Although several models
have been proposed for
assessing software reliability,
none has emerged as the
most effective predictor. The
authors offer a general
simulation fechnique that
relaxes or removes many of
the usual reliability-modeling
assumptions and expands the
reliability process to
encompass the enfire
software life cycle.

ROBERT C. TAUSWORTHE
Jet Propulsion Laboratory
MICHAELR. LYU

AT&T Research

IEEE SOFTWARE

oftware reliability has been the subject of wide study over the past 20
years. At least 40 different models have been published so far." These
studies have focused primarily on proposing, analyzing, and evaluating
the performance of models that assess current reliability and forecast
future operability from observable failure data, using statistical inference
techniques. However, none of these models extends over the entire relia-
bility process; most tend to focus only on failure observance during test-
ing or operations. Moreover, none of these reliability models has
emerged as the “best” predictor in all cases.”

Any of several factors may be responsible for this: oversimplification of the failure
process, the quality of observed data, the lack of sufficient data to make sound inferences,
and serious differences between the proposed model and the true underlying reliability
process or processes. The basic nature of the failure processes may conceivably ditfer
among individual software developments.

We propose a general simulation technique that relaxes or removes many of the usual
reliability-modeling assumptions and expands the reliability process to encompass the
entire software life cycle. Some of these assumptions are

¢ Testing or operations randomly encounter failures.

¢ Failures in nonoverlapping time intervals are independent.

¢ The test space “covers” the use space, or operational profile.

0740-7458/86/%05 .00 @ 1898 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

RELIABILITY-PROCESS SIMULATION THEORY

The fundamental assumption of reliability-process simu-
lation is that every stochastic event results from an underly-
ing, instantaneous conditional event-rate random p]rocess.1

Discrete-event simulation framework. A conditional event-rate
process is one for which the probability that an event occurs
in the interval (7, ¢ + d#), given that it has not occurred prior
to time 7, is equal to B(#) 4t for some function B(#). The sta-
tistical behavior of this process is well-known?: The proba-
bility that an event & will have occurred prior to a given time
¢ is related by the expression

Prob {eoccursin (0, 1) j=P () =1 - exp[—j B(uydt jzl S0
o

®

When the events of interest are failures, B(z) is often
referred to as the process-hazard rate and A0, 1) is the rotal
bazard. If MO, t) is known in closed form, the event probabil-
ity can be analyzed as a function of time. But if many related
events are intricately combined in B(z), the likelihood of a
closed-form solution for event statistics dims considerably.
The expressions to be solved can easily become so convolut-
ed that calculation of results requires a computer pro-
grammed with comparatively complex algorithms.

Of special interest here are discrete event-count process-
es that merely record the occurrences of rate-controlied
events over time. The function B,(f) denotes the conditional
occurrence rate, given that the nth event has already
occurred by the time ¢. The integral of B,(2) is A0,). These
processes are termed nonhomogeneous when B, (z) depends
explicitly on ¢. The probability P,,(z) that events occur in
(0, 1) is much more difficult to express than Equation 1, and
does not concern us here.

One important event-rate process is the discrete Markoff
process. A Markoff process is said to be homogeneous when
its rate function is sensitive only to time differences, rather
than to absolute time values. The notation B,(2), in these
cases, signifies that ¢ is measured from the occurrence time ¢
of the nth event.

When the hazard rate B, (¢) of a Markoff event-count
process is independent of 7, you may readily verify that the
general event-count behavior is a nonhomogeneous Poisson
process whose mean and variance are given by

"

7 =M0,0
o> =0,
R @
2 =1/ M0 =147
7

The homogeneous, constant-event-rate Poisson process
is described by A = Bt. Homogeneous Poisson-process statis-
tics thus only apply to the homogeneous Markoff event-
count process when the Markoff B,(#) = B is constant.

Equation 2 shows that, as # increases, the percentage
deviation of the process decreases. In fact, any event process

with independence among events in nonoverlapping time
intervals will exhibit relative fluctuations that behave as
O(/Ai) | a quantity that gets increasingly smaller for larger
7 . 'This trend signifies that Poisson and Markoff processes
involving large numbers of event occurrences will tend to
become, percentagewise, relatively regular. If physical
processes appear to be very irregular, then it will be impossi-
ble to simulate them using independent-increment assump-
tions with regular-rate functions.

In one sense, the NHPP form is inappropriate for
describing the overall software-reliability profile. Software
reliability grows only as faults are discovered and repaired,
and these events occur only at a finite number of times dur-
ing the life cycle. The true hazard rate presumably changes
discontinuously at these times, whereas the NHPP rate
changes continuously. In any case, the event-count Markoff
model of software reliability is more general than the NHPP
form, in that there is no assumption that its cumulative rate
1 is independent of 72 or 7,

Multiple event processes. Conditional event-rate processes
are also characterized by the property that the occurrences
of several independent classes of events, €, ,..., €5 with rate
functions B,1(2),..., B,7(2), respectively, together behave as if
falgorithms of the single-event variety were running simul-
taneously, each with its own separate rate function,
betali] (n, t), controlling the nth occurrence of event g,
at time #. That is, the event occurrence process is equivalent
to a single event-rate process governed by its composite-rate
function,

!
B, (0.6)= B (0,1)
i=1

When event occurrences in non-overlapping intervals are
independent, each (z,, #,) interval is governed by a nonhomo-
geneous Markoff process with rate B, (¢, ¢,).

[Hlv] (t) tl]r')

When a new event g; is added to or deleted from the dis-
tinguished class of events, B, (,7,) readjusts to include or
exclude the corresponding pli(, ¢,) function and the simula-
tion proceeds. This characteristic provides a simple and
straightforward method to simulate the effects of fault and
defect injections and removals.

