IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

281

Incorporating Fault Debugging Activities Into
Software ReliabilityModels: A Simulation Approach

Swapna S. Gokhale, Member, IEEE, Michael R. Lyu, Fellow, IEEE, and Kishor S. Trivedi, Fellow, IEEE

Abstract—A large number of software reliability growth models
have been proposed to analyse the reliability of a software appli-
cation based on the failure data collected during the testing phase
of the application. To ensure analytical tractability, most of these
models are based on simplifying assumptions of instantaneous &
perfect debugging. As a result, the estimates of the residual number
of faults, failure rate, reliability, and optimal software release time
obtained from these models tend to be optimistic. To obtain real-
istic estimates, it is desirable that the assumptions of instantaneous
& perfect debugging be amended. In this paper we discuss the var-
ious policies according to which debugging may be conducted. We
then describe a rate-based simulation framework to incorporate
explicit debugging activities, which may be conducted according
to the different debugging policies, into software reliability growth
models. The simulation framework can also consider the possibility
of imperfect debugging in conjunction with any of the debugging
policies. Further, we also present a technique to compute the failure
rate, and the reliability of the software, taking into consideration
explicit debugging. An economic cost model to determine the op-
timal software release time in the presence of debugging activities is
also described. We illustrate the potential of the simulation frame-
work using two case studies.

Index Terms—Debugging, imperfect debugging, software relia-
bility growth models.

NOTATION

A(n, t) Failure rate of the software at time ¢, when the
number of faults detected is n

w(g,t) Debugging rate of the software at time ¢, when the
number of faults pending to be debugged is j

m(t) Expected number of faults detected & debugged
assuming instantaneous debugging by time ¢

mp(t) Expected number of faults detected by time ¢ with
explicit debugging

mp(t) Expected number of faults removed by time ¢ with

explicit debugging
i, k,a, 3 Parameters of the debugging rate

Manuscript received January 24, 2000; revised May 2005 and June 2005.
This work was supported in part by the Research Grants Council of the Hong
Kong Special Administrative Region, China, under Project CUHK4205/04E.
Associate Editor: M. A. Vouk.

S. S. Gokhale is with the Department of CSE, University of Connecticut,
Storrs, CT 06269 USA (e-mail: ssg@engr.uconn.edu).

M. R. Lyu is with the Department of CSE, Chinese University of Hong Kong,
Shatin, NT, Hong Kong (e-mail: lyu@cse.cuhk.edu.hk).

K. S. Trivedi is with the Department of ECE, Duke University, Durham, NC
27708 USA (e-mail: kst@ee.duke.edu).

Digital Object Identifier 10.1109/TR.2006.874911

¢ Number of faults which should be detected before
debugging can commence in case of deferred
debugging

P Probability of reducing the fault content by 1

q Probability of no change in the fault content

Probability of increasing the fault content by 1

X (n,t) Failure rate of the software after accounting for
debugging activities

Ch Cost of activities involved in testing the software

Co Cost of resolving a failure and fixing the fault in
the testing phase

Cs Cost of fixing a failure in the operational phase

Cy Cost to customer operations in the field caused by
a failure

Coq Cost of resolving a failure and detecting a fault in
the testing phase

Caa Cost of debugging a fault in the testing phase

n Expected execution time of the software release
per field site

l Number of field sites

ACRONYMS!
SRGM Software Reliability Growth Model

NHCTMC Non Homogeneous Continuous Time Markov
Chain

I. INTRODUCTION

OFTWARE reliability is defined as the probability of

failure-free software? operation for a specified period of
time in a specified environment [21]. A large number of soft-
ware reliability growth models (SRGM) have been proposed to
analyse the reliability of a software application based on the
failure data collected during the testing phase of the applica-
tion. A detailed overview of these models can be obtained from
elsewhere [7]. To ensure analytical tractability, most of these
models assume that a software fault is fixed immediately upon
detection, and that no new faults are introduced during the de-
bugging process. In practice, however, the time taken to debug
a fault is finite, and this debugging time has a direct impact on
the residual number of faults, and hence the reliability of the
software application [4], [23], [33]. For example, Fig. 1 shows
the cumulative number of open & closed modification requests

IThe singular and plural of an acronym are always spelled the same.

2The terms software, software application, application, system, and software
system are used interchangeably in this paper.

0018-9529/$20.00 © 2006 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

282
Data from a telecommunications software project
1000 T T
-—- Faults detected
s00l Fraulls removed
-
] .
r
800 o L .
o
-
” 700 L 4
2 -
I_E J
5 600 T 8
° -
8 r
-

£ so0f - .
b4 4
(] -
o —
2 J
S 400 K E
g T
3 N

300 M .

-
-
200 - .
-
-
100 - N b
r
r
o r
ob—= |

L
0 50 100 150
Time

Fig. 1. Data from a telecommunications software.

(MR) as a function of time from a large telecommunications
software project during its development of a particular release.
Open MR represent the number of faults detected, and closed
MR represent the number of faults fixed. As can be seen from
the figure, at any given time, the number of faults fixed is less
than the number of faults detected. In addition, as suggested by
[2], [16], most of the faults encountered by customers are ones
reintroduced during debugging of the faults detected during
testing. Thus, imperfect debugging also affects the residual
number of faults, and in fact at times can be a major cause
of field failures & customer dissatisfaction. Thus, to obtain a
realistic estimate of the residual number of faults, and the relia-
bility, it is necessary to amend the assumption of instantaneous
& perfect debugging.

A number of researchers have recognized this shortcoming,
and have attempted to incorporate explicit debugging into some
of the software reliability models. Smidts [29], [30] incorpo-
rate debugging time into a software reliability model that con-
siders human errors. Levendel [16], and Kremer [15] develop
a birth-death model which takes into consideration debugging
time. Dalal [3] assumes that the software debugging follows
a constant debugging rate, and incorporates debugging into an
exponential order statistics software reliability model. Schnei-
dewind [24], [26], [27] incorporates a constant debugging rate
into the Schneidewind software reliability model [25]. Gokhale
et al. [11] incorporates explicit repair into SRGM using a nu-
merical solution. Jones et al. [14] consider imperfect debugging
in the context of infinite failures models using simulation. How-
ever, the objective of Jones et al. is to examine the appropri-
ateness of the infinite failures models. Imperfect debugging has
also been considered by other researchers [8], [12], [15], [16].
The above research efforts, which seek to incorporate debug-
ging into software reliability models, consider only one or two
of the SRGM. Also, they assume that debugging is conducted
according to a constant rate. In practice, debugging may be con-
ducted according to different policies, which may be reflective
of the scheduling and budget constraints of a project. Also, a
number of these efforts do not consider imperfect debugging,

IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

and even when it is considered, either instantaneous debugging
or a constant debugging rate is assumed. Furthermore, these
efforts only provide means to estimate the residual number of
faults in the software in the presence of explicit & imperfect de-
bugging. They do not provide methods to estimate the failure
rate, reliability, and optimal software release time considering
explicit & imperfect debugging.

