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Abstract—Most machine learning tasks in data classification and information retrieval require manually labeled data examples in the

training stage. The goal of active learning is to select the most informative examples for manual labeling in these learning tasks. Most

of the previous studies in active learning have focused on selecting a single unlabeled example in each iteration. This could be

inefficient, since the classification model has to be retrained for every acquired labeled example. It is also inappropriate for the setup of

information retrieval tasks where the user’s relevance feedback is often provided for the top K retrieved items. In this paper, we

present a framework for batch mode active learning, which selects a number of informative examples for manual labeling in each

iteration. The key feature of batch mode active learning is to reduce the redundancy among the selected examples such that each

example provides unique information for model updating. To this end, we employ the Fisher information matrix as the measurement of

model uncertainty, and choose the set of unlabeled examples that can efficiently reduce the Fisher information of the classification

model. We apply our batch mode active learning framework to both text categorization and image retrieval. Promising results show that

our algorithms are significantly more effective than the active learning approaches that select unlabeled examples based only on their

informativeness for the classification model.

Index Terms—Batch mode active learning, logistic regressions, kernel logistic regressions, convex optimization, text categorization,

image retrieval.

Ç

1 INTRODUCTION

DATA classification has been an active research topic in
the machine learning community for many years. The

goal of data classification is to automatically assign data
examples to a set of predefined categories. One prerequisite
for any data classification scheme is to have labeled
examples. In order to reduce the effort in acquiring labeled
examples, a number of active learning methods [1], [2], [3],
[4], [5], [6] have been developed for data classification. The
key idea of active learning is to identify the examples that
are most informative with respect to the current classifica-
tion model. In the past, active learning has been successfully
applied to a variety of applications, including text categor-
ization [7], [8], [6], computer vision [9], content-based image
retrieval (CBIR) [10], and text document retrieval [11].

Most active learning algorithms are conducted in an
iterative fashion. In each iteration, the example with the
highest classification uncertainty is chosen for manual
labeling and the classification model is retrained with the
additional labeled example. The step of training a classifi-
cation model and the step of soliciting a label are iterated

alternately until most of the unlabeled examples can be
classified with reasonably high confidence. The main
problem with such a scheme is that only a single example
is selected for labeling in each iteration. As a result, the
classification model has to be retrained after each new
example is labeled. In this paper, we propose a novel active
learning framework that is able to select a batch of
unlabeled examples simultaneously in each iteration. A
simple strategy toward the batch mode active learning
(BMAL) is to select the k most informative examples. The
problem with such an approach is that some of the selected
examples could be similar, or even identical, to each other,
and therefore do not provide additional information for
model updating. In general, the key of batch mode active
learning is to ensure little redundancy among the selected
examples so that each example provides unique informa-
tion for model updating.

To this end, we propose a framework of batch mode
active learning that measures the overall information for a
set of unlabeled examples by the Fisher information matrix
[12]. We formulate the batch mode active learning frame-
work into an SDP problem, and present an effective
optimization algorithm based on the bound optimization
technique. Further, we present the kernel version of the
proposed technique for kernel logistic regression models.
An empirical study based on two real-world applications,
i.e., text categorization and content-based image retrieval, ,
are conducted to verify the efficacy of the proposed
approaches of active learning.

The rest of this paper is organized as follows: Section 2
reviews related work on active learning, text categorization,
and image retrieval. Section 3 briefly introduces the
concepts of logistic regression and kernel logistic regres-
sions, which are used as the classification model in our
study. Section 4 presents the framework of batch mode

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 9, SEPTEMBER 2009 1233

. S.C.H. Hoi is with the Division of Information Systems, School of
Computer Engineering, Nanyang Technological University, Block N4,
Room #02a-08, Singapore 639798. E-mail: chhoi@ntu.edu.sg.

. R. Jin is with the Department of Computer Science and Engineering, 3115
Engineering Building, Michigan State University, East Lansing, MI
48824. E-mail: rongjin@cse.msu.edu.

. M.R. Lyu is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Shatin, Hong Kong SAR.
E-mail: lyu@cse.cuhk.edu.hk.

Manuscript received 27 May 2008; revised 11 Dec. 2008; accepted 16 Feb.
2009; published online 25 Feb. 2009.
Recommended for acceptance by Y. Chen.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2008-05-0285.
Digital Object Identifier no. 10.1109/TKDE.2009.60.

1041-4347/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:02:08 UTC from IEEE Xplore.  Restrictions apply. 



active learning and an efficient algorithm for solving the
related optimization problem. Sections 5 and 6 present the
empirical study of batch mode active learning for text
categorization and content-based image retrieval, respec-
tively. Section 7 gives an empirical evaluation of two
different implementations of batch mode active learning
using different optimization approaches. Section 8 sets out
our conclusions.

2 RELATED WORK

We will first review related work on active learning, and
then discuss text categorization and content-based image
retrieval.

2.1 Active Learning

Active learning, or so-called pool-based active learning, has
been extensively studied in machine learning for a number of
years, and has already been employed for text categorization
and image retrieval in the past [13], [14], [7], [8], [15]. Most
active learning algorithms are conducted in an iterative
fashion, alternating between updating the classification
models and soliciting class labels for the most informative
examples. One of the key issues in active learning is how to
measure the classification uncertainty of unlabeled exam-
ples. The ensemble-based approaches [1], [2], [7], [3] measure
the classification uncertainty based on the predictions by an
ensemble of classification models. They first generate a
number of distinct classification models using the labeled
examples; then, the classification uncertainty of a test
example is measured by the amount of disagreement among
the ensemble of classification models in predicting the labels
for the test example. Another group of approaches measure
the classification uncertainty of a test example by how far the
example is away from the classification boundary (i.e.,
classification margin) [4], [5], [6], [16]. A well-known
approach within this group is Support Vector Machine Active
Learning developed by Tong and Koller [6]. Due to its
popularity and success in previous studies, we will use it as
the baseline approach in our empirical study. Finally, we
note that following our batch mode active learning work in
[12], some emerging new batch mode active learning
techniques have been actively investigated in recent studies
[17], [18], [19].

2.2 Text Categorization

The first application in our study is text categorization. Text
categorization has been widely studied in the communities
of data mining, information retrieval, and statistical learn-
ing [20], [21]. More recently, text categorization techniques
have been the key toward automated categorization of Web
pages and Web sites, which is being further applied to
improve the performance of Web search engines in finding
relevant documents and facilitating users in browsing Web
pages or Web sites.

In the past decade, a large number of statistical learning
techniques have been applied to automatic text categoriza-
tion [20], including the K-Nearest Neighbor approaches
[22], decision trees [23], Bayesian classifiers [24], inductive
rule learning [25], neural networks [26], and support vector
machines (SVM) [27]. Empirical studies in recent years [27],

[20] have shown that SVM is one of the state-of-the-art
techniques among the methods mentioned above.