REFERENCES
1. N. Roberts et al., fntroduction to Computer Simulation, Addison-Wesley,
Reading, Mass., 1983.

2. A, Papoulis, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, New York, 1965. B

MARCH 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

¢ All failures are observed when
they occur.

¢ Faults are immediately removed
upon failure or are not counted again.

¢ Execution time is the relevant

independent variable.

Many of these assumptions evoke
controversy and require further qualifi-
cation, so it is tempting to dismiss them.
In particular, the second assumption can
be made less restrictive: Faults produce
independent failures.

The final four assumptions are not at

all necessary to the technique we pre-
sent. The degree of commonality
among test space and use space is rarely
known, but can be modeled if needed.
Simulation can mimic the failure to
observe an error when it has occurred
and can also mimic any system outage
caused by an observed failure.’
Furthermore, simulation can easily dis-
tinguish those faults that have been
removed and those that have not, so
multiple failures from the same unre-
moved fault can be readily reproduced.
Finally, while execution time is per-
tinent to some life-cycle activities, it is
not appropriate to others, such as
inspections. Simulation can translate
all model-pertinent times to wall-clock
or calendar time by appropriate use of
workload, computer, and resource
schedules. This composite process is
embodied in a Monte Carlo simulation
tool, SoftRel,* which is available
through NASA’s Computer Software
Management Information Center and

IEEE SOFTWARE

on the diskette that accompanies
Handbook of Software Reliability
Engineering.’

But of what interest is a reliability-
process simulation tool to the software
practitioner? One powerful way of
understanding a pattern in nature is to
recreate it in a simulation or other rep-
resentative model. Because reliability is
one of the first-cited indicators of qual-
ity, a tool that can reproduce the char-
acteristics of the process that builds
reliability offers a potential for opti-
mization via trade-offs that involve
scheduling, resource allocation, and
the use of alternative technologies and
methodologies. The parameters that
characterize that process become met-
rics to be managed as means to achieve
prescribed levels of quality.

A simulation tool may vary from
simple to complex, depending on the
scope of the process being modeled
and the fidelity required by the user.
Most analytic models require only a
few inputs; SoftRel can use up to 70.

Earlier models could report only a few
facts about the unfolding process, but

SoftRel can report up to 90. Of course,
SoftRel can simulate the simple models
as well.

The 70 input parameters are spread
over the 14 activities that comprise the
reliability process. Thus, each sub-
process uses, on average, only five
parameters, some of which quantify
interrelationships among activities.
Each of the activity submodels is thus
fairly straightforward. You need not
simulate the entire process all at once.
If you only have data available on the
failure and repair portions of the
process, then you need input to the
simulator only the parameters that
characterize these activities.

At firsg, it may seem a daunting task
to have to give values to all the devel-
opment-environment parameters and
produce a project-resource allocation
schedule. But these tasks should

become progressively casier as experi-
ence locates the stable and volatile ele-
ments of the projects you undertake.
Besides, we believe that the elements
that characterize and control the
process must be estimated anyway —
whether the simulator uses them or not
— to understand and manage the relia-
bility process effectively. Parameters
such as the expected fault density and
the average defect-repair cost are
familiar values extracted from prior
project histories.

SIMULATION BUILDING BLOCKS

The software-reliability process is a
conditional event-rate process, which
means that the probability that an
event occurs in the interval (, t + df),
given that it has not oceurred prior to
time z, is equal to B(z) dr for some func-
tion B(¢). This process can be pro-
grammed in C like this®:

/* t and dt are assumed set
prior to this point */
events = 0;

T = 0.;
while (T < t)
{ T += dt;
if (chance
(beta(events,
* dt))
events++;

T)

}
/* the event has occurred a
number of times at
this point */

The dt in such simulations must
always be chosen such that the varia-
tions in the failure rate B(¢) over the

| incremental time intervals (z, z + dr) are
| negligible, and such that B(s) dr < 1, so

that the instantaneous event probabili-
ty does not reach unity.

In the code segment above,
chance(x) compares a (0, 1)-uniform

| random () value with %, thus attaining

the specified instantancous probability
function. The form of beta(events,
T) acknowledges that the event rate

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

Jelinski-Moranda

Goel-Okumoto
beta = 25* 0.1 * exp(-0.1 1)

beta =2.5* (1 -n/25)

AP Bt ==

10 20 30 40
Time, t

Musa-Okumoto
beta=4.5* /(1 + 0.5

beta =9 *0.3 *t(-0.7)

— |

PR S S S GOV T R N

30-
25—
207
15

Occurrences

1
40

Littlewood-Verraill
beta = 1.6 / sqrt{1 + 0.4 1)
’_

N

—_ =
[@RENE,]
T T I e T

Qccurrences

~—

M

—
O

% "0 20 30
(D)

Time, t
Yomada-S
beta = 1.8 * 0.2 texp(1 -0.21)
30~
25¢

N
O O
T

Occurrences

Figure 1. Simulation results based on six software-reliability models. Each diagram

shows the mean of the simulation results as the line marked “m”; the confidence

intervals above the standard deviation as the line marked “mi+s”; and the confidence
)

intervals below the standard deviation as the line marked “m-s.” The standard devi-

ation along the time line is presented as the line marked “s” at the bottom.

function may change over time and
may be sensitive to the number of
event occurrences up to the current
time. The computational complexity
of this algorithm is O(BT/Az), in con-
stant space. The B component repre-
sents the maximum time required to
compute B,(t). Even today’s moderate-
ly fast computers can easily handle this
level of complexity.