In this paper, we describe various debugging policies ac-
cording to which debugging may be conducted. We then
incorporate these policies along with the possibility of imper-
fect debugging into a generic rate-based simulation framework.
The framework can be used to consider explicit & imperfect
debugging in conjunction with any one of the several prominent
software reliability growth models. In addition, we describe
a technique to compute the failure rate, and the reliability of
the software in the presence of debugging. We also present an
economic cost model to determine the optimal release time
of the software taking into account debugging activities. We
illustrate the potential of the simulation framework using two
case studies. In the first case study, we use the data shown
in Fig. 1 for the purpose of illustration. Optimal software
release time with, and without debugging are also computed
& compared for these data. Using the second case study, we
illustrate how the simulation framework can be used to analyse
the impact of various debugging policies as well as of imperfect
debugging on the residual number of faults. Using the results of
the two case studies, we discuss how the simulation framework
can be used to guide decision making regarding the allocation
of resources toward testing & debugging so that a maximum
number of faults are detected & debugged in a cost-effective
manner.

The layout of the paper is as follows: Section II provides a
unification framework for some of the most popular software
reliability growth models by casting them as special cases of
a generic non homogeneous continuous time Markov chain
(NHCTMC) process. It also presents a rate-based simula-
tion procedure for a generic NHCTMC process. Section III
describes the various debugging policies, and enhances the
simulation procedure for NHCTMC processes to incorporate
these debugging policies. A simulation procedure which con-
siders imperfect debugging is also presented in this section.
Section IV presents a technique to compute the failure rate,
and the reliability in the presence of debugging. Section V
presents an economic model to determine the optimal software
release time with explicit debugging. Section VI illustrates
the simulation framework using two case studies. Section VII
offers concluding remarks, and directions for future research.

II. NHCTMC PROCESSES

The objective of this paper is to offer a generic framework
to incorporate debugging activities into several software relia-
bility growth models. Toward this end, it is first necessary to
unify these models along a common theme. In this section we
describe a unification framework for some of the most popular
software reliability growth models by casting them as special
cases of a NHCTMC process. The discussion in the subsequent
subsections is described in the context of a generic NHCTMC

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

GOKHALE et al.: INCORPORATING FAULT DEBUGGING ACTIVITIES INTO SOFTWARE RELIABILITYMODELS: A SIMULATION APPROACH 283

AN,D AN-1,t) AL

Fig. 2. Pure death NHCTMC.

MO, AL A2,

Fig. 3. Pure birth NHCTMC.

process, and is applicable for those software reliability growth
models which are special cases of the NHCTMC process.

A. Overview

We consider a class of NHCTMC processes, where the be-
havior of the stochastic process { X (¢)} of interest depends only
on a rate function A(n, t). The rate function A(n,t) depends on
the state n of the system at time ¢. Let X (¢) be the number of
“events” occurring in an interval (0,¢). “Events” here refers to
the number of times the phenomenon of interest occurs (number
of failures, for example), and this number n denotes the state of
the system. { X (¢)} can be viewed as a pure death process if we
assume that the maximum number of events that can occur in the
time interval of interest is fixed, and the remaining number of
events forms the state space of the NHCTMC. Thus, the system
is said to be in state ¢ at time ¢ if we assume that the maximum
number of events that can occur is N, and N — 7 events have
occurred by time ¢. It can also be viewed as a pure birth process
if the number of occurrences of the event forms the state space
of the system. In this case, the system is said to be in state 7 at
time ¢ if the event has occurred + number of times up to time .
Let N(t) denote the cumulative number of events in the interval
(0,t), and m(t) denote its expectation, i.e., m(t) = E[N(¢)].
Pure birth processes can be further classified as “finite events,”
and “infinite events” processes3, based on the value that m(t)
can assume in the limit. In the case of a finite event pure birth
process, the expected number of events occurring in an infinite
interval is finite (i.e., lim;— ., m(t) = a, where a denotes the
expected number of events that can occur in an infinite interval),
whereas in the case of an infinite event process, the expected
number of events occurring in an infinite interval is infinite (i.e.,
lim;_, oo m(t) = 00). Figs. 2 and 3 show the pure death, and
pure birth NHCTMC, respectively.

Some of the popular software reliability models are non-ho-
mogeneous continuous time Markov chain (NHCTMC)-based.
For example, Goel-Okumoto model [8], Yamada S-shaped
[35], Musa-Okumoto model [19], Duane model [5], and Little-
wood-Verrall model [17] can be cast as pure birth NHCTMC
processes, whereas the Jelinski-Moranda model [13] can be cast
as a pure death NHCTMC model. The pure birth NHCTMC
models can be further classified into finite failures pure birth,

3If the events of interest are failures, then these events become finite failures,
and infinite failures

NHCTMC Processes I

Pure birth |

Jelinski-Moranda

Finite Infinite
event event
Goel-Okumoto Musa-Okumoto
Yamada S-shaped Littlewood-Verrall
Duane

Fig. 4. Classification of SRGM as NHCTMC processes.

and infinite failures pure birth models. The classification of
the prominent software reliability models as different types of
NHCTMC processes is depicted in Fig. 4.

B. Rate-based Simulation

In Section II-A, we described how the stochastic failure
process of a software application embodied in many of the
software reliability growth models can be described by a
NHCTMC. Introducing debugging into this stochastic failure
process gives rise to a birth-death process with complex failure
& debugging rates, and makes it impossible to obtain closed
form expressions. Simulation, on the other hand, can take into
account the fault detection as well as the debugging process in
an integrated manner. As a result, in this section we provide an
overview of rate-based simulation for NHCTMC processes.

We consider a pure birth process, although the technique is
equally applicable for a pure death process with suitable modifi-
cations. For a pure birth process, the conditional probability that
an event occurs in an infinitesimal interval (¢, + dt), provided
that it has not occurred prior to time ¢, is given by \(0, t)dt,
where A(0, t) is called the event occurrence rate. The probability
that the event will not occur in the time interval (0, ¢), denoted
by Py(t), is given by

Py(t) = e~™® 1)

where
t

mi(t) = / O, 7)dr @)

When the events of interest are failures, A(0,¢) is often re-
ferred to as the hazard rate, and q is the cumulative hazard. The
cumulative distribution function F (t), and the probability den-
sity function f;(¢) of the time to occurrence of the first event
are then given by [32]

Fi(t)=1-=Py(t)=1—e"", 3)
and
_ d _ —m(t)
fi(t) = %Fl(t) = A(0,t)e 4

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

284

double single_event(double t, double dt, double (* lambda)(int,double))
{

int event = 0;
while (event == 0)

{
if (occurs(lambda(0,t)*dt))
event++
t+=dt;
}

return t;

}

Fig. 5. Procedure A: Single event simulation procedure.

void recurrent_event(double ta, double tmax, double (* lambda) (int, double),
double dt, int *events, int max_events)

{
double t = ta;
while ((t <= tmax) && (*events < max_events))
{
if (occurs(lambda(*events, t)*dt)
++(*events);
t+=dt;
}
}

Fig. 6. Procedure B: Recurrent event simulation procedure.