Recently, logistic regression has attracted considerable
attention for text categorization and high-dimension data
mining [28]. Several recent studies have shown that the
logistic regression model can achieve classification accuracy
comparable to SVMs in text categorization. Compared to
SVMs, the logistic regression model is usually more efficient
in model training, especially when the number of training
documents is large [29]. Furthermore, the posterior prob-
ability output by the logistic regression model can be used
as the intermediate results for other models, such as the
Hierarchical Mixture Expert (HME) model [30]. This
motivates us to use logistic regression as the basis classifier
for text categorization.

One critical issue for automated text categorization is how
to reduce the number of labeled documents that are required
for building reliable text classification models. Given the
substantial effort required to acquire labels for documents,
the key is to exploit the unlabeled documents. One solution
is the semisupervised learning approach, which tries to learn
a classification model from a mixture of labeled and
unlabeled documents. A comprehensive study of semisu-
pervised learning techniques can be found in [31]. Another
solution is active learning [32], [3], which tries to choose the
most informative examples for manual labeling. In this
paper, we focus our attention on using active learning for
reducing the effort required for manual labeling.

2.3 Image Retrieval

The second application in our study is CBIR. One of the key
challenges in CBIR is the semantic gap between the low-level
visual features that are used to represent images and the
high-level semantic concepts that are conveyed in the content
of images. One popular approach in CBIR toward bridging
the semantic gap is relevance feedback, in which a
classification model is learned from the user’s relevance
judgments on the top retrieved images. During the past
years, a variety of machine learning algorithms have been
proposed for relevance feedback, including Bayesian learn-
ing [33], boosting [34], discriminant analysis [35], support
vector machines [36], [37], [38], etc. Among them, the kernel-
based classifiers, such as support vector machines, have been
shown to be one of the promising approaches for relevance
feedback [15], [38].

A typical approach for relevance feedback of CBIR will
first rank the images according to their probability of being
classified as similar to the query example, and solicit
relevance judgments on the top-ranked images from the
users. The acquired labeled images will then be used to
update the classification model. The problem with such an
approach is that the most similar images identified by a
classification model may not be informative with respect to
the classification model. Recently, active learning has been
suggested as a more promising approach for soliciting
users’ relevance feedback. One of the most popular
approaches may be the support vector machine active
learning [15], which solicits users’ relevance judgments for
the images that are closest to the decision boundary of the
classification model.

However, directly applying active learning methods to
relevance feedback is insufficient, given that most active
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learning methods can only identify the single most informa-
tive example, while the relevance feedback of CBIR usually
solicits the relevance judgments on multiple images.
Although the authors in [15] presented a simple and efficient
batch sampling solution, the heuristics are not well justified
and depend on the context of the problems. In contrast, the
proposed batch mode active learning algorithm in this work
is well founded on the basis of Fisher information.
Furthermore, we present a bound optimization algorithm
that solves the related optimization problem efficiently.

3 LOGISTIC REGRESSION

In this section, we give a brief introduction to logistic
regression and kernel logistic regression, which are used as
the basis classification models in text categorization and
content-based image retrieval, respectively.

3.1 Logistic Regression

Logistic regression (LR) is a binary class classification
model, and has been widely used in data mining and
machine learning due to its close relations to Support Vector
Machines and Adaboost [39], [40].

Given the input features x ¼ ðx1; x2; . . . ; xdÞ of a test
example where d is the number of features, logistic
regression models the conditional probability of assigning
a class label y to the example by

pðyjxÞ ¼ 1

1þ expð�yðw>xþ bÞÞ ; ð1Þ

where y 2 fþ1;�1g is the class label, w ¼ ðw1; w2; . . . ; wdÞ
are the weights assigned to input features, and b is the bias
term. In general, logistic regression is a linear classifier that
has been shown to be very effective in classifying text
documents [28]. In addition, a number of efficient algo-
rithms have appeared in the recent literature [29] that allow
logistic regression to handle large-scale text categorization
problems effectively.

3.2 Kernel Logistic Regression

Kernel logistic regression (KLR) is a nonlinear extension of
the traditional logistic regression model based on the kernel
machine theory [39]. More specifically, given the training
examples fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞg and a kernel func-
tion Kð�; �Þ, the kernel logistic regression is posed as the
following optimization problem:

min
f2HK

1

n

Xn
i¼1

ln
�
1þ e�yifðxiÞ

�
þ �

2
kfk2

HK
; ð2Þ

where HK is the Hilbert space reproduced by the kernel
function K. According to the representer theorem [41], the
optimal fðxÞ can be written in the following form:

fðxÞ ¼
Xn
i¼1

�iKðx;xiÞ: ð3Þ

In the above, we omit the bias term b in fðxÞ for
simplicity. Using the parametric form of fðxÞ, the problem
in (2) is converted into an optimization problem of dual
variables �.

It is interesting to note the close relationship between
KLR and kernel SVM [42]. To see this, we write the kernel
SVM into the following form:

min
f2HK

1

n

Xn
i¼1

maxð0; 1� yifðxiÞÞ þ
�

2
kfk2

HK
: ð4Þ

Comparing the above equation to (2), we see that both
problems share a similar form, i.e., loss þ penalty. The key
difference between these two algorithms lies in the loss
functions. According to previous studies [42], [43], KLR
achieves a classification accuracy comparable to kernel
SVM, and enjoys several important merits, such as natural
probability outputs.

4 A FRAMEWORK OF BATCH MODE

ACTIVE LEARNING

In this section, we present a framework of batch mode active
learning for data classification tasks. In our proposed
scheme, logistic regression is used as the underlying
classification model for the binary classification tasks. In
the following sections, we first introduce theoretic founda-
tion for the proposed framework, including the Fisher
information matrix and its application to active learning.
Using the theoretic foundation, we present a framework of
batch mode active learning, with a qualitative analysis
aiming to illustrate how the optimization of Fisher informa-
tion will eliminate the overlap among the selected examples
in active learning. Finally, we present two algorithms to
efficiently solve the optimization problem related to batch
mode active learning.