The preceding simulation illustra-
tion is simple and yet very powerful.
For example, some published analytic

models treat or approximate the overall
reliability growth as a nonhomoge-
neous Poisson process in execution
time, while others focus on Markoff
execution-time interval statistics. Many
of these differ only in the forms of
their rate functions':

¢ The Jelinski-Moranda model’
deals with adjacent time-interval sub-
processes in which B,(z) = f (n, - n),
where 7, 1s the (unknown) number of
inital faults and ¢ is the per-fault fail-
ure rate.

¢ The Goel-Okumoto model® deals
with overall reliability growth, in
which B(?) = 7,0 ¢, where nyand ¢ are
constant parameters. It can be shown
that this model produces results very
much like the Jelinski-Moranda model
with 7 =7, (1 - ¢®9).

¢ The Musa-Okumoto model” also
describes overall reliability growth, in
which B (7) = By / (1 + 67), where By is
the inidal failure rate and 6 is a rate-
decay factor. Both Byand 6 are constant
parameters.

¢+ The Duane model'® is another
overall reliability-growth model, where
B(t) = kbt*' and k and b are constant
parameters.

¢ The Littlewood-Verrall inverse
linear model'! is an overall reliability-
growth model with B() = ¢/ 1+ 4,
where ¢ and % are constant parameters.

¢ The Yamada delayed S-shape
model'? is yet another overall reliabili-
ty-growth model, with B() = ¢ vz &',
where ¢, the maximum failure rate, and
y are constant parameters.

SoftRel can simulate any of these six
models and use them as a basis for pre-
dicting the reliability of a given soft-
ware project. Although these analytic
models can be run using other com-
mercially available software, because of
their rigid, mathematical nature and
their dependence on hard data, these
models are of limited usefulness until
late in a project’s life cycle. SoftRel, on
the other hand, uses functions and

. parameters to much more accurately
¢ simulate the reliability of a given soft-

ware project. This makes SoftRel more
useful earlier in the project life cycle.
Figure 1 shows the results obtained
from simulating these six models and
their underlying reliability process.
Each of the simulation diagrams lists
the rate function (B) and its associated
parameters. The parameters are set up
such that there are initially about 25
faults in the system. We chose the
value of 25 to emphasize the variability

MARCH 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

of the failure processes at low fault |

rates; at higher fault concentrations,
the decreasing o/# produces smaller
deviations.

To simulate the occurrence of fail- |
ure versus testing time, we conducted

several simulations for each model.

Each diagram shows the mean of the
simulation results as the line marked |

“m”; the confidence intervals above the
standard deviation as the line marked
“m+s”; and the confidence intervals

below the standard deviation as the line |

marked “m-s.” The standard deviation
along the timeline is presented as the
line marked by “s” at the bottom. These
simulations neither validate nor invali-
date whether a particular model fits an
actual project’s data, but merely show
how easily the characteristics of such a

process can be comparatively analyzed.

Poisson-process simulation. The NHPP
is also easily simulated when the haz-
ard function A(z,,
form. The program for counting the
overall number of NHPP events that

will occur over a given time interval is

#define produce(x) \
random_poisson(x)
events = produce(lambda

(ta, tb));

t,) is known in closed

/* n is the fine

structure */
events += n;
t += dt;

The form of the cumulative rate
function 1ambda(t, t + dt) may be
extended to include a dependence on
events, thereby causing the algorithm
above to approximate a nonhomoge-
neous Markoff event-count process with
increasing fidelity as dt becomes suffi-
ciently small that multiple events per dt
interval become rare. As mentioned pre-
viously, however, the behavior of such
simulations may be indistinguishable,

i = event_index(n, t);
¢ = event_category(n, i):
events [c]++;

The overall event-classification scheme

. is thus encapsulated within a single

event_category () function for the
entire categorization of events.

Other event processes. Often in the

| software life cycle, if an event of one

type occurs there is a uniform proba-
bility p < 1 that another event of a dif-
ferent type will be triggered. For

| example, suppose that for each unit of

even at larger dt , on the basis of single |
realizations of the event process. This |

hybrid form can speed up the simulation
by removing the necessity of slicing
time into extremely small intervals.

This modified form of the simula-
tion algorithm is called the piecewise-
Poisson approximation of the Markoff
event-count process.

Muitiple categories of events. If the set

" of events {g; 7 = 1, ..., n} that were
classed together previously are now

partitioned into categorized subsets

- according to some given differentiation
criteria — for example, faults distin-

where random_poisson(x) is a subpro-- ;
gram that produces a Poisson-distrib- '

uted random value when passed the
parameter x. Donald Knuth has pub-
lished an algorithm for generating
Poisson random numbers."*

The time profile of an NHPP may
be simulated by slicing the (0, #) inter-
val into dt time slots, recording the

behavior in each slot, and progressively |

accumulating the details to obtain the
overall event-count profile, as in the
following algorithm:

t = 0.;

while (t < t_max)

{ n = produce(lambda
(t, ©t +dt));

IEEE SOFTWARE

guished as being critical, major, or

code generated there is a probability p
that a fault is created. If there are
| events of the first type, then the %
" events of the second type are governed
by the binomial distribution function,
| which is also easily simulated.'*

Moreover, when 7 itself is a Poisson
random variable with parameter A, the

- distribution of % is also Poisson, with
- parameter p A. Thus, occurrences of

minor — then the partitioning of |
events into categories likewise parti- |

tions their rate functions into corre-

sponding categories, to which integers

could be used as indices.