Expressions for occurrence times of further events are rarely
analytically tractable [32]. These processes are also known as
conditional event-rate processes [31].

Rate-based simulation techniques can be used to obtain a
possible realization of the arrival process of a NHCTMC. The
occurrence time of the first event of a NHCTMC process can
be generated using Procedure A expressed in a C-like form
shown in Fig. 5. The function single_event() returns the oc-
currence time of the event. In the code segment in Procedure A,
occurs(x) compares a random number with z, and returns 1 if
random() < x, or 0 otherwise. The recurrent_event() proce-
dure presented in Procedure B in Fig. 6 is a simple extension of
the single_event() procedure, and counts the number of occur-
rences of the event over the interval (¢, tq.). The events pa-
rameter must be initialized by the calling program to the number
of occurrences prior to time ¢,, and it will contain an updated
count of the number of occurrences after the function returns.

The use of rate-based simulation to obtain a realization of
the failure process modeled by some software reliability growth
models has been described by Tausworthe et al. [31]. To the best
of our knowledge, however, this is the first attempt to provide
a unifying framework for the different types of software relia-
bility models along the common theme of NHCTMC processes,
and further providing a simulation procedure for the generic
NHCTMC process. In recent years, rate-based simulation has
also been used for architecture-based software reliability anal-
ysis [10].

III. SIMULATION FRAMEWORK

In this section, we present a framework based on the
rate-based simulation technique to incorporate explicit debug-
ging activities into the black-box software reliability models.
Toward this end, we first describe the various policies according
to which debugging may be conducted.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

A. Debugging Policies

We assume that the testing process is unaffected by debug-
ging activities; that is, testing continues even during debugging.
The detected faults are queued to be debugged. The fault de-
tection rate is A(n, t), and depends on the number of faults de-
tected, or time, or both. The debugging rate, or the rate at which
the faults are removed, 1(j,t), also depends on time, or the
number of faults queued to be debugged, or both.# Thus, at time
t, if the number of faults detected is 7, and the number of faults
queued to be debugged is j, then n — j faults have been de-
bugged.

Debugging may be conducted according to different debug-
ging policies, which are reflective of the budget & scheduling
constraints of the project. These debugging policies manifest as
different types of debugging rates. The debugging rate yu(7,t)
can be of the following types:

e Constant: This is the simplest possible situation where
the debugging rate is independent of the number of faults
pending as well as time. The debugging process discussed
by Kremer [15], Levendel [16], and Dalal [3] is of this
type. The debugging rate (j, t) in this case is given by

(g, t) = p (5)

* Fault-dependent: The debugging rate could depend on the
number of faults queued. As the number of faults pending
increases, it is likely that additional resources are allocated
for debugging, and hence the faults are removed faster,
which reflects as a faster debugging rate. If j is the number
of faults pending, the debugging rate (7, t) is given by

(g t) =gk (6)

where the constant k£ can depend on the portion of re-
sources allocated for debugging.

* Increasing time-dependent: The debugging rate could also
be time-dependent. Intuitively, the debugging rate is lower
at the beginning of the testing phase, and increases as
testing progresses or as the project deadline approaches.
The debugging rate reaches a constant value beyond which
it cannot increase, and this may reflect budget constraints
or exhaustion of resources, etc. The time-dependent de-
bugging rate is hypothesized to be of the form

(g, t) = a(l — e_'gt) @)

for some constants o & (3, which reflect the characteris-
tics of a particular project; and for ¢, the length of the test

“In this case, the state of the system is given by a 2-tuple (n, j) where n
represents the number of faults detected, and j represents the number of faults
pending to be debugged. Consequently, the failure rate should be given by
A(n, j.t), and the debugging rate should be given by i (n, j, t). However, we
assume that the failure rate is unaffected by the number of faults pending to
be debugged, and hence is independent of j. Similarly, we assume that the
debugging rate is independent of the number of faults detected, represented by
n. As a result, we use the simplified notation of A(n, t) to represent the failure
rate, and (7, t) to represent the debugging rate.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

GOKHALE et al.: INCORPORATING FAULT DEBUGGING ACTIVITIES INTO SOFTWARE RELIABILITYMODELS: A SIMULATION APPROACH 285

void recurrent_event_repair(double tmax, double ta, double dt, int max_events,
double (*lambda)(int, double), double (*mu) (int, double),
int *events, int *pending, int *removed, int fd_delay,
double time_delay, double time_detected|])

double t = ta;

while ((t < tmax) && (*events < max_events))

{

if ((occurs(lambda(*events, t)*dt))

{
++(*events);
++(*pending);
time_detected[*events] = t;

}

if (((*pending+*removed) > fd_delay) && (t > time_del))

{

if (*pending > 0) && (t > time_detected[*removed+1] + time_del))

{

if (occurs(mu(*pending, t)*dt))

{
--(*pending);

++(*removed);

t+=dt;

}

Fig. 7. Procedure C: Simulation procedure with explicit debugging.

interval. We refer to this as the time-dependent debugging
rate #1.

* Decreasing time-dependent: Debugging rate could also be
time-dependent in the case of latent faults, which are in-
herently harder to remove, and can be hypothesized to be

p(j,t) = ae™? (8)

We refer to this as the time-dependent debugging rate #2.

* General time-dependent: Time-dependent debugging rate
could also have any other functional form as dictated by
the software process for a particular project.

Debugging activities can also be deferred to a later point in
time in the case of some software development scenarios, based
on the following two constraints:

* Debugging can be deferred until a certain number ¢ of

faults are detected, and are pending to be debugged.

* Debugging may have to be suspended for a certain average
amount of time 7 after the detection of a fault, or in other
words there is a time lag of 7 units between the detection of
a fault, and the initiation of its debugging. Debugging may
also be delayed for a certain period of time after testing
begins.

Once initiated, debugging could proceed according to any one

of the policies described above.