4.1 Theoretical Foundation

Our active learning methodology is motivated by the work
in [44], in which the authors presented a theoretical
framework of active learning based on the minimization
of Fisher information. Given a data distribution qðxÞ and a
classification model pðyjx;�Þ, where � includes all the
parameters of the classification model, the Fisher informa-
tion matrix is defined as follows:

Iqð�Þ ¼ �
Z
qðxÞdx

Z
pðyj�; xÞ @

2

@�2
ln pðyjx;�Þ dy: ð5Þ

For the logistic regression model, its Fisher information
matrix Iqð�Þ is attained as

Iqð�Þ ¼ �
Z
qðxÞ

P
y¼�1 pðyjxÞ@2

@�2
log pðyjxÞ dx

¼
Z

1

1þ expð�>xÞ
1

1þ expð��>xÞxx>qðxÞ dx:
ð6Þ

Fisher information matrix is widely used in statistics for
measuring model uncertainty [45]. The most well-known
result is the Cramer-Rao bound. Since the objective of active
learning is to identify examples that are most informative to
the target classification model, we will select examples that
can effectively reduce the Fisher information of the
classification model, which forms the basis for the active
learning framework presented in [44]. More specific, we
denote by pðxÞ the distribution of all unlabeled examples,
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and by qðxÞ the distribution of unlabeled examples that are
chosen for manual labeling. Let � denote the parameters of
a classification model. Let Ipð�Þ and Iqð�Þ denote the Fisher
information matrix of the classification model for distribu-
tions pðxÞ and qðxÞ, respectively. Then, the set of examples
that can most efficiently reduce the uncertainty of the
classification model is found by minimizing the ratio
between the two Fisher information matrices Ipð�Þ and
Iqð�Þ, i.e.,

q� ¼ arg min
q

trðIqð�Þ�1Ipð�ÞÞ: ð7Þ

4.2 Problem Formulation

Let D ¼ ðx1; . . . ;xnÞ be the unlabeled data and S ¼
ðxs1;xs2; . . . ;xskÞ be the subset of selected examples, where k
is the number of examples to be selected. In order to
estimate the optimal distribution qðxÞ, we replace the
integration in (6) with the summation over the unlabeled
data, and the model parameter � with its empirical
estimation �̂.

We can now rewrite the above expression for the two
Fisher information matrices Ip and Iq as

Ipð�̂Þ ¼
1

n

X
x2D

�ðxÞð1� �ðxÞÞxx> þ �Id;

IqðS; �̂Þ ¼
1

k

X
x2S

�ðxÞð1� �ðxÞÞxx> þ �Id;

where

�ðxÞ ¼ pð�jxÞ ¼ 1

1þ expð�̂>xÞ : ð8Þ

In the above, �̂ stands for the classification model that is
estimated from the labeled examples, Id is the identity
matrix of size d� d, and � is the smoothing parameter, �Id is
added to the estimation of Ipð�̂Þ and IqðS; �̂Þ to prevent
them from being singular matrices. Hence, the final
optimization problem for batch mode active learning is
formulated as follows:

S� ¼ arg min
S�D^jSj¼k

trðIqðS; �̂Þ�1Ipð�̂ÞÞ: ð9Þ

4.3 Qualitative Analysis

In this section, we will qualitatively justify the theory of
minimizing the ratio of Fisher information for batch mode
active learning. In particular, we consider two cases, the
case of selecting a single unlabeled example and the case of
selecting multiple unlabeled examples simultaneously. To
simplify our discussion, we assume kxik2

2 ¼ 1 for any
unlabeled example xi.

4.3.1 Selecting a Single Unlabeled Example

The Fisher information matrix Iq is simplified into the
following form when the ith example is selected

Iqð�̂; xiÞ ¼ �ið1� �iÞxix>i þ �Id:

Note that the above matrix has eigenvalue �ið1� �iÞ þ � for
eigenvector xi and � for other eigenvectors. Thus, the
objective function trðIqð�̂Þ�1Ipð�̂ÞÞ becomes

trðIqð�̂Þ�1Ipð�̂ÞÞ ¼
1

n�

Xn
j¼1

�jð1� �jÞ

� �ið1� �iÞ
n�ð� þ �ið1� �iÞÞ

Xn
j¼1

�jð1� �jÞðx>i xjÞ
2:

As indicated by the above expression, to minimize the

same, we need to maximize: 1) �ið1� �iÞ and 2) x>i xj; 8j 6¼ i.
Since �ið1� �iÞ reaches its maximum value at �i ¼ 0:5, it

can be regarded as the measurement of classification

uncertainty for the ith unlabeled example. Thus, the optimal

example chosen by minimizing the ratio of Fisher informa-

tion matrix in the above expression tends to be the one with

a high classification uncertainty. Furthermore, the quantity

x>i xj; 8j 6¼ i measures the similarity of the ith example to

the remaining unlabeled examples. Thus, by maximizing

x>i xj; 8j 6¼ i, the selected example tends to be representative

of the entire collection of unlabeled examples.

4.3.2 Selecting Multiple Unlabeled Examples

Simultaneously

Let S ¼ ðx1;x2; . . . ;xkÞ be the k (k > 1) selected examples.

Then, the Fisher information matrix Iqð�̂;SÞ is written as

Iqð�̂;SÞ ¼ 1

k

Xk
i¼1

�ið1� �iÞxix>i þ �Id

¼ 1

k

Xk
i¼1

�ið1� �iÞ
 !

m>mþ �
� �

þ �Id;

where m and � are the mean and covariance matrices

defined as follows:

m ¼
Xk
i¼1

�ið1� �iÞPk
j¼1 �jð1� �jÞ

xi

� ¼
Xk
i¼1

�ið1� �iÞPk
j¼1 �jð1� �jÞ

ðxi �mÞðxi �mÞ>:

First, note that the covariance matrix � is a positive-

definite matrix with rank equal to k� 1 if we assume that

all the unlabeled examples are linear independent, and

furthermore, d > k. Second, if ð�i;viÞ; i ¼ 1; 2; . . . ; k� 1 are

the eigenvalues and the eigenvectors of �, we have

m>vi ¼ 0; i ¼ 1; 2; . . . ; k� 1:

This is because m>�m ¼ 0. Based on these two observa-

tions, we have trðIqð�̂;SÞ�1Ipð�̂ÞÞ approximated as

trðIqð�̂;SÞ�1Ipð�̂ÞÞ

� k

n
Pk

i¼1 �ið1� �iÞ

Xn
j¼1

�jð1� �jÞððm>xjÞ2 þ xj�
yxjÞ

þ 1

n�

Xn
j¼1

�jð1� �jÞ 1� ðm
>xjÞ2

kmk2
2

�
Xk�1

i¼1

�iðvixjÞ2
 !

;

ð10Þ

where y stands for pseudoinverse. In the above, we assume

that �	
Pk

i¼1 �ið1� �iÞ=k. As indicated by the above
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expression, to minimize the ratio between Iqð�̂;SÞ and

Ipð�̂Þ, we need to find a set of examples that satisfy the

following conditions:

. The selected examples should have largePk
i¼1 �ið1� �iÞ. This implies that all the selected

examples should have large classification uncertainty.
. The selected examples should have a large covariance

matrix � such that x>j �yxj is small for any unlabeled

example. This implies that the selected examples

should be diverse enough such that their covariance

matrix � provides a good description for the

distribution of all the unlabeled examples.