When an event occurs, the algo-
rithm shown in the box on page 78
produces the index of a rate function.
Finding this index among the catego-
rized subsets of integers relates the

event to the distinguished category of !

occurrences. You can thus easily simu-
late the behavior of multiple categories
of events by changing from a single
event counter, events, to an array of
event counters, events|[1, and alter-
ing the program as follows:

events of the second type may be sirnu-
lated without actually counting events
of the first type by using the pro-
duce () function with parameter p .

f#fdefine select(n, p) \
random_binomial{n, p)

n = produce(lambda(t, t + dt));
k = select(n, p);

Finally, when there is an ulti-
mate number of events N that a
Poisson process may reach before
it is terminated, and N is specified
in advance, then the growth of
events over time must be stopped
after the Nth occurrence. This type
of goal-limited process is also easily
simulated.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

Project
i characteristics

LN
Model ¢+ Resource

trenits and
schedule

2

i

Input file
£

:&:2&m;vwiwwa"ﬁf;lm!axr&t’zﬁﬁix
g

&
i
i
‘
#

SoftRel

:xmwilﬁw‘aﬁ!ﬁuumﬁ::

Facts vs.
time output

Figure 2. SoftRel execution context.
The two data sets of project attributes
and scheduled vesources are merged into
a single file for processing by SoftRel,
which outputs & file that can be imported
into a spreadsheet for further analysis.

General event-rate processes. The sim-
ulation method we describe here is
more general than required for pro-
duction of Markoff processes and
NHPPs. The Poisson-process simula-
tion algorithm just described springs
directy from our method, which can
simulate all event-rate random
processes.

Thus we can simulate life-cycle
activities that may have event-count
dependencies between nonoverlapping
time intervals as well as rate functions
that depend on variable schedules and
other irregularities over time.
Whenever event functions produce
homogeneous Markoff processes in a
piecewise fashion, the event processes
simulated during each of these seg-
ments will follow the piecewise-
Poisson approximation. The programs
presented previously can thus simulate
a much more general and realistic reli-
ability process than has been hypothe-
sized by any other analytic model
known to us.

The six programs described previ-
ously typify the methods traditionally
used to analyze stochastic processes
over a variety of input conditions.
From a programming perspective,

then, we require very little sophistica-
tion to simulate a reliability process.
Insight, care, and validation are
required, however, in modeling the
intricate system-dvnamic Interrelation-
ships among the various rate functions
that characterize that process.

SOFTREL

We have embodied these simulation
techniques in a reliability-process simu-
lation package, SoftRel. It simulates the
entire reliability life cvcle, including the
effects of interrelationships among
activities. For example, SoftRel pro-
vides for an increased likelihood of
faults injected into code as the result of
missing or defective requirements spec-
ifications. SoftRel also acknowledges
that testing requires the preparation
and consumption of test cases, and that
repairs must follow identification and
isolation. SoftRel further requires that
human and computer resources be
scheduled for all activities.

The SoftRel package is a prototype,
currently configured to simulate
processes having constant event rates
per causal unit. We do not advocate
that constant-rate processes necessarily
model software reliability, nor do we
endorse the prototype as a model ready
for industrial use. Rather, we regard it
as a framework for experimentation, for
generating data typical of analytic-
model assumptions for comparison
with actual collected project data, and
for inference of project characteristics
from comparisons. Other event-rate
functions will be accommodated in
later versions by changing current con-
stant rates and other parameters to
properly defined functions indicated by
project histories.

The current input to SoftRel con-
sists of a single file that specifies the dr
time slice, about 70 traits of the soft-
ware project and its reliability process,

and a list of activity, schedule, and
resource allocations. Internally, these
form a data structure called the model.
Also internally, the set of status moni-
tors at any given time are stored in a
data structure called facts, which
records

¢ the elapsed wall-clock dme,

¢ the time and resources consumed
by each activity — 42 measures in
total, and

+ a snapshot of 48 measures of pro-
ject status.

SoftRel outputs a single file that
contains the series of facts produced at
each dt interval of time. SoftRel simu-
lates two types of failure events: defects
in specification documents and faults in
code. Figure 2 shows the execution
context of SoftRel. A project’s charac-
teristics are divided into two contexts:

¢+ a fixed number of project attrib-
utes as embodied in numeric size and
rate parameters, and

+ a variable number of scheduled
resources to be applied, each designat-
ing the event to which it applies, the
time slot over which it is valid, the staff
(work resource per unit time), and
computer resources (CPU hours per
unit time) available.

Both of these data sets are merged
into a single file that forms the input
model processed by SoftRel. The cal-
culated response to the model is collect-
ed into a facts file and output by the
program in a form suitable for input to
a spreadsheet for plotting and further
analysis.

Major components. SoftRel is initial-
ized by setting sizes of items for con-
struction, integration, and inspection.

. These could have been designed just to
. equal the goal values given in the

model, but the model values are only
approximate. Sizes are set to Poisson
random values, with the model input
values as means.

In a typical software-engineering life

MARCH 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

cycle, several interrelated software-reli-
ability subprocesses take place concur-
rently. The simulator uses 14 major
components to characterize the activi-
ties in these subprocesses, with appro-
priate staffing and resource levels
devoted to each activity:

1. Document construction: The simu-
lator assumes that document genera-
tion and integration are piecewise-
Poisson approximations with constant
mean rates per workday specified in the
model, not to exceed the goal values.
Defects are assumed injected at a con-
stant probability per documentation
unit. At each injection of a defect, the
document hazard increases according
to the defect-detection characteristic.

2. Document integration: Document
integration consists of acquiring
reusable documentation, deleting
unwanted portions, adding new mater-
ial, and making minor changes. The
simulator assumes that each of these
subactivities is a goal-limited piece-
wise-Poisson approximation similar to
the document-construction process.
Fach subactivity results in defect cre-
ation. Documentation is integrated at a
constant mean rate per workday, and
defects are injected at a constant prob-
ability per documentation unit. Hazard
increases at each defect according to
the defect-detection characteristic
assumed. The total current documen-
tation units consist of new units, reused
minus deleted units, and added units;
changes do not alter the total volume
of documentation.