The recurrent_event() simulation procedure shown in Pro-
cedure B in Fig. 6 is modified as in Procedure C shown in
Fig. 7 to count the number of faults detected as well as de-
bugged for the various debugging policies in the interval (¢,,

void imp_fault_removal(double ta, double tmax, double dt, double g, double r,
double (*mu)(int, double), int *pending, int *removed)

{
double t = ta;
while ((t < tmax) && (*pending) > 0))
{
if (occurs(mu(*pending, t)*dt))
{
temp = random();
if (temp < r)
++(*pending);
else
{
temp = random();
if (temp > q+r)
--(*pending);
++(*removed);
4
}
}
}

Fig. 8. Procedure D: Simulation procedure with imperfect debugging.

tmaz)- The calling program must initialize events to the number
of detected faults, pending to the number of faults remaining to
be debugged, and removed to the number of faults already de-
bugged prior to time ¢,. Procedure C is general, and can repre-
sent any of the specialized debugging policies or a combination
of them by initializing the appropriate parameters to the desired
values. For example, fault-dependent delay can be incorporated
by setting the parameter fd_delay to the number of faults after
which the debugging activity begins. Also, t7me_lag can be ini-
tialized to reflect the expected time lag between the detection of
a fault, and the initiation of its debugging. The procedure at each

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

286

Expected Number of Faults vs. Time
30 T T T T

Faults detected
Faults removed

25

Expected Number of Faults
& 3

o

0 50 100 150 200 250
Time

Fig. 9. An example for failure rate adjustment.

time step checks for pending faults if any, and invokes the de-
bugging process. Upon return, the parameters events, pending,
and removed contain the updated counts of the number of faults
detected, pending to be debugged, and debugged, respectively.

B. Imperfect Debugging

The framework discussed in the previous section is extended
in this section to account for fault reintroduction/imperfect
debugging based on the following considerations. Whenever a
fault is detected, there are three mutually exclusive possibilities
to the corresponding debugging effort: reduction in the fault
content by 1 with probability p, no change in the fault content
with probability ¢, and an increase in the fault content by 1 with
probability . Thus p + ¢ + r = 1 [15]. It is important to note
that simulation does not impose any restrictions on the nature of
the debugging process, and fault reintroduction could be used
in conjunction with any of the debugging policies described in
the previous section. Also, although we have assumed that other
cases (additional fault removal or fault reintroduction) are rare
& negligible, the simulation framework is sufficiently powerful
& generic to consider the reintroduction of multiple faults.

The simulation procedure with imperfections in the debug-
ging activity is presented in Procedure D in Fig. 8. For now, we
ignore the testing process; and we assume that a certain number
of faults are pending to be debugged, and that we are attempting
to debug these pending faults. The calling program must ini-
tialize the parameters pending & removed to the number of
faults pending to be debugged, and the number of faults de-
bugged, prior to time ¢,. These parameters contain the updated
counts of these quantities when the function returns.

IV. COMPUTATION OF FAILURE RATE AND RELIABILITY

In this section, we describe a technique to compute the failure
rate & the reliability of the software in the presence of debug-
ging. The estimates of failure rate & the reliability obtained
using this approach are valid only if testing is conducted ac-
cording to the operational profile of the application [20]. Under

IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

Actual and perceived failure rates
0.2 T T T T

Actual
Perceived

018f

0.16

o
IS
T

Failure Rate
o
N
T

01

0.08F

0.06f T R

004 L L L L
0 50 100 150 200 250

Time

the ideal assumption of instantaneous & perfect debugging, the
expected number of faults debugged is the same as the expected
number of faults detected. However, if we take into consid-
eration the time required for debugging, the expected number
of faults debugged at any given time is less than the expected
number of faults detected as seen in Fig. 9. Thus at any time ¢,
A(n, t), which is the failure rate of the software based on the
assumption of instantaneous & perfect debugging, needs to be
adjusted to reflect the expected number of faults that have been
detected, but not yet debugged. We calculate this adjustment as
follows: let mpg(¢) denote the expected number of faults de-
bugged by time ¢, and mp(t) denote the expected number of
faults detected by time ¢. The approach consists of computing
time tg < t, such that mp(tg) = mg(t); that is, the time
tr at which the expected number of faults detected as well as
debugged under the assumption of instantaneous debugging is
equal to the expected number of faults debugged with explicit
fault removal. Whereas the perceived failure rate at time ¢, under
the assumption of instantaneous & perfect debugging, is A(n, t),
we postulate that the actual failure rate (failure rate after ad-
justment), denoted by A\ (n,t), can be approximately given by
A(n,tgr), where tg < t. The condition ¢ = tg represents the
situation of instantaneous & perfect debugging. This can be
considered as a “roll-back” in time, and is like saying that ac-
counting for fault detection & debugging separately up to time
t is equivalent to instantaneous & perfect debugging up to a
prior time £ r. Expressions to compute ¢ p for finite failure NHPP
models have been derived elsewhere [9].

We illustrate this approach with the help of an example. Re-
ferring to the plot on the left-hand side of Fig. 9, the expected
number of faults detected, mp(¢), by time ¢ = 200 is 23.16,
while the expected number of faults debugged by time ¢, mg(t),
is 17.64. The failure rate for this particular example is assumed
to be that of the Goel-Okumoto model [8], and is given by
A(n,t) = 34.05 % 0.0057 x e~0-0057 ¢ 5 computed using these
values, is given by 128.1. Thus, the perceived failure rate is
0.062, whereas the actual failure rate after adjustment is 0.093.
The approach described here was repeated for every time step

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

GOKHALE et al.: INCORPORATING FAULT DEBUGGING ACTIVITIES INTO SOFTWARE RELIABILITYMODELS: A SIMULATION APPROACH 287

dt, and the plot on the right hand side in Fig. 9 shows the per-
ceived as well as the actual failure rates for the entire time in-
terval. In other words, if the software were released at time
t = 200, its failure rate taking into account the debugging ac-
tivities will be 0.093, as opposed to 0.062, which would be its
failure rate assuming instantaneous debugging.

V. OPTIMAL SOFTWARE RELEASE TIME

Software testing is an expensive process, and typically con-
sumes about one-third to one-half of the cost of a typical soft-
ware development project [3]. Overzealous testing can increase
the cost of testing, and delay the introduction of a product into
the market, in which an early product release may mean the
difference between success, and failure. On the other hand, if
testing stops too soon, there is a risk of releasing the software
with latent bugs, and fixing a fault in a released system is an
order of magnitude more expensive than fixing the fault during
the test phase. In addition, there is a cost of customer dissatisfac-
tion & loss of goodwill, and of system down time & restoration.
Thus there is a tradeoff, and the issue is to find an optimal point
at which costs justify the stop decision.

The stopping rule problem has been addressed by several re-
searchers in the literature [3], [6], [22], [28], [35]. As discussed
by Ehlrich et al. [6], the economic consequences F, involved
in stopping testing at time ¢, units, or releasing the software at
ts units after test execution, should take into consideration the
following costs:

* The cost of testing activities, like running test cases &
analysing data, the amount of man-power, and the CPU
time spent by the time ¢,, or equivalent “testing-effort”
[34], [36] is denoted by C;. The cost associated with test
planning & test case development is normally completed
before testing, so it is not included in this value.

* The cost of resolving a failure, which consists of activities
like opening a modification request, diagnosing the under-
lying fault, removing the fault, and verifying that the failure
no longer occurs, is denoted by Cb.