Thus, by minimizing the Fisher information matrix, we can

avoid choosing the examples that are similar to each other.

4.4 Batch Mode Active Learning via
Semidefinitive Programming (SDP)

It is not easy to find an appropriate distribution q(x) that

minimizes trðI�1
q IpÞ. In the following, we present the SDP

approach for optimizing trðI�1
q IpÞ.

The key challenge in solving the problem in (7) is that the

Fisher information matrix for the selected examples Iq is

presented in the form of matrix inverse in (7). As a result,

the objective function is a nonlinear function for the selected

examples. Below, we aim to linearize the optimization

problem in (7). To this end, we rewrite the objective

function trðI�1
q IpÞ as trðI1=2

p I�1
q I1=2

p Þ, and introduce a slack

matrix M 2 Rn�n to upper bound the objective function, i.e.,

M 
 I1=2
p I�1

q I1=2
p . Then, the original optimization problem

can be rewritten as follows:

min
q;M

trðMÞ

s: t: M 
 I1=2
p I�1

q I1=2
pXn

i¼1

qi ¼ 1; qi � 0; i ¼ 1; . . . ; n:

ð11Þ

In the above, we use the property trðAÞ � trðBÞ if

A 
 B. Furthermore, we use the Schur complementary

[46], i.e.,

D 
 AB�1A> ,
B A>

A D

 !

 0; ð12Þ

if B 
 0. This will lead to the following formulation for the

problem in (11):

min
q;M

trðMÞ

s: t:
Iq I1=2

p

I1=2
p M

0
@

1
A 
 0

Xn
i¼1

qi ¼ 1; qi � 0; i ¼ 1; . . . ; n;

ð13Þ

or, more specifically,

min
q;M

trðMÞ

s: t:
Xn
i¼1

qi
�ið1� �iÞxix>i I1=2

p

I1=2
p M

0
@

1
A 
 0;

Xn
i¼1

qi ¼ 1; qi � 0; i ¼ 1; . . . ; n:

ð14Þ

It is clear that the above problem is linear in M. In fact, it
belongs to the family of semidefinite programming and can
be solved by standard convex optimization packages such
as SeDuMi [47].

4.5 Eigenspace Simplification

Although the formulation in (14) is mathematically sound,
directly solving the optimization problem could be compu-
tationally expensive when the size of matrix M is large. In
particular, the high computational cost arises from the
linear matrix inequality (LMI) in (14). To reduce the
computational complexity, we aim to simplify the LMI
constraint into a set of linear inequality constraints y
assuming certain parametric form for M. In particular, we
assume that M is only expanded in the eigenspace of matrix
Ip. Let fð�1;v1Þ; . . . ; ð�s;vsÞg be the top s (s	 n) eigenvec-
tors of matrix Ip, where �1 � �2 � � � � � �s > 0. We assume
that matrix M has the following form:

M ¼
Xs
k¼1

�kvkv
>
k ; ð15Þ

where the combination parameters �k � 0; k ¼ 1; . . . ; s. We

rewrite the inequality for M 
 I1=2
p I�1

q I1=2
p as Iq 
 I1=2

p

M�1I1=2
p . Using the expression for M in (15), we have

I1=2
p M�1I1=2

p ¼
Xs
k¼1

��1
k �kvkv

>
k : ð16Þ

Given that the necessary condition for Iq 
 I1=2
p M�1I1=2

p is

v>Iqv � v>I1=2
p M�1I1=2

p v; 8v 2 Rd ;

we have v>k Iqvk � ��1
k �k for k ¼ 1; . . . ; s. This necessary

condition leads to the following constraints for �k:

�k �
�k

v>k Iqvk
¼ �kPn

i¼1 qi�ið1� �iÞðx>i vkÞ2
; k ¼ 1; . . . ; s: ð17Þ

Meanwhile, the objective function in (14) can be expressed as

trðMÞ ¼
Xs
k¼1

�k: ð18Þ

By putting the above two expressions together, we
approximate the SDP problem in (14) into the following
optimization:

min
q2Rn

Xs
k¼1

�kPn
i¼1 qi�ið1� �iÞðx>i vkÞ2

s:t:
Xn
i¼1

qi ¼ 1; qi � 0; i ¼ 1; . . . ; n:

ð19Þ
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Note that the above optimization problem is a convex

optimization problem since fðxÞ ¼ 1=x is convex when

x � 0. Given this formulation in (19), we present a bound

optimization algorithm for solving the above optimization

problem.

4.6 Bound Optimization Algorithm

The main idea of bound optimization algorithm is to

update the solution iteratively. In each iteration, we will

first calculate the difference between the objective func-

tion of the current iteration and the objective function of

the previous iteration. Then, by minimizing the upper

bound of the difference, we find the solution of the

current iteration.
Let q0 and q denote the solutions obtained in two

consecutive iterations, and let LðqÞ be the objective function

in (19). Based on the proof given in the Appendix, we have

the following expression:

LðqÞ ¼
Xs
k¼1

�kPn
i¼1 qi�ið1� �iÞðx>i vkÞ2

�
Xn
i¼1

ðq0iÞ
2

qi
�ið1� �iÞ

Xs
k¼1

ðx>i vkÞ2�kPn
j¼1 q

0
j�jð1� �jÞðx>j vkÞ2

� �2
:

ð20Þ

Now, instead of optimizing the original objective

function LðqÞ, we can optimize its upper bound, which

leads to the following simple updating equation:

~qi �q02i �ið1� �iÞ
Xs
k¼1

ðx>i vkÞ2�kPn
j¼1 q

0
j�jð1� �jÞðx>j vkÞ2

� �2
;

qi �
~qiPn
j¼1 ~qj

:

ð21Þ

As with all bound optimization algorithms [46], this

algorithm is guaranteed to converge to a local maximum.

Since the original optimization problem in (19) is a convex

optimization problem, the above updating procedure is

guaranteed to converge to a global optimum. Fig. 1 shows

the algorithm for batch mode active learning by bound

optimization techniques.

Remark. It is interesting to examine the property of the

solution obtained by the updating equation (21). First,

according to (21), the example with a large classification

uncertainty (i.e., �ið1� �iÞ) will be assigned a large

probability qi. This is because qi is proportional to

�ið1� �iÞ, the classification uncertainty of the ith un-

labeled example. Second, according to (21), any example

that is similar to many unlabeled examples is more likely

to be selected. This is because qi is proportional to the

term ðx>i vkÞ2, the similarity of the ith example to all the

principal eigenvectors. This is consistent with our

intuition that we should select the most informative and

representative examples for active learning.