3. Document inspection: Document
inspection is a goal-limited, piecewise-
Poisson approximation of a type simi-
lar to document construction. Both
new and integrated reused documenta-
tion are assumed to be inspected at the
same rate and with the same efficiency.
Documentation is inspected at a mean
constant rate per workday. Inspected
units are allocated among new docu-
ments and reused documents in pro-

IEEE SOFTWARE

portion to the relative amounts of doc-
umentation in these two categories.
Defects detected during inspections
may not exceed those injected; the sim-

. exceed the total number of as vet
" undiscovered faults. The simulator
assumes that the fault-discovery rate is
proportional to the current accumulat-
ed fault hazard and the inspection effi-

ulator characterizes the discovery of

defects as a goal-limited binomial
process. The defect-discovery rate is
assumed to be proportional to the cur-
rent accumulated document hazard
and the inspection efficiency.

4. Document correction: Defect cor-
rections are produced at a rate deter-
mined by the staff level and the
attempted-fix rate given in the model.
Actual corrections take place according
to the defect-fix adequacy, not to
exceed the actual number of defects
discovered — a goal-limited, binomial
situation. Attempted fixes can also
inject new defects and can change the
overall amount of documentation.
True corrections decrease the docu-
ment hazard; the injection of new
defects increases it.

5. Code construction: Code produc-
tion follows the same formula as docu-
ment construction. However, the aver-
age pace at which faults are created is
influenced not only by the usual fault
density that may occur as a normal
consequence of coding, but also by the
density of undiscovered defects in doc-
umentation and by the amount of
missing documentation. Each fault
injected increases the code hazard.
However, whereas document defects
are found only by inspection, code
faults may be found by both inspection
and testing, and at different rates.

6. Code integration: Simulation of
code integration is similar to that for
document integration, except that code
units replace document units and cod-
ing rates replace documentation rates.
The fault-injection rate is of the same
form as that for code construction.
Each fault increases the code hazard.

7. Code inspection: Code inspection
mirrors document inspection. The
number of faults discovered will not

ciency. Because previously discovered
faults may not yet have been removed

at the time of discovery, the number of
newly discovered. faults is assumed to
be proportional to the number of as yet
undiscovered faults.

8. Code correction: Code-correction

" simulation follows the same algorithm

given for document correction, trans-

. lated to code units. Fault hazard is
- reduced upon correction of a fault and

increased if any new faults are injected

. by the correction process. Documen-

' tation changes are produced at

assumed constant mean rates per
attempted correction.

9. Test preparation: Test preparation
consists of producing a number of test

. cases in each dt slot in proportion to the

test-preparation rate, which is a constant

. mean number of test cases per workday.

10. Testing: Testing simulation has
two parts: If a test outage is in effect,

- the outage-time indicator decrements

and the time-and-effort indicator
increments; if an outage is not in

effect, failures occur at the modeled
rate — the number observed is com-

' puted as a binomial process regulated
* by the probability of observation. The

failure rate function returns a value

‘ proportional to the current hazard

level. The function also consumes
computer resources and test cases, the
latter at a mean constant rate.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

1600

1400
1200
1000 i

800

Key:
— Documentation goal
e Documentation produced
- Documentation inspected

Of those attempted, a select number
will really be repaired, while the rest
will mistakenly be reported as repaired.
Repairs are assumed here to be made
on faults identified for rework first. A
select number of new faults may be
created by the attempt, and code units
may be altered: deleted, added, or
changed. Attempted repairs take place
at a mean constant rate per workday.
13. Validation of repairs: The valida-
tion of attempted repairs takes place at
an assumed mean constant rate per
workday. The number of repairs vali-
dated may not exceed the number of
repairs attempted. The number of
faulty repairs detected is a select
number determined by the probability
that validation will recognize an unre-
paired fault when one exists and the
probability that unrepaired faults are
among those attempted repairs being
\ validated (the repair adequacy); the
10000 L detected bad fixes cannot exceed the
’ actual number of misrepaired faults.
Detected bad fixes are designated for
rework and removed from the unre-
paired, undiscovered fault count.

14. Retesting: Retesting takes place
at a mean constant number of retests
per workday and consumes computer

. resources at the scheduled rate per day.
No new test cases are generated or
consumed, because the original test
cases are assumed available for regres-
sion. Retesting is assumed to
encounter only those failures caused by
unrepaired faults.

600 1

«
2]
D
S
o
[

B

=
5}
5
o
@
£
2
o
o}
[a]

400 i~

200

| S _

0 0 200

e ! . . -
400 600 800 1000 1200 1400 1600

Time, days

Figure 3. Simulated document construction, integration, and inspection for the
CDS project. Although the volume of documentation units reached its goal, because of
inadequate resource allocation only abour 63 percent of the docunentation was actu-
ally inspected.

18,000 [

Key:

Code goal

14,000 - === Code produced
- Code inspected

16,000 |-

12,000

8,000

Code, source lines

6,000 -

4,000 -

800 1000
Time, days

600 1200 1400 1600

Figuve 4. Simulated code construction, integration, and inspection for the CDS pro-
Ject. The volume of code units reached its goal and 90 percent of the inspection goal
was met as well.

Input and output. SoftRel tracks 70
input model parameters and 90 output
facts parameters, all of which are
described fully elsewhere.* The input
file additionally contains a list of
staffing and computer-resource pack-

11. Fault identification: The total
number of failures analyzed may not -
exceed the number of failures
observed. Failures are analyzed at a

ing undiscovered, the adequacy of the
analysis process, and the probability of
faithful isolation.