* The cost of fixing a failure in the operational phase, is de-
noted by Cj.

* The cost to customer operations in the field is denoted by
(4, which is a function of the failure rate, A(n, t;) of the
software at the release time, the expected execution time
n of the software release per field site, and the number of
field sites, 1.

The economic model is thus given by

E = C4(ts) + Com(ts) + C3(a — m(ts)) + Cs (A(n, ts)nl)
C))
where a denotes the total expected number of faults in the soft-
ware, and m/(t,) denotes the expected number of faults detected
& hence debugged if the debugging process is assumed to be in-
stantaneous.
These costs are based on software reliability models which
assume that the fault is debugged as soon as it is detected, and
the debugging process is perfect. The time required to debug

Cumulative number of open and close MRs (actual and simulated)
1000 T T

Faults detected
Faults removed

-
800 d " |
700) |
600 /7 / g

500 4 ’ g

Cumulative Number Faults

300 7 4

200 P B

0 50 100 150
Time

Fig. 10. Actual and simulated MR.

a fault, however, cannot be neglected; and hence at any given
time, the number of faults debugged will be less than the number
of faults detected. Thus, the cost of resolving a failure actually
consists of two parts: the cost of opening a modification request
& diagnosing the fault that caused a failure, and the cost of re-
moving a fault & verifying that the failure no longer occurs. The
former depends on the fault detection process, and the latter de-
pends on the debugging process. Let C1 denote the cost associ-
ated with the former, and Cy5 with the latter. For a release time
ts, the economic model presented in (9) can be modified to be

E = Ci(ts) + Cormp(ts) + Coomp(ts)

+C5 (a —mpg(ts)) + Cy (N (n,ts)nl) (10)

where mp(ts), and mp(ts) denote the expected number of
faults detected, and removed respectively, by time ¢5. Note that
C,, which is the cost to customer operations in the field, is now
a function of the adjusted failure rate X' (n, ¢;) of the software.

VI. ILLUSTRATIVE EXAMPLES

In this section, we demonstrate the potential of the simula-
tion framework using two case studies. In the first case study,
we demonstrate the capability of the framework to simulate
the data shown in Fig. 1. We also illustrate the economic cost
model using these data. In the second case study, we demon-
strate how the rate-based simulation framework can be used to
assess the impact of the parameters of the different debugging
policies, and of imperfect debugging on the residual number of
faults. Through this case study, we also discuss how the results
produced by simulation can be used to guide the allocation of
resources to achieve the desired reliability in a cost-effective
manner.

A. Case Study 1

We use the rate-based simulation framework to simulate the
open & closed MR data shown in Fig. 1. This figure clearly in-
dicates that the open & closed MR profiles follow two distinct

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

288 IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

TABLE 1
SIMULATION PARAMETERS FOR CASE STUDY I
Simulation parameter Notation Value
Fault detection rate A(n, t) 1257.5 % (0.0198)7 # ¢ + e~ 00198+t
Fault debugging rate w(j,t) 1352.5 % (0.0143)% % ¢ % ¢~0-0143+
Initial time ta 0.0
Maximum time tmaz 500.0
Initial detected faults events 0
Initial pending faults pending 0
Maximum number of events | max_events 1000
Initial removed faults removed 0
Time delay time_delay 0.0
Fault delay fd_delay 0
Time step dt 1
Actual and Perceived Failure Rates vs. Time Actual and Perceived Reliabilities vs. Time
10 T T T T T T T 1 T T T T T T T T T
e Perceived — Actua[
ol Actual i 0.9 Perceived | |
0.8 i
0.7 4
” 0.6 A
A Bos 1
:% &
0.4 4
0.3 4
0.2 4
0.1 B
0 50 100 150 200 250 300 350 bébo 200 4;0 4&0 4é0 440 4;0 aéd >4;b‘. >‘4éO 4;0 500
Time Time
Fig. 11. Actual, and perceived failure rates, and reliabilities for telecommunications data.
processes; and in the conventional software reliability realm, X107 Optimal release time for telecommunications software

these curves would have to be modeled separately using two dif-
ferent analytical models, which makes the underlying reliability
process difficult to understand. Data like the one in Fig. 1 can be
easily simulated using a software reliability model for the open
MR curve, and a suitable debugging process for the closed MR
curve. We simulated the two profiles using the simulation pro-
cedure shown in Fig. 7. The open MR profile is simulated using
the rate function of the S-shaped model [35], while the closed
MR profile is simulated using a time-dependent debugging rate.
These two processes were chosen because they provided the
best possible fit to the observed curves. The fault detection rate
A(n, t) is given by 1257.5 % (0.0198)% % ¢ % ¢=0-0198%! and the
fault debugging rate u(j,t) is given by 1352.5 (0.0143)% «
t x e~ 0-0143%% The parameters used in the simulation, along
with the fault detection & debugging rates, are summarized in
Table I. 1000 simulation runs were conducted, and an average
of these runs was obtained. The simulation results are shown in
Fig. 10. For the graphs reported in Fig. 10, the standard devia-
tion is within approximately 1% of the mean, and is not shown
here to avoid visual clutter.

The perceived, and the actual failure rate of the software are
then computed for the time period from ¢ = 0.0 to ¢ = 400.0

16 T T T T T T T T T

Explicit repair .
Instantaneous repair

Cost

0 I L L I P L L L L
100 150 200 250 300 350 400 450

Time

500

Fig. 12. Optimal software release times with, and without debugging.

based on the technique proposed in Section IV, and are shown
on the left in Fig. 11. Assuming that both the testing as well

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

GOKHALE et al.: INCORPORATING FAULT DEBUGGING ACTIVITIES INTO SOFTWARE RELIABILITYMODELS: A SIMULATION APPROACH

Constant fault removal rate

30 T T T T
- Faults det
Faults rem. (mu=0.2)
- = Faults rem. (mu=0.1)
25 JEpp— Faults rem. (mu=0.05) [.|
-
-
-~
£20 i
=
© -
w -
i} P
o] P
o -
E15 - i
z e
8 -7
o - -
g - -) -
i1 . .- §
- - -
- -
- -
- _.-
- -
- .-
5 P - - -
- Pt
WL ‘ ‘ ‘ ‘
0 50 100 150 200 250
Time
Delayed debugging (fault dependent delay)
30 T T T T
E— Faults det
Faults rem. (phi=5)
- == Faults rem. (phi=10)
25 —_———— Faults rem. (phi=20) -
® 20 b
=
©
w
B
1]
2 -
E 15 L, -3
=z -
o — i
L -
i ~
& ~
Qo e
3 -
W0 _-]
-
-
-
-~
-
7 P
5 L i
P -
s _.-
7 P
-~ -
- _.-
0 -~ e I I
0 50 100 150 200 250
Time
Time dependent debugging rate (#1)
30 T T T T
Faults det
Faults rem. (beta=0.001)
- == Faults rem. (beta=0.005)
25 - - Faults rem. (beta=0.01) l
- -
e :
-
e
220 P i
3 . .
w e -
5 e -
3 .
e -
é 15 P e
e
8 /7 e -
ks s 4
g - -7
2 .
w1 /.’ P i
7 - -
. s 4
7 - i
- -
’ i
5 e s B
. - i
-
. -
-z P
-~
o - A ‘ ‘
0 50 100 150 200 250
Time

30

25

Expected Number of Faults
& S

o

30

25

Expected Number of Faults
& S

o

30

25

Expected Number of Faults
& S

o

Fig. 13. Expected number of detected & debugged faults for debugging policies.

as debugging activities are stopped at time ¢ = 400.0, the re-
liability of the software under the assumption of instantaneous

289

Fault dependent debugging rate
T T

Faults det.