4.7 Batch Mode Active Learning
for Kernel Logistic Regression

To extend the above analysis to the nonlinear classification

model, we follow the idea of the imported vector machine

reported in [43]. More specifically, we introduce the

mapping function f : x! �ðxÞ, and the kernel function

Kðx0;xÞ ¼ �ðxÞ � �ðx0Þ that calculates the dot product of two

examples in the mapped space. Then, according to the

results described in Section 3.2, we have

pðyjxÞ ¼ 1

1þ expð�yKðw;xÞÞ ;

where

Kðw;xÞ ¼
X
x02L

�ðx0ÞKðx0;xÞ;

L ¼ ððy1;x
L
1 Þ; ðy2;x

L
2 Þ; . . . ; ðym;xLmÞÞ represents the set of

labeled examples, and �ðxÞ is the combination weight for

labeled example x. Thus, by treating ðKðxL1 ;xÞ; KðxL2 ;xÞ;
. . . ; KðxLm;xÞÞ as the new representation for the unlabeled

example x, we can directly apply the result for the linear

logistic regression model to the nonlinear case. Specifi-

cally, we can represent the Fisher information matrix Ip

as follows:

Ipð�̂Þ ¼
Xn
i¼1

�ið1� �Þgig>i ; ð22Þ

where gi ¼ ðKðxL1 ;xiÞ; KðxL2 ;xiÞ; . . . ; KðxLm;xiÞÞ and �i ¼
pð�jxiÞ. Similarly, Iq can also be represented as
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Iqð�̂Þ ¼
Xn
i¼1

�ið1� �iÞqigig>i : ð23Þ

Hence, the convex optimization problem can be rewritten as

min
q;M

trðMÞ

s: t:
Xn
i¼1

qi
�ið1� �iÞgig>i I1=2

p

I1=2
p M

 !

 0

Xn
i¼1

qi ¼ 1; qi � 0; i ¼ 1; . . . ; n:

ð24Þ

Finally, by using a similar approach in the above derivation,

we can develop a BMAL algorithm with kernel logistic

regressions as shown in Fig. 2.

5 BATCH MODE ACTIVE LEARNING

FOR TEXT CATEGORIZATION

In this section, we present an empirical study by applying

the BMAL technique with the bound optimization algo-

rithm to text categorization applications.

5.1 Experimental Testbeds

Three text collections are used for this empirical study. For

all three data sets, we remove both the stopwords and the

numbers from the documents, and covert all the words into

lower case without stemming.
The first data set is the Reuters-21578 Corpus, and more

specifically, the ModApte split of the Reuters-21578. This text

collection has been widely used for evaluating text categor-

ization algorithms [20]. There are in total 10,788 text

documents in this collection, and Table 1 shows a list of the
10 most frequent categories of this data set. Since each
document in the data set can be assigned to multiple
categories, we divide the multilabel text categorization
problem into a number of binary classification problems,
i.e., a different binary classification problem for each
category. In total, 26;299 word features are extracted and
used to represent the text documents.

The other two data sets are Web-related text collections:
the WebKB data set and the Newsgroup data set. The WebKB
data set comprises of WWW pages collected from computer
science departments of various universities in January 1997
by the World Wide Knowledge Base (Web-> Kb) project of
the CMU text learning group. All the Web pages are
classified into seven categories: student, faculty, staff,
department, course, project, and others. In this study, we
ignore the category “others” due to its unclear definition. In
total, there are 4;518 data samples in the selected WebKB data
set, and 19;686 word features are extracted to represent the
text documents. Table 2 shows the details of the WebKB data
set. The Newsgroup data set includes 20;000 messages from
20 different Newsgroups. Each Newsgroup contains roughly
1,000 messages. In this study, we randomly select 11 out of
20 Newsgroups for evaluation. In total, there are 10;996 data
samples in the selected Newsgroup data set, and 47;410 word
features are extracted to represent the text documents.
Table 3 shows the details of the engaged data set.

Compared to the Reuters-21578 data set, the two Web-
related data collections are different in that more unique
words are found in the Web-related data sets. For example,
both the Reuters-21578 data set and the Newsgroup data set
contain roughly 10;000 documents. But, the number of
unique words for the Newsgroups data set is close to
50;000, which is about twice the number of unique words
found in the Reuters-21578. Thus, it is more challenging to
classify WWW documents than normal text documents
because more feature weights need to be decided for the
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TABLE 1
List of 10 Main Categories in the Reuters-21578 Data Set

TABLE 2
List of Six Categories of the WebKB Data Set

TABLE 3
List of 11 Categories of the Newsgroup Data Set
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WWW documents. This feature also makes the active
learning algorithms more valuable for classifying WWW
documents than normal documents. This is because by
selecting informative documents for manual labeling, we
can decide the appropriate weights for more words than by
randomly selecting documents.

5.2 Experimental Settings and Compared Schemes

In order to remove the uninformative word features, feature
selection is conducted using the Information Gain criterion
[21]. In particular, top 500 most informative features are
selected for each category in each of the three text
collections described above.

For performance evaluation, the F1 metric is adopted as

our evaluation metric, as it has proved to be a more reliable

metric than other metrics such as the classification accuracy

[21]. More specifically, the F1 is defined as F1 ¼ 2�p�r
pþr ,

where p and r are precision and recall, respectively. Note

that the F1 metric takes into account both the precision and

the recall, and thus is a more comprehensive metric than

either the precision or the recall separately.
To examine the effectiveness of the proposed active

learning algorithm, we compare our algorithm with
several existing algorithms, including two baseline ran-
dom sampling methods, two typical active learning
methods, and two online learning methods. First of all,
both the logistic regression and the support vector
machine models (LRRand and SVMRand), trained on the
initially labeled examples and randomly selected exam-
ples, are engaged in our experiments as the baseline
models. By comparing these two baseline approaches, we
are able to determine the amount of benefit brought by
different active learning algorithms.

Second, two popular active learning methods are studied,
which are based on the LR and SVM models, respectively.
One is the active learning algorithm based on the linear
logistic regression model. It measures the classification
uncertainty based on the entropy of the posterior distribu-
tion pðyjxÞ. In particular, for a given test example x and a
logistic regression model, the entropy of the distribution
pðyjxÞ is calculated as

HðpÞ ¼ �pð�jxÞ log pð�jxÞ � pðþjxÞ log pðþjxÞ:

The larger the entropy of x is, the more uncertain we are
about the class label of x. We refer to this baseline model as
the logistic regression active learning, or LRAL for short.
The second active learning model is based on the support
vector machine [6] that has already been discussed in
Section 2. In this method, the classification uncertainty of an
example x is determined by its distance to the decision
boundary w>xþ b ¼ 0, i.e.,

dðx; w; bÞ ¼ jw
>xþ bj
kwk2

:

The smaller the distance dðx; w; bÞ is, the more the
classification uncertainty will be. We refer to this approach
as support vector machine active learning, or SVMAL for
short. In addition to the above two active learning
algorithms, we also study their online version active
learning algorithms, in which the classification model will
be retrained after every new example is actively selected.