12. Faulr repair: The number of

mean constant rate per workday. The
identification of faults is limited in
number to those still remaining in the
system. The isolation process is regu-
lated by the fraction of faults remain-

attempted repairs may not exceed the
number of faults identified by inspec-
tions and testing, less those corrected
after inspection, plus those identified
for rework by validation and retesting.

ets, each of which allocates resources
to specified activities and time slots.
Time slots may overlap or leave gaps,
at the discretion of the user. Such
schedules are the natural outcome of

MARCH 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

development-process planning and are
of fundamental importance in shaping
the reliability process. You need at
least 14 schedule packets to allocate
resources and time slots to each of the
14 assumed reliability process activi-
ties. More packets may appear when an
activity repeats or has a nonconstant
resource-allocation profile.

Output values consist of all product,
work, CPU, resource, fault, failure, and
outage values. These are time-tagged in
the form of a facts dama structure and
written to the output file at each dt
time interval for later scrutiny — plot-
ting, trending, and model readjust-
ments, for example — by other applica-
tion programs such as spreadsheets.

We intend that the reliability
process embodied in the prototype be
tairly comprehensive with respect to
what really transpires during software
development. The simulator therefore
requires parameters relating to the
ways in which people and processes
interact. The large number of parame-
ters in the simulator might, at first,
seem to present an overwhelming,
impractical barrier to modeling, but
you must remember that the true relia-
bility process is even more complex.
We felt that the number of parameters
used was the least that would be capa-
ble of reproducing the realism we
hoped for. Reducing the number of
parameters might cither reduce the
fidelity of the simulation or the gener-
ality of the reliability-process model.
Our assessment may change after suffi-
cient experimentation has taken place,
whereupon selective alterations or
combinations of the parameters may be
indicated. In any case, these parameters
could be independently estimated and
continuously refined with use.

If projects do not have sufficient
data about past projects to give values
to certain parameters, then sensitivity
analyses using SoftRel can indicate
which are the most influential and

IEEE SOFTWARE

Key:
— Defects injected
Defects detected
=== Defects removed

T

400 600

- L
800 1000 1200 1400 1600

Time, days

Figure 5. Simulated defect discovery and correction for the CDS project. All the
detected defects were corrected, but a sizable number of defects were inserted during
the correction period and more than 100 defects were left in the documents.

500 ‘

450
400
350 -

Key:
— Total faults injected
v Faults discovered
by inspection
Inspection faults
removed
- Faults discovered
by testing
=us Test faults removed

300
250 |-
200 -

150#

100 =

{
f

5ot /
ol o

i
[

/

- 1
0 200 400 600

1 i ! i
800 1000 1200 1400 1600

Time, days

Figure 6. Simulated fault injection, discovery, correction, and repair for the CDS
project. By the end of the project, about seven faults per KLOC had been found in
inspections and corvected, and about 22 faults per KLOC had been uncovered by test-
ing and removed; the fault density at delivery was about 0.2 faults per KLOC.

thereby in what area a metrics effort
may prove most useful in reliability
management. Alternatively, by making
some of the parameters inactive, users
may simplify the model to focus on
only one or two activities at a time.
This may be done by assigning typical
or default values to the parameters —
usually 0 or 1 — thereby reducing the

number of measured parameters to
only those deemed pertinent and real-
istic within the project context.

SOFTREL CASE STUDY

SoftRel has already been applied to
a real-world project: a subsystem of the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

-
4]
9]
2
-
9]
o
v
o
o

=2

'S
[N

Key:
—— Field data
« JM model
- MO model
+ LV model

+ Simulation

Calendar week

Figure 7. Comparative predictions of failures per week for the CDS project. The

SofiRel simulation technique produced a very good forecast that could have been used
Jor tracking the reliability status during the entire testing phase: the error deviance
Jor the simulation vesults is 24.5. As a comparison with the analytical software-relia-
bility model vesults, the ervor deviances for the Felinski-Moranda, Musa-Olkumoto,
and Littlewood-Verrall models are 38.8, 43.3, and 99.7, respectively.

Galileo Flight Project at the Jet
Propulsion Laboratory. Ilere we
describe that project, apply the simula-
tion technique, and compare the
results with those obtained from sever-
al traditional reliability models.

Project description. Galileo is an outer
planet spacecraft project that began in
1977, a mission that was originally enti-
tled “Jupiter Orbiter and Probe,” or
JOP. Unlike previous outer solar sys-
tem missions, the Galileo orbiter was
designed to remain in Jovian orbit for
an extended period. This would allow
observations of variations in planetary
and satellite features over time, aug-
menting the information obtained by
previous fly-by missions. Galileo was
launched in October 1989 and reached
the Jovian system in late 1995.

The Galileo spacecraft has two
major on-board flight computers,
largely embodied in software: The
Arttitude and Articulation Control
Subsystem, and the Command and
Data System. Our case study
focuses on the CDS software-relia-
bility profile.

The CDS flight software is real- -

time embedded software, written in
17,000 lines of assembly code (includ-
ing 500 reused lines), with about 1,400

pages of documentation (including
100 reused pages), produced over a
period of approximately 1,500 calen-
dar days, excluding weekends. This
project went through several design
reviews and code inspections, under-
went structured analysis and design,
and recorded and tracked failures dur-
ing its testing phase.

Estimations and results. WWhen simulat-
ing an end-to-end development project
based on data from the Galileo CDS
project, we took some of the project
parameters from project records, per-
sonnel within the project estimated
other values, and we chose the remain-
ing values as probably typical of this
project’s behavior despite the lack of
immediately available data for them.
For example, we adopted parameter
values we believed to be typical of
injecting faults in the correction and
repair processes. None of the model
input parameters was set to zero.

Thus, even though few verifiable
model parameters were available out-
side the testing phase, we were able
nevertheless to form an entire plausible
hypothetical model to illustrate simula-
tion of an end-to-end reliability
process. Lacking better development
life-cycle data, we presumed all CDS

activities other than testing — con-
struction, inspection, and anomaly
removal — took place serially, merely
to observe what their simulated behav-
iors would be. To view typical Markoff
reliability behavior, this overall study
also presumed that each activity took
place without resource and schedule
variations.