Faults rem. (k=0.006)

250

50

- Faults rem.
——- Faults rem
-
-
e
-
e
-
7 e
- -
- -
e e
- -
s -
- e
- -
- 4
a P
e .7
s -
2 s
e i
-
-
-
-
I I I
100 150 200
Time
Delayed debugging (time dependent delay)
T T T
— Faults det.
Faults rem. (tau=25)
- == Faults rem. (tau=50)
————- Faults rem. (tau=100)
-
-
-
-
-
-
-
-
- .
- -
- s
- s
- P
-7 -
-~ -
e i
- -
- -
- -~
- -
~ -
-~ -
~
L= I I
100 150 200
Time

Time dependent debugging rate (#2)

250

T

Faults det.
Faults rem. (beta=0.001)
Faults rem. (beta=0.005)

Faults rem. (beta=0.01)

100
Time

150

debugging, and taking into account explicit debugging, is shown
on the right in Fig. 11.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

290

TABLE II
SIMULATION PARAMETERS FOR CASE STUDY II
Simulation parameter Notation Value
Fault detection rate (n,t) 34.05 % 0.0057 ¢~0-0057+
Initial time ta 0.0
Maximum time tmaz 300
Initial detected faults events 0
Initial pending faults pending 0
Maximum number of events | maz_events 40
Initial removed faults removed
Time step dt 1

We now assess the impact of explicit debugging on the op-
timal software release time using the telecommunications data.
To enable this, we adapt the parameters of the economic cost
model described in (9) from Ehlrich et al. [6]. The values of the
parameters are specified in terms of staff units rather than actual
units to preserve the proprietary nature of resource use & cost
data. The cost of resolving failures during system test, denoted
by (1, is assumed to be 60 staff units per fault. This cost in-
cludes the cost of failure identification, fault diagnosis, and fault
removal. Cs, the effort per CPU test-execution unit, is assumed
to be 1900 staff units. The effort to resolve failures after system
release, C'3, is assumed to be 600 staff units per failure. This cost
is based on the observations of Boehm [1], and Dalal et al. [3],
that the cost of fixing a software fault after system release is an
order of magnitude greater than the cost of fixing while testing.
C1, U, and C5 were multiplied by a value of 75 to arrive at the
value of the staff, assuming a loaded salary of 75 monetary units
per staff-unit. To determine the consequences of field failures,
we assume that the system would typically execute 371 CPU
units at a single field site before a new version was installed,
and that there were six field sites. The economic effect of the
system failure was assumed to be 5000 monetary units. For the
modified economic cost model which takes into account debug-
ging activities, the cost of resolving a failure during system test,
denoted by C, is split into two costs, namely, C'5; which is the
cost of failure identification & fault diagnosis, and Cy2 which
is the cost of fault removal. We assume both Cy; & Cas to be
30 staff units. Fig. 12 shows the optimal software release times
for the data shown in Fig. 1. As can be seen from the figure, the
release time as well as the cost at release is higher if debugging
activities are explicitly accounted for, instead of assuming in-
stantaneous & perfect debugging.

B. Case Study 11

In this case study, for the purpose of illustration, we use the
failure rate of the Goel-Okumoto model [8]. The parameters of
the rate function of the Goel-Okumoto model for NTDS data
[8] were estimated using CASRE [18]. The failure rate used is
given by A(n,t) = 34.05 * 0.0057 x ¢~ 0-0057%¢,

1) Parameters of Debugging Policies: In the experiments re-
ported in this section, the objective was to analyse the impact
of the debugging policies on the expected number of faults de-
tected & debugged. The parameters used in these experiments
are reported in Table II. This table summarizes only those pa-
rameters that remain invariant across all the experiments con-
sidered in this section. In particular, because the impact of the

IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

parameters of the debugging policies is evaluated in these exper-
iments, the parameters pertaining to the debugging rate are dif-
ferent in each scenario, and are not reported in the table. Using
the parameters reported in Table II, 1000 simulation runs were
conducted using the simulation procedure shown in Fig. 7 in
each experiment, and the average of these runs was computed. In
each one of these experiments, the standard deviation is within
approximately 1% of the mean, and is not shown here to avoid
visual clutter.

The expected number of faults detected & debugged for the
various debugging policies is shown in Fig. 13. Initially, we
simulated the expected number of faults detected & debugged
for various values of constant debugging rate, . The values of
the debugging rate ;1 were set to be approximately 100%, 50%,
25%, and 12.5% of the maximum fault detection rate. The ex-
pected number of faults debugged decreases as o decreases, as
expected. The cumulative fault removal curve has a form sim-
ilar to the cumulative fault detection curve, and as the debug-
ging rate increases, the fault removal curve almost follows the
fault detection curve. We then simulated the expected number
of faults debugged as a function of time, when the debugging
rate depends on the number of pending faults (6). The expected
number of faults debugged is directly related to the proportion-
ality constant % in (6). The debugging rate in this case does
not have a closed form expression, but can be computed with
a small extension to the simulation procedure. As k increases,
the expected number of faults removed increases. The expected
number of faults detected & removed as a function of time for
time-dependent debugging rate #1 as given by (7) was simulated
next. The value of « is held at 0.19, which is approximately
the maximum value of the fault detection rate. The cumulative
fault removal curve in this case is also similar to the cumula-
tive fault detection curve, and the difference between the ex-
pected number of detected & debugged faults depends on the
value of 3. As (3 increases, the debugging rate increases, and
the expected number of faults debugged increases. The expected
number of faults debugged for time-dependent debugging rate
#2 as given by (8) was then simulated. In this case, as the value
of [increases, the debugging rate decreases, and the expected
number of faults debugged decreases. The expected number of
faults detected & debugged as a function of time for delayed
fault removal, where the expected delay between the detection
of a fault & the initiation of its debugging is 7 units, was sim-
ulated next. The expected number of faults debugged decreases
with increasing 7. The expected number of faults detected & de-
bugged for delayed fault removal, where debugging begins only
after a certain number of faults ¢ are accumulated, was simu-
lated next, for different values of ¢. As ¢ increases, the expected
number of faults debugged decreases.