We denote these two online version algorithms as LROnline

and SVMOnline, respectively.
To evaluate the performance of the compared active

learning algorithms, we first randomly select 100 labeled
documents, 50 positive examples, and 50 negative examples
for each category from the data set. Both the LR and the SVM
models are trained on the 100 labeled documents initially.
Each active learning method (except the two online algo-
rithms) will select k additional documents for labeling, and is
evaluated based on the classification model that is built upon
a total of 100þ k labeled documents. For the two online
algorithms, they select only one example in each iteration and
repeat the selection for k iterations. Each experiment is
carried out 40 times, and the averaged F1 together with its
variance are calculated and used for final evaluation.

To deploy efficient implementations of our scheme
toward large-scale text categorization tasks, all the algo-
rithms used in this study are programmed in the
C language. The testing hardware environment is on a
Linux workstation with 3.2 GHz CPU and 2 GB physical
memory. We employ the tool for logistic regression that
has been developed by Komarek and Moore [29]. To
implement our active learning algorithm based on the
bound optimization approach, we employ a standard
math package for linear algebra, i.e., LAPACK [48], to
solve the eigendecomposition. The SVMlight package [49] is
used in our experiments for the implementation of SVM,
which has been considered as one of the state-of-the-art
tools for text categorization. Since SVM is not parameter-2
free and can be sensitive to the capacity parameter, a
separate validation set is used to determine the optimal
parameters for configuration.

5.3 Empirical Evaluation

In this section, we will first describe the results for the
Reuters-21578 data set, since this data set has been most
extensively studied for text categorization. We will then
provide the empirical results for the two Web-related
data sets.

5.3.1 Experimental Results with Reuters-21578

Table 4 shows the experimental results of F1 performance
averaging over 40 executions on 10 major categories in
the data set, in which each execution is given with
100 initial training samples and 10 additional samples by
active learning.

First, as listed in the first and the second columns of
Table 4, we observe that the performance of the two baseline
methods, LRRand and SVMRand, is comparable when the
two classifiers are trained with the same initially labeled 100
examples and an additional set of 10 randomly selected
examples. For several categories, such as “grain,” “ship,”
and “corn,” SVMRand is considerably better than LRRand.

Second, we compare the performance of the two regular
active learning algorithms listed in the third and fourth
columns of Table 4, i.e., LRAL and SVMAL, that use the
margin as the selection criterion to select a batch of
examples without retraining the classifiers. We found that
the performance of these two active learning methods is
rather close for most cases, except for a few categories, such
as “money-fx,” “crude,” and “ship,” where LRAL performs
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better than SVMAL. By comparing them with the two
random selection methods, both of them importantly
outperform the random approaches.

Further, we examine the performance of the two online
version algorithms LROnline and SVMOnline that will
retrain the classification model after an example is selected
for labeling. We can see that their performances are close for
most cases, except for a few categories, such as “money-fx,”
crude,” and “wheat,” where LROnline considerably outper-
forms SVMOnline. By comparing them with the two regular
active learning algorithms, some interesting result was
observed. As we know, it is commonly expected that an
online algorithm is usually able to outperform the corre-
sponding nononline approach importantly. But the two
online algorithms only achieve relatively small improve-
ments on this data set. For some category, such as “acq,” the
online algorithms are even slightly worse than the regular
active learning solutions.

Finally, we evaluate the performance of the proposed
algorithm LRBMAL, as shown in the last column of Table 4.
We can see that LRBMAL almost achieves the best results
among the compared algorithms, except for the “earn”
category, where the online algorithm LROnline obtains the
best result. The improvements by LRBMAL are statistically
significant over a number of categories, such as “trade,”
“interest,” and “corn,” according to the student’s t-test

(p < 0:05). For the exceptional case, i.e., the “earn” category,
LRBMAL is slightly worse than the two online algorithms.

In order to examine the performance in more detail, we
evaluate the F1 measure of each category by varying the
number of actively selected examples from 1 to 10 for each
of the compared algorithms. Figs. 3 and 4 show the
experimental results of the F1 measurement. Similar
observations can be drawn. First of all, we can see that all
of the active learning algorithms significantly outperform
the random selection algorithms. Second, among the
compared active learning algorithms, the online algorithms
outperform the other two regular algorithms on a number
of categories, but the improvements are not always
significant. The improvements of the online algorithms
usually become more evident when the number of selected
examples increases. This is consistent with the intuition that
an online algorithm usually can perform better than a
nononline approach since the margin criterion becomes
more accurate after the classification model is retrained.
Finally, by comparing the proposed algorithm to other
algorithms, we found that LRBMAL is consistently better
than the two regular margin-based active learning algo-
rithms for most situations. Finally, we can also see that
LRBMAL performs better than the two online algorithms for
a number of categories, such as “acq,” “money-fx,” and
“corn,” etc.
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5.3.2 Experimental Results with Web-Related Data Sets

The classification results of the WebKB data set and the
Newsgroup data set are listed in Tables 5 and 6. First, note
that for the two Web-related data sets, there are a few
categories whose F1 measurements are extremely low. For
example, for the category “staff” of the WebKB data set,
the F1 measurement is only about 23-26 percent for all
methods. This fact indicates that it is more challenging to
classify the WWW documents than normal documents.
Second, we observe that the two baseline methods,
LRRand and SVMRand, perform similarly on both Web
data sets, in which the LRRand method slightly outper-
forms the SVMRand method for a few categories. Third,
by comparing the two regular margin-based active
learning approaches, namely, LRAL and SVMAL, we
observe that for a number of categories, LRAL achieves
substantially better performance than SVMAL. The most
noticeable case is the category 2 of the Newsgroup data
sets, where SVMAL achieves only a small improvement
with the additional labeled examples. In contrast, the
LRAL algorithm improves the F1 measurement from 78.01
to 82.45 percent.

Finally, compared to LRAL, we observe that the proposed
algorithm LRBMAL is able to improve the F1 measurement
considerably over the margin-based active learning ap-
proach in most cases. For example, for category 7 of the
Newsgroup data set, the LRAL algorithm improves the
baseline method from 59.10 to 63.72 percent, while the
LRBMAL algorithm is able to achieve a better improvement
from 59.10 to 65.14 percent. Compared to the two online
algorithms LROnline and SVMOnline, the proposed LRBMAL

algorithm performs closely to these two approaches on both
Web data sets. For a number of categories, LRBMAL

performs better than the two online algorithms. This
observation indicates that the proposed batch mode active
learning algorithm is effective for large-scale text categoriza-
tion tasks. It is important to note that this is not to claim the
batch mode active learning algorithm is always better than
the online algorithms. In fact, for a few categories, the online
algorithms are better than the proposed batch mode active
learning method.