Figures 3 through 6 show the simu-
lated documentation, code, defect, and
fault profiles of the software, sampled
every 10 days. Of particular note are
the behaviors of the documentation,
code, injected defects, and injected
faults — precisely those activities for
which no project data exists. Because
the numbers of units are comparatively
large, the relative irregularity levels are
low, as predicted from Equation 2.

Figure 3 shows that the volume of
documentation units did reach its goal,
but in this case, only about 63 percent
of the documentation was actually
inspected, even though the model
placed a goal of 95 percent on inspec-
tion. This is an instance where inade-
quate resources were allocated to the
inspection process: More resources
would have been required to reach the
goal. The effects of correcting defects
on page count are not visible. The sec-
ond rise in documentation is due to the
integration of the reused 100 pages.

Figure 4 similarly shows that the

. volume of code units did reach its goal

and that the 90 percent inspection goal
was met as well. The effects of correct-
ing and repairing faults on code size,
however, are again not visible.

The injection, detection, and
removal of defects , shown in Figure 5,

| are a little noisier than documentation

and code production, but not much.
All the detected defects were corrected,
but a sizable number of defects were
inserted during the correction period,

! which spanned days 520 to 580.

Finally, more than 100 defects were
left in the documents.

MARCH 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

: . TABLE 1
~CDS TESTING SCHEDULE

Accumulated Begin
Week

Activity Failures

End
Week

Full-Time

Testers . CPU 'Usage‘ -

90 0
150) 5
300 13

Functional test
Feature test

Operational
test |

325 23

Operational
test 2

Operational 341 33

test 3

Figure 6 shows the fault activity, |
which exhibits the noisiest behavior of
all, but is sdll fairly regular. The initial
rise in injected faults resulted from con-
struction; the second rise, which is not
visible, resulted from integration; the
third, a sharp rise again, resulted from
the imperfect fault-correction process;
and the final, gradual rise resulted from
the imperfect fault-repair process. By
the end of the 1,500-day project, about |
seven faults per thousand lines of code
had been found in inspections and cor-
rected, and about 22 faults per KL.LOC
had been uncovered by testing and |
removed. "The fault density at delivery
was about 0.2 faults per KLOC.

Although we consider the final
fault-discovery count to be accurate,
the time profile of the simulation
results does not appear to be as irregu-
lar as the actual project data. It seems
likely, then, that the fault-discovery |
process here is probably not homoge-
neous, either. On the basis of this case
study, it appears that the simulation of
all reliability subprocesses will require
the use of nonhomogencous event-rate
models that reflect irregular workloads
and schedules of life-cycle activities.

Comparisons with other models. '1'o sim-
ulate the details of Galileo CDS testing
activity, we separated its testing phase
into five subactivities that had constant
staffing but irregular CPU and sched-
ule allocations, as Table 1 shows.
These schedule parameters were
obtained as those necessary to fit the
simulator output to project data. The
fit appears adequate to describe the
underlying naturc of the random-fail-
ure process.

Figure 7 shows the field data, the :

IEEE SOFTWARE

S 2.0
13 2.0
23 2.0

0:4
0:4
127

33 2.0 10

40 2.0 2.0

results obtained from the piecewise-
homogencous simulation process, and

- the results from three other models:
' Jelinski-Moranda, Musa-Okumoto,

and Litdewood-Verrall. For better vis-
ibility of process granularity, data is

- shown in the form of failures per week,
. rather than cumulatively. The JM,
i MO, and LV statistics were calculated

to be “one-weck-ahead” predictions, in
which all the failure data up to a given
week were used to predict the number
of failures for the next week.

Figure 7 shows that SoftRel’s simu-
lation technique produced a very good
forecast that could have been used for
tracking the reliability status during
the entire testing phase. The error
deviance for the SoftRel simulation
results in Figure 7 is 24.5, while the
error deviances for the JM, MO, and
LV modecls are 38.8, 43.3, and 99.7,
respectively. We conjecture that the
reliability forecast could have been
accurately simulated prior to the start
of testing, had actual schedule and
resource plans been used # priori. The
other models above were inadequate to
predict even one weck ahead; the LV
model turned out to be particularly
optimistic.

R eliability modelers seldom have
the luxury of several realizations

the underlying, random error and fail-
ure processes from the scant, uncertain
data they possess, but also with the
problem of best forecasting future fail-
ures from this single data sct.

The assumptions of the SoftRel
simulation approach are certainly less
restrictive than those underlying ana-
lytic models. The simulation approach
solves software-reliability prediction
problems by producing data conform-
ing precisely to the software-failure
assumptions. Simulation enables inves-
tigation of questions such as, “How
does a project’s observed data compare
with that emanating from an NHPP
having the following characteristics?”
and “Which analytic prediction model
is the best under the following assurnp-
tions?” We believe that the SoftRel
tool and its offspring will offer signifi-
cant potential to researchers and prac-
titioners in answering such questions,
in evaluating the sensitivity of predic-
tions to various error and failure mod-
eling assumptions, and in forecasting
softwarc-project status profiles, such as
time-lines of work products and the
progress of testing, fault isolation,
repair, validation, and retest efforts.

Simulation of a real-world project
reinforced our confidence in the validi-

| ty of the approach. We believe that
. homogencous Markoff event-count

models that uniformly consume

- resources do not adequately model the
| statistical failure profile of an actual
' project. The nonhomogeneous, vari-

able-resource-schedule event-rate sim-

i ulation model produced good early

of the same failure process to test their :

hypotheses concerning the nature of a
system’s reliability. Nor are they ever
provided with data that faithfully match
the assumed natures of their models.
Nor are they able to probe into the
underlying error and failure mecha-

: nisms in a controlled way. Rather, they
| are faced with the problem of not only |

guessing the forms and particulars of

forccasts of reliability growth that
could prove useful for process-status

! assessment.