Fig. 13 depicts that, for higher values of debugging rates,
the fault removal profile follows the fault detection profile very
closely, and the estimates of the residual number of faults based
on the ideal assumption of instantaneous debugging are close
to the ones with explicit debugging. However, as the debugging
rate increases, the debugging resources could be under-utilized.
This relation is illustrated in Fig. 14, which shows the utilization
of the debugging mechanism for various values of the constant
debugging rate 1. As seen from the figure, for lower values of p,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

GOKHALE et al.: INCORPORATING FAULT DEBUGGING ACTIVITIES INTO SOFTWARE RELIABILITYMODELS: A SIMULATION APPROACH 291

Utilization vs. Time (Constant Fault Removal Rate)

1 — e e e e e e e e = e e e ==
— mu=0.025
mu=0.05
09 -—-- mu=0.1
- = mu=0.2
0.8 4
0.7 - 4
~
5 0.6 Sl -
5 N
= ~.
205 NN 4
~.
~
~
0.4 S 1
~ ~
0.3 ~. 4
0.2 1
0.1 L L : L
0 50 100 150 200 250
Time

Fig. 14. Utilization for constant debugging rate.

45 T T T T

a0t e J

Expected Number of Faults

I p=1.0
p=0.8.g=0.2
p=0.8.q=r=0.1

— = p=0.4=05q=0.1

0 50 100 150 200 250
Time

Fig. 15. Expected number of remaining faults.

the debugging mechanism is fully utilized, whereas for higher
values of p, the utilization decreases. Under-utilization of the
resources allocated for debugging may not be very cost-effec-
tive, especially with increasing budget & deadline constraints
facing modern software development organizations. Simulation
with explicit debugging can be used to guide resource alloca-
tion decisions so that a maximum number of faults are detected
& debugged prior to product shipment. Simulation with explicit
debugging can thus be used to guide decision making about the
allocation of resources to the crucial, perhaps the most impor-
tant activity of debugging, so that a maximum number of faults
are detected & debugged before the shipment of the software
product, in a cost-effective manner.

2) Parameters of Imperfect Debugging: For the sake of il-
lustration, the scenario of imperfect fault removal is simulated
assuming a constant debugging rate of 0.1, and the number of
faults pending for removal is 34. The expected number of faults
remaining in the system for different values of p, ¢, and r [15]
simulated using the simulation procedure in Fig. 8 is shown in

Fig. 15. The expected number of remaining faults depends on
the probability of perfect debugging, p, the probability of intro-
ducing one fault, r, and the probability of no change in the fault
content, q. As p decreases & r increases, the expected number
of faults remaining increases, and beyond a certain threshold of
p & 7, the fault content of the software may actually increase.

VII. CONCLUSION AND FUTURE RESEARCH

In this paper, we incorporated explicit debugging activities
along with the possibility of imperfect debugging into the
NHCTMC-based black-box software reliability models, using
rate-based simulation. We discussed various debugging policies
according to which debugging may be conducted. The approach
presented here may reflect the testing phase in a software de-
velopment cycle more closely than the conventional black-box
software reliability models. We also presented a technique
to compute the failure rate & the reliability of the software,
taking into account explicit debugging activities. Further, we
described an economic cost model to determine the optimal
software release time in the presence of debugging activities.
We illustrated the potential of the simulation framework using
two case studies.

REFERENCES

[1] B. W.Boehm and P. N. Papaccio, “Understanding and controlling soft-
ware costs,” [EEE Trans. on Software Engineering, vol. 14, no. 10, pp.
1462-1477, October 1988.

[2] P. J. Boland and N. Chuiv, “Cost implications of imperfect repair in
software reliability,” International Journal of Reliability and Applica-
tions., vol. 2, no. 3, pp. 147-160, 2001.

[3] S.R.Dalal and C. L. Mallows, “Some graphical aids for deciding when
to stop testing software,” IEEE Trans. on Software Engineering, vol. 8,
no. 2, pp. 169-175, February 1990.

[4] M. Defamie, P. Jacobs, and J. Thollembeck, “Software reliability: as-
sumptions, realities and data,” in Proc. of International Conference on
Software Maintenance, September 1999.

[5] J. T. Duane, “Learning curve approach to reliability monitoring,” IEEE

Trans. on Aerospace, vol. AS-2, pp. 563-566, 1964.

W. Ehrlich, B. Prasanna, J. Stampfel, and J. Wu, “Determining the cost

of a stop-test decision,” IEEE Software, vol. 10, no. 2, pp. 33-42, March

1993.

“Software Reliability Modeling Survey,” in Handbook of Software Re-

liability Engineering. M. R. Lyu, Ed. New York: McGraw-Hill, 1996,

pp. 71-117.

A. L. Goel and K. Okumoto, “Time-dependent error-detection rate

models for software reliability and other performance measures,”

IEEE Trans. on Reliability, vol. R-28, no. 3, pp. 206-211, August

1979.

[9] S. Gokhale, “Software failure rate and reliability incorporating repair
policies,” in Proc. of METRICS 04, September 2004.

[10] S. Gokhale, M. R. Lyu, and K. S. Trivedi, “Reliability simulation of
component-based software systems,” in Proc. of Ninth Intl. Symposium
on Software Reliability Engineering (ISSRE 98), Paderborn, Germany,
November 1998, pp. 192-201.

[11] ——, “Analysis of software fault removal policies using a non homo-
geneous continuous time Markov chain,” Software Quality Journal, pp.
211-230, September 2004.

[12] S. Gokhale, P. N. Marinos, K. S. Trivedi, and M. R. Lyu, “Effect of
repair policies on software reliability,” in Proc. of Computer Assurance
(COMPASS 97), Gatheirsburg, Maryland, June 1997, pp. 105-116.

[13] Z. Jelinski and P. B. Moranda, “Statistical Computer Performance

Evaluation,” in Software Reliability Research, W. Freiberger,

Ed. New York: Academic Press, 1972, pp. 465-484, chapter.

W. Jones and D. Gregory, “Infinite-failures models for a finite world:

a simulation study of fault discovery,” IEEE Trans. on Reliability, vol.

43, no. 2, pp. 520-526, 1994.

[15] W.Kremer, “Birth and death bug counting,” IEEE Trans. on Reliability,
vol. R-32, no. 1, pp. 37-47, April 1983.

[6

—

[7

—

[8

—

[14

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

292

[16] L. Levendel, “Reliability analysis of large software systems: Defect
data modeling,” IEEE Trans. on Software Engineering, vol. 16, no. 2,
pp. 141-152, February 1990.

[17] B.Littlewood, “A Bayesian reliability growth model for computer soft-
ware,” Journal of Royal Statistical Society, vol. 22, no. 3, pp. 332-346,
1973.