5.3.3 Time Performance

To further examine the efficiency of the proposed algorithm,
we conduct experiments to evaluate the time performance
compared with other active learning approaches. For each
data set, all algorithms are evaluated with an experiment of
selecting 10 examples for active learning. Every experiment
is repeated for 40 executions. Table 7 shows the experi-
mental results of average time performance on the three text
data sets. From the results, we observe that among the
compared algorithms, the two regular active learning
algorithms are the most efficient ones as they do not require
additional retraining cost. In contrast, the two online
algorithms are the least efficient ones, which dramatically
increase the computational time. The proposed batch mode
active learning algorithm, without retraining cost, achieves
much smaller time cost compared to other two online
algorithms (about 1=3-1=4 fraction), though it is worse than
the two regular active learning approaches (about 3-4 times).
This observation shows that the proposed algorithm is
efficient for practical applications.
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6 BATCH MODE ACTIVE LEARNING FOR CBIR

In this section, we will apply the algorithm of batch mode

active learning to relevance feedback in content-based

image retrieval. As indicated in the related work, relevance

feedback is critical to alleviating the semantic gap issue in

CBIR, in which active learning has been shown to be one

promising solution [15]. We will compare the proposed

algorithm for batch mode active learning to the heuristic

active learning methods for relevance feedback [15].

6.1 Experimental Testbed

To conduct empirical evaluation of our proposed algorithm,

we choose the real-world images from the COREL image

CDs. In total, we use 5;000 images to form our testbed from

50 different image categories. Each category in the data set

consists of exactly 100 images that are randomly selected

from the relevant examples in the COREL image CDs.

Every category represents a different semantic topic, such

as dog, cat, horse, botany, and butterfly, etc.
For each image in the database, three kinds of features are

extracted: color, edge, and texture. In total, a 36-dimensional

feature vector is used to represent an image, including

9-dimensional color features, 18-dimensional edge features,

and 9-dimensional wavelet features. The details of image

representation can be found in [37], [38].

6.2 Experimental Setup

In our experiments for CBIR, we have developed an
algorithm of batch mode active learning, based on the
kernel logistic regression classification model, to accom-
plish the relevance feedback function in our CBIR systems.
For simplicity, we will refer to our batch mode active
learning algorithm as KLRBMAL. To evaluate the effective-
ness of our batch mode active learning algorithm for
relevance feedback of CBIR, similar to the previous
experiment, we compare our algorithm to two random
selection algorithms KLRRand and SVMRand and two
regular active learning algorithms SVMAL and KLRAL.
Similarly, two online version algorithms KLROnline and
SVMOnline are also implemented, although they are seldom
used for relevance feedback in CBIR. For all the classifica-
tion models used in this study, the same RBF kernel is used.
The kernel width is determined by separate validation sets.

In our experiments, relevance judgments are based on
their semantic categories of images. In particular, an image
is judged as relevant to a query when both the image and
the query example belong to the same semantic category.
Although this definition is somewhat simplified, it does
allow us to evaluate the retrieval performance automati-
cally and systematically, thus reducing subjective errors
arising from manual evaluations by different people. A
similar approach has been widely adopted by previous
studies [15], [38].

To enable objective comparisons, we simulate the
relevance feedback of CBIR as follows. We first randomly
select a query image from the Corel database, and retrieve
the Ninit images that are closest to the query example in
terms of euclidean distance. We then simulate the user’s
relevance feedback for the Ninit retrieved images based on
their semantic categories. The retrieved images are marked
as relevant when both the retrieved image and the query
examples share the same categories. Next, we apply the
active learning algorithms to identify the Nbatch (the batch
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size) most informative images for manual labeling in each
iteration of active learning. A classification model is built
based on both the initially labeled images and the labeled
images that are acquired by active learning. The final
retrieval results are ranked based on the learned classifica-
tion model. The Average Precision is used as the evaluation
metric in our experiments. This is defined as the percentage
of returned images that are relevant to the query examples.

6.3 Performance Evaluation

In our experiments, we evaluate the active learning
algorithms with respect to the change of the number of
selected examples, i.e., the batch size Nbatch. We randomly
pick 100 image examples from the testbed as the queries.
For each query, the number of initially labeled images Ninit

is set to 10 and the experimental results of relevance
feedback using different active learning algorithms are
evaluated by changing the number of selected examples
Nbatch from 1 to 10. Figs. 5a and 5b show the experimental
results of average precision on both top 20 and top 30
ranked results, respectively.

Several observations can be drawn from the experimen-
tal results in Fig. 5. First of all, comparing the two random
selection algorithms, we found that their retrieval results
are similar no matter how the batch size changes. For the
top 20 ranked results, KLRRand is slightly better than
SVMRand, but their difference becomes smaller for the top
30 ranked results. Second, for the two regular margin-based
active learning algorithms KLRAL and SVMAL, both of
them considerably outperform the random approaches
particularly when Nbatch increases. In most cases, especially
when Nbatch is larger than 3, SVMAL is better than KLRAL

on both the top 20 and top 30 ranked results. Further, for the
two online algorithms KLROnline and SVMOnline, both of
them are consistently better than their nononline algo-
rithms. The improvements become more evident when
Nbatch increases. This observation matches our intuition that
the online algorithms often work better, given more
accurate classification models by retraining. Finally, com-
paring the proposed algorithm KLRBMAL to other algo-
rithms, we can see that KLRBMAL achieves the best results
when the number of selected examples is smaller than six.

For all cases, KLRBMAL is significantly better than the

regular active learning algorithm KLRAL. Compared to the

online algorithms KLROnline and SVMOnline, KLRBMAL

considerably outperforms the two online algorithms when

Nbatch is smaller than six. When Nbatch is greater than six, the

improvement become smaller. When Nbatch is set to 10,

KLRBMAL fails to improve over the two online algorithms.
To examine the effectiveness of the proposed algorithm

in more detail, we also evaluate the average precision of

other top-ranked results. Tables 8 and 9 show the experi-

mental results of average precision on top 20� 100 with

Nbatch ¼ 5 and Nbatch ¼ 10, respectively. For the results with

Nbatch ¼ 5, the proposed algorithm KLRBMAL achieves the

best performance from top 20 to top 50 ranked results,

which are usually more critical for a CBIR task. The

improvements on these results are statistically significant

according to the student’s t-test (p < 0:05). For the results

with Nbatch ¼ 10, KLRBMAL outperforms the two regular

active learning algorithms consistently, but does not

achieve any improvement over the two online algorithms.

Remark. As an important note, we need to mention that the

main purpose of engaging the two online algorithms for

comparisons is to let us judge how good is the

performance achieved by a batch mode active learning

algorithm. We emphasize that the BMAL algorithm

enjoys two major advantages over the online algorithms.