We expect that further collabora-
tions between government agencies
and industry will continue to refine the

- reliability simulation technique and
! lead to a better understanding of the

reliability process and to improvements
in the SoftRel genre of tools. ®

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

=

ACKNOWLEDGMENTS

We thank Yi-Bing Lin of National Chiao Tung University and
Yu-Yun Ho of Bellcore for their valuable input. Portions of the
research described in this paper were carried out by the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

- W Kreutzer, Systern Simulation: Progranming Stypes and Languages,
Addison-Wesley, Reading, Mass., 1986.

. Z. Jelinski and P.B. Moranda, “Software Reliability Research,” in Statistical
Computer Performance Evaluation, E'W. Freiberber, ed.; Academic Press, San
Diego, Calif.,, 1972, pp. 465-484.

. AL. Goel and K. Okumoto, “Time-Dependent Error-Detection Rate
Model for Software Reliability and Other Performance Measures,” IEEE
Trans. Reliability, 1979, pp. 206-211.

9.J.D. Musa and K. Okumoto, “A Logarithmic Poisson Execution Time
Model for Software Reliability Measurement,” Proc. Seventh Int’l Conf.

REFERENCES Software Eng., IEEE CS Prests}j Los Alamitos, Calif., 1984, pp. 230—23f8.

1. J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability — Measurement, 10. J.'T. Duane, “Learning Curve Approach to Reliability Monitoring,” IEEE

7]

Prediction, Application, McGraw-Hill, New York, 1987. Trans. Aerospace, 1964, pp. 563-566.

2. ML.R. Lyu and A. Nikora, “Using Software Reliability Models More 11. B. Littlewood and J.L. Verrall, “A Bayesian Reliability Growth Model for
Effectively,” IEEL Software, July 1992, pp. 43-52. Computer Software,” 7. Royal Statistics Society, 1973, pp. 332-346.

3. A. von Mayrhauser et al., “On the Need for Simulation for Better 12.S. Yamada, M. Ohba, and S. Osaki, “S-Shaped Reliability Growth
Characterization of Software Reliability,” Proc. 4th Int’l Symp. Software Modeling for Software Error Detection,” IEEE Trans. Reliability, 1983,
Reliability Engineering, IEEE CS Press, Los Alamitos, Calif., 1993, pp. pp. 475-478.

264-273. 13. D.E. Knuth, The Art of Computer Programming: Semi-Numerical Algorithms,

4. R. Tausworthe, “A General Software Reliability Process Simulation Addison-Wesley, Reading, Mass., 1970.

Technique,” Tech. Report 91-7, Jet Propulsion Laboratory, Pasadena, 14. N. Roberts et al., Introduction to Computer Simulation, Addison-Wesley,
Calif., 1991. Reading, Mass., 1983.

S. Handbook of Software Reliability Engineering, MLR. Lyu, ed., McGraw-1Till 15. A. Papoulis, Probability, Random Variables, and Stochastic Processes,

and IEEE CS Press, New York, 1996. McGraw-Hill, New York, 1965.

Robert C. Tausworthe is a senior research engineer and the chief technologist of the
Information Systems Development and Operations Division of NASA’s Jet Propulsion
Laboratory. Previously, he served as software chief engineer of Deep Space Network
Digital Systems, manager of JPL’s Institutional Software Standards development, and
as deputy software manager of the Galileo project. He is the author of Standardized
Development of Computer Software (Prentice-Hall), 25 papers in software methodology
and analysis, and more than 100 papers in communications theory and mathematics.

Tausworthe received a BSEE from New Mexico State University and an MSEE and
PhD from the California Institute of Technology. He is a fellow of the IEEL and a
member of ACM and Sigma Xi.

Software
Reliability
Engineering

Handbook

by Michael R. Lyu

Contains the best
current software reliability engineer-
ing practices that can be applied to

a variety of real-world projects. It is

a definitive guide to today’s most-

i

Michael R. Lyu is a member of the technical staff at AT&T" Rescarch Laboratories.
Previously, he worked as a member of the technical staff at the Jet Propulsion
Laboratory, as an assistant professor in the clectrical and computer-engineering
department at the University of Iowa, and as a member of the technical staff in the
Applied Research Area of Bellcore. Lyu initiated the first International Symposium
on Software Reliability Engineering in 1990. He has edited two books, Software Fault
Tolerance (Wiley) and Handbook of Software Reliability Engineering IEEE and
McGraw-Hill) and has published more than 50 papers in the areas of software-relia-
bility engineering, software-fault tolerance, and distributed processing.

Lyu received a BS in electrical engineering from National Taiwan University, an
MS degree in electrical and computer engineering from UC Santa Barbara, and a PhD in computer science

850 pages. April 1996. from UCLA.
ISBN 0-07-039400-8.
Catalog # RS00030

$66.50 Members / $69.50 List

used reliability techniques, models,
tools, and solutions. This book/disk
set covers measurement, prediction,
and the effects of product process
metrics on operational software
behavior, It also decribes how to

apply this knowledge in specifying
and guiding software development,
acquisition, use, and maintenance.

Address questions about this article to Tausworthe at Jet Propulsion Laboratory, 4800 Oak Grove Dr.,
Pasadena, CA 91109; Robert.C. Tausworthe@jpl.nasa.gov; or Lyu at AT& T Research Labs, 600 Mountain
Ave., Murray Hill, NJ 07974; lyu@research.att.com.

To order call: +1-800-CS-BOOKS

MARCH 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