[18] M. R. Lyu and A. P. Nikora, “CASRE-A computer-aided software re-
liability estimation tool,” in CASE ’92 Proceedings, Montreal, Canada,
July 1992, pp. 264-275.

[19] J. D. Musa, “A theory of software reliability and its application,”
IEEE Trans. on Software Engineering, vol. SE-1, no. 1, pp. 312-327,
September 1975.

[20] ——, “Operational profiles in software-reliability engineering,” IEEE
Software, vol. 10, no. 2, pp. 14-32, March 1993.

[21] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability—Mea-
surement, Prediction, Application. New York: McGraw Hill, 1987.

[22] H.Pham and X. Zhang, “A software cost model with warranty and risk
costs,” IEEE Trans. on Computers, vol. 48, no. 1, pp. 71-75, January
1999.

[23] N. F. Scheidewind, “Fault correction profiles,” in Proc. of Intl. Sym-
posium on Software Reliability Engineering, Denver, CO, November
2003, pp. 257-267.

[24] N. Schneidewind, “Assessing reliability risk using fault correction pro-
files,” in Proc. of Eighth Intl. Symposium on High Assurance Systems
Engineering (HASE 04), 2004, pp. 139-148.

[25] N.F.Schneidewind, “Software reliability model with optimal selection
of failure data,” IEEE Trans. on Software Engineering, vol. 19, no. 11,
pp. 1095-1014, November 1993.

[26] ——, “Modeling the fault correction process,” in Proc. of Intl. Sym-
posium on Software Reliability Engineering, Hong Kong, November
2001, pp. 185-191.

[27] ——, “An integrated failure detection and fault correction model,” in
Proc. of Intl. Conference on Software Maintenance, December 2002,
pp. 238-241.

[28] N. D. Singpurwalla, “Determining an optimal time interval for testing
and debugging software,” IEEE Trans. on Software Engineering, vol.
17, no. 4, pp. 313-319, April 1991.

[29] C. Smidts, “A stochastic model of human errors in software develop-
ment: impact of repair times,” in Proc. of 10th Intl. Symposium on Soft-
ware Reliability Engineering, Boca Raton, FL, November 1999, pp.
94-103.

[30] M. A. Stutzke and C. S. Smidts, “A stochastic model of fault intro-
duction and removal during software development,” IEEE Trans. on
Reliability, vol. 50, no. 2, pp. 184-193, June 2001.

[31] “Software Reliability Simulation,” in Handbook of Software Reliability
Engineering. M. R. Lyu, Ed. New York: McGraw-Hill, 1996, pp.
661-698.

[32] K. S. Trivedi, Probability and Statistics with Reliability, Queuing
and Computer Science Applications. Englewood Cliffs, New Jersey:
Prentice-Hall, 1982.

[33] A. Wood, “Software reliability growth models: assumptions vs. re-
ality,” in Proc. of Eighth Intl. Symposium on Software Reliability Engi-
neering, Albuquerque, NM, November 1997, pp. 136-141.

[34] S. Yamada, J. Hishitani, and S. Osaki, “Software-reliability growth
with a Weibull test effort: a model & application,” IEEE Trans. on Re-
liability, vol. 42, no. 1, pp. 100-105, March 1993.

[35] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth mod-
eling for software error detection,” IEEE Trans. on Reliability, vol.
R-32, no. 5, pp. 475-485, December 1983.

[36] S. Yamada, H. Ohtera, and H. Narihisa, “Software reliability growth
models with testing-effort,” IEEE Trans. on Reliability, vol. R-35, no.
1, pp. 19-23, April 1986.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 2, JUNE 2006

Swapna S. Gokhale received the B.E. (Hons.) in electrical and electronics
engineering and computer science from the Birla Institute of Technology and
Science, Pilani, India, in 1994, and the M.S. and Ph.D. degrees in electrical and
computer engineering from Duke University in 1996 and 1998, respectively.
Currently, she is an Assistant Professor in the Department of Computer Science
and Engineering at the University of Connecticut (UConn), Storrs. Prior to
joining UConn, she was a Research Scientist at Telcordia Technologies in
Morristown, NJ. Her research interests are software reliability and perfor-
mance, software testing, software maintenance, program comprehension and
understanding, and wireless and multimedia networking.

Michael R. Lyu received the B.S. degree in electrical engineering from
National Taiwan University, Hsinchu, Taiwan, and the M.S. degree in computer
engineering and Ph.D. degree in computer science from University of Cali-
fornia, Los Angeles, in 1981, 1985, and 1988, respectively. He is a Professor in
the Computer Science and Engineering Department of the Chinese University
of Hong Kong, Shatin, NT, Hong Kong. He worked at the Jet Propulsion
Laboratory, Bellcore, and Bell Labs, and taught at the University of Iowa.
He is the Editor-in-Chief for two book volumes: Software Fault Tolerance
(Wiley, 1995) and the Handbook of Software Reliability Engineering (IEEE
and McGraw-Hill, 1996). He has participated in more than 30 industrial
projects and helped to develop many commercial systems and software tools.
He was frequently invited as a keynote or tutorial speaker to conferences
and workshops in U.S., Europe, and Asia. His research interests are software
reliability engineering, software fault tolerance, distributed systems, image
and video processing, multimedia technologies, and mobile networks. He has
published over 200 papers in these areas. Dr. Lyu initiated the International
Symposium on Software Reliability Engineering (ISSRE) and was the Program
Chair for ISSRE’ 1996, Program Co-Chair for WWW10 and SRDS’2005, and
General Chair for ISSRE’2001 and PRDC’2005. He was also the recipient of
the Best Paper Awards in ISSRE’98 and in ISSRE’2003. He was an Associate
Editor of the IEEE TRANSACTIONS ON RELIABILITY, the IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING, and the Journal of Information
Science and Engineering.

Kishor S. Trivedi holds the Hudson Chair in the Department of Electrical and
Computer Engineering at Duke University, Durham, NC. He has been on the
Duke faculty since 1975. He is the author of a well-known text entitled Proba-
bility and Statistics with Reliability, Queuing and Computer Science Applica-
tions whose revised second edition is under publication. He has also published
two other books entitled Performance and Reliability Analysis of Computer
Systems (Kluwer Academic Publishers) and Queueing Networks and Markov
Chains (John Wiley). He has published over 300 articles, lectured extensively on
the area of reliability and performance assessment, and has supervised 39 Ph.D.
dissertations. He has made seminal contributions in software rejuvenation, so-
lution techniques for Markov chains, fault trees, stochastic Petri nets, and per-
formability models. He has actively contributed to the quantification of security
and survivability. He is a co-designer of the HARP, SAVE, SHARPE, and SPNP
software packages that have been well circulated. His research interest is reli-
ability and performance assessment of computer and communication systems.
Mr. Trivedi is a Golden Core Member of the IEEE Computer Society.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 07:50:37 UTC from IEEE Xplore. Restrictions apply.