First, no retraining cost is required for the batch mode

active learning algorithm. Second, the BMAL algorithm

avoids the additional overhead of user interventions as

required by an online algorithm, which is inefficient and

not practical for real-world applications. This is because

every relevance feedback procedure between a system

and a user often has to incur some overhead in either

system response or network communication time (net-

work overhead for a Web application). This is why most

practical relevance feedback solutions in CBIR are

usually conducted in a batch fashion but not in online

fashion [15], [38].
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7 COMPARISON OF TWO OPTIMIZATION METHODS

In the two preceding sections, we have shown that the
algorithm of batch mode active learning using bound
optimization is effective for both text categorization and
relevance feedback of CBIR. In this section, we conduct an
empirical study of two different implementations of batch
mode active learning, for which both of them are based on
the kernel logistic regression model. One is the approxi-
mated bound optimization approach (KLRBO

BMAL) and the
other is the original SDP approach (KLRSDP

BMAL).

7.1 Experimental Testbed

Due to the high computational cost of SDP, we do not use
text categorization and relevance feedback of CBIR for
evaluation in this study. Instead, we choose five data sets of
relatively small size from UCI machine learning repository
as our experimental testbed. Table 10 shows the data sets in
our experiment.

7.2 Experimental Results

The purpose of this experiment is to compare the effective-
ness of two BMAL implementations using different

optimizat ion formulations, i .e . , (KLRBO
BMAL) and

(KLRSDP
BMAL). For comparison, we also compare them with

a KLR margin-based active learning solution KLRAL,
which has been described in the previous section.

In our experimental settings, a set of initial 20 random

training examples is provided for training a logistic

regression classifier. After the initial classifier is obtained,

active learning algorithms are engaged for selecting a batch

of 20 informative examples for labeling. Finally, an updated

logistic regression classifier is retrained on the combined

set of the initial training examples and the additional batch

of examples.
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The UCI Machine Learning Data Sets in Our Testbed
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Table 11 shows the experimental results of the perfor-

mance comparison. From the results, we found that the two

different BMAL implementations are considerably more

effective than KLRAL, which again validated the similar

results as achieved beforehand. By comparing the perfor-

mance of the two BMAL implementations, we can see that

the performance of the bound optimization approach

(KLRBO
BMAL) is very similar to the original approach by

SDP optimization (KLRBO
BMAL). It is somewhat surprising

that the KLRBO
BMAL solution is slightly better than the SDP

solution in some cases, such as the “Heart” and “Iono-

sphere” data sets. These results show that the bound

optimization solution is empirically a good approximation

of the original formulation.

Finally, we evaluate the time efficiency of the two

different implementations of batch mode active learning.

Both algorithms are run in Matlab environment with a PC

of 3.2 GHz CPU. In our implementation, the KLRSDP
BMAL

algorithm is implemented by the SeDuMi package [47], a

popular and efficient SDP solver in Matlab. Table 12 shows

the computational time of the two algorithms averaged

over 40 executions on each of the UCI data sets. It is clear

that the KLRBO
BMAL algorithm using the bound optimization

formulation is significantly more efficient than KLRSDP
BMAL,

i.e., the algorithm using SDP formulation. More specifically,

the KLRBO
BMAL algorithm is about 77-297 times faster than the

KLRSDP
BMAL algorithm across different data sets.

8 CONCLUSIONS

This paper presented a framework of batch mode active

learning for data classification and multimedia retrieval.

Unlike the traditional active learning approach, which

focuses on selecting a single example in each iteration, the

batch mode active learning approach allows multiple

examples to be selected simultaneously for manual

labeling. We employed the Fisher information matrix for

the measurement of model uncertainty, and chose the set

of examples that will effectively increase the Fisher

information. To solve the related optimization problem

effectively, we first formulated the learning problem into a

semidefinite programming problem. We then developed

an effective algorithm of batch mode active learning based

on the bound optimization technique. Furthermore, we

developed a kernel version of batch mode active learning

using the kernel logistic regression. We applied our

method to large-scale text categorization and relevance

feedback of content-based image retrieval, and observed

promising results in comparison to two state-of-the-art

active learning algorithms. Our empirical study also

showed that the approximated algorithm of batch mode

active learning using bound optimization performs as well

as the SDP version of batch mode active learning. In future

work, we will extend our methodology to other machine

learning problems and multimedia applications.

APPENDIX

PROOF OF INEQUATION

In this appendix we prove the following inequality from

Section 4.6. Let LðqÞ be the objective function in (19), we

then have

LðqÞ ¼
Xs
k¼1

�kPn
i¼1 qi�ið1� �iÞðx>i vkÞ2

¼
Xs
k¼1

�kPn
i¼1 q

0
i�ið1� �iÞðx>i vkÞ2

�
Pn

i¼1 q
0
i�ið1� �iÞðx>i vkÞ2Pn

i¼1 q
0
i�ið1� �iÞðx>i vkÞ2 qiq0i

:

ð25Þ

Using the convexity property of reciprocal function,

namely,

1=
Xn
i¼1

pix �
Xn
i¼1

pi
x
; ð26Þ

for x � 0 and pdf fpigni¼1, we can arrive at the deduction

Pn
i¼1 q

0
i�ið1� �iÞðx>i vkÞ2Pn

i¼1 q
0
i�ið1� �iÞðx>i vkÞ2 qiq0i

�
Xn
i¼1

q0i�ið1� �iÞðx>i vkÞ2Pn
j¼1 q

0
j�jð1� �jÞðx>j vkÞ2

1
qi
q0i

¼
Xn
i¼1

ðq0iÞ
2�ið1� �iÞðx>i vkÞ2

qi
Pn

j¼1 q
0
j�jð1� �jÞðx>j vkÞ2

:

Substituting the above inequality back into (25), we can

achieve the following inequality:
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Time Cost of Two BMAL Formulations (Seconds)

TABLE 11
Experimental Results of Classification Performance Evaluation
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LðqÞ

�
Xs
k¼1

�kPn
i¼1 q

0
i�ið1� �iÞðx>i vkÞ2

�
Xn
i¼1

ðq0iÞ
2�ið1� �iÞðx>i vkÞ2

qi
Pn

j¼1 q
0
j�jð1� �jÞðx>j vkÞ2

 !

¼
Xs
k¼1

�kPn
j¼1 q

0
j�jð1� �jÞðx>j vkÞ2

� �2

�
Xn
i¼1

ðq0iÞ
2ðx>i vkÞ2�ið1� �iÞ

qi

¼
Xn
i¼1

ðq02i Þ
qi

�ið1� �iÞ
Xs
k¼1

ðx>i vkÞ2�k
ð
Pn

j¼1 q
0
j�jð1� �jÞðx>j vkÞ2Þ2

:

This finishes the proof of the inequality mentioned above. tu
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