approaches.

Machine Learning/Signal Processing Methods. OCSVM [60] is a clustering-based method that
learns the boundary for the normal data without anomalous samples and identifies the data outside
the border as anomalies. Isolation Forest (iForest) [41] applies multiple isolation trees and ensembles
them based on the assumption that anomalies should be rare and isolated from normal observations
with very short heights. Local Outlier Factor (LOF) is a density estimation-based anomaly detection
approach that calculates the local density. The samples with an extremely lower density compared to
their neighbors would be recognized as anomalies. JumpStarter [47] is a signal processing-based
method that adopts the compressed sensing technique to reconstruct the input data. It adopts a
shape-based clustering strategy to reduce the volume of data and utilizes an outlier-resistant sampling
to avoid sampling anomalous values.

Deep Learning Methods. With the surge of deep learning [83, 84], there has been a variety of
studies in applying deep learning to conduct anomaly detection on multivariate metrics data. A deep
autoencoder with a Gaussian mixture model (DAGMM) [93] is utilized to detect anomalous data
points. MSCRED [82] proposes a multi-scale convolutional recurrent encoder-decoder that detects
anomalies. The reconstruction error of the input time series is utilized to diagnose anomalies. To
detect performance degradation anomalies in software systems, Long Short-Term Memory (LSTM)
has been deployed to guarantee high performance in [87]. LSTM-VAE [53] combines the LSTM
networks and the VAE to reconstruct the distribution of sliding windows from multivariate metrics
regardless of the temporal dependencies in time series [11]. Similarly, LSTM-NDT [26] leverages
Long Short-Term Memory (LSTM) networks with non-parametric dynamic thresholds to pursue
the reliability of the systems. OmniAnomaly [65] extends the LSTM-VAE with a normalizing
flow and utilizes the reconstruction error for detection. However, the capability of this approach
is degraded when there is severe noise in the training metric. THOC [62] is a model that fuses
the temporal features at multi-scale from intermediate layers by hierarchical clustering and detects
the anomalies by the multi-layer distance loss. MTSAD [69] is another model combining active
learning with existing VAE-based anomaly detection, which detects the difference between normal
and abnormal samples in reconstruction error and latent space. TranAD [66] is a transformer-based
anomaly detection model that adopts attention-based sequence encoders to swiftly perform inference
with the knowledge of the temporal trends in the data. It further leverages self-conditioning and
adversarial training to gain training stability. ACVAE [85] is a variational autoencoder-based method
that combines adversarial mechanisms and contrast learning. The former constrains the decoder
and gains some discriminatory power, while the latter allows the encoder to obtain more training
samples. SLA-VAE [24] is a semi-supervised VAE-based model that employs convolutions to capture
inter-metric dependence and utilizes active learning to update the VAE model using a small number
of uncertain samples.

Recently, among the deep learning-based anomaly detection model, Graph Neural Networks
(GNNs) based methods have shown promising potential to effectively capture temporal and spatial
dependencies among metric pairs of multivariate metrics [32]. MTAD-GAT [88] is the first work
that utilizes the graph-attention network to model the relationships between sensors in addition to
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jointly optimized reconstruction and forecasting-based models. Another representative model is
the Graph deviation network (GDN) [16], which learns the pairwise relationship through cosine
similarity and models the time series as a graph through an adjacent matrix. It predicts future values
and computes the forecast error as an anomaly score. GTA [9] is a Transformer-based framework for
anomaly detection that automatically learns sensor dependencies. The authors propose an Influence
Propagation (IP) graph convolution and multi-branch attention technique that improves the training
efficiency. FuSAGNet [21] utilizes a sparse autoencoder to extract latent feature representations. It
then predicts future time series from the sparse representations and graph structures learned from
graph neural networks. TopoMAD [23] is a topological-aware model that integrates graph neural
networks, LSTM and VAE. The topological information is extracted through the pod-based division
in a Kubernetes microservice system or pods that share similar behaviors. It should be noted that
the topology in Huawei Cloud is highly dynamic due to frequent deployment changes and software
updates, which makes it challenging to determine. Thus, TopoMAD does not apply to our scenario.

Furthermore, many efforts have been devoted to multi-source data-based anomaly detection in
microservice systems [37]. For example, SCWarn [90] is proposed to identify bad software changes
in online service systems via multimodal anomaly detection from metrics and logs. It serializes
the metrics and logs separately and extracts the temporal dependency through the LSTM model.
AnoFusion [86] is another unsupervised failure detection approach for microservice systems. It
employs a Graph Transformer Network (GTN) to capture correlations within the heterogeneous
multimodal data. It then seamlessly integrates a Graph Attention Network (GAT) with a Gated
Recurrent Unit (GRU) to model the temporal information of dynamically changing multimodal
data. Though three types of monitoring data (metrics, logs, and traces) can be utilized to ensure the
reliability of microservice systems [55], the real-time collection of these three types of data can be
challenging.

Though some GNN-based methods like [16, 88] capture both the temporal dependencies and
relational dependencies, performance issues can be indicated by the violation of correlation in our
scenario, which is not taken into account explicitly in existing approaches. Besides, the performance
of these models will degrade due to the existence of unlabeled noise in training data, where noise is
prevalent in our scenario.

7 CONCLUSION
In this work, we propose ISOLATE, a novel framework to mine correlations among metrics, detect
performance issues, and localize the correlation-violation metrics. Specifically, ISOLATE leverages
a graph neural network with graph attention to capture the complex correlations between a variety
of metrics and a label-conditional VAE model to distinguish normal and abnormal patterns. We
also propose to utilize the positive unlabeled learning strategy to overcome the impacts of noisy
data. Extensive experiments on one public dataset and two industrial datasets show that ISOLATE
achieves 0.945 F1-Score on anomaly detection and 0.920 Hit@3 in terms of localizing correlation-
violation metrics, outperforming all the baselines. Furthermore, our framework has been successfully
incorporated into Huawei Cloud’s performance issue monitoring and detection system. Both the
codes and data are released to facilitate future research.
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