
Although several models
have been proposed for

assessing software reliability,
none has emerged as the

most effective predictor. The
authors off er a general

simulation technique that
relaxes or removes many of

the usual reliability-modeling
assumptions and expands the

reliability process to
encompass the entire

software life cycle.

ROBERT C. TAUSWORTHE
l e t Propulsion laboratory

MICHAEL R. LYU
AT8T Research

oftxarc reliability has been the subject of wide study o\7er the past 20
years. At least 40 different niodels have heen published so far.’ Tllii:se
studies have focused primarily on proposing, analyzing, and evaluating
the performance of models that assess current reliability and forecast
future operability from observable failure data, using statistical inference
techniques. However, none of these models extends over the entire relia-
bility process; most tend to focus only on Failure observaiice during ttst-
ing or operations. Moreover, none of these reliability models h a s

emerged as the “best” predictor in all cases.?
Any of several factors may be responsible for this: oversiriiplification of the failure

process, the quality of observed data, the lack of sufficient data to make sound inferences,
and serious differelzces between the proposed inodel and the true underlying reliability
process or processes. T h e basic nature of the failure processes may conceivably differ
among individual sofhare developments.

W e propose a general simulation technique that relaxes or removes many of the usual
reliahility-inodcling assumptions and expands the reliability process to encompass 1:he
entire software life cycle. Some of these assumptions are

+ Testing or operations randomly encounter failures.
+ Failures in nonoverlapping time intervals are independent.
+ T h e test space “covers” the use space, or operational profile.

I E E E S O F T W A R E U 7 4 0 7459/96/$05 0 0 C 1996 l t k E

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

RELIABILITY-PROCESS SIMULATION THEORY

The fundamental assumption of reliahilig -process siniu-
lation is that every stochastic event results from an underly-
ing, instantaneous conditional event-rate random process.'

Discrete-event simulation framework. A conditional event-rate
process is one for which the probability that an event occurs
in the interval (t, t + dt), given that it has not occurred prior
to time t , is equal to p(t) dt for some function P(t) . The sta-
tistical behavior of this process is well-knoam': The proba-
bility that an event E will have occurred prior to a given time
t is related by the expression

When the events ofinterest are failures, P(t) is often
referred to as the pl-ocexr-haznid r-nte and h(0, t) is the totnl
hnza?d. Ifh(0, t) is hiown in closed form, the event probabil-
ity ca~i be analyzed as a function of time. But if many related
eveiits are intricately combined in P(t) , the likelihood of a
closed-form solution for event statistics dims considerably.
The expressions to he solved can easily become so con\-olut-
ed that calculation of results requires a computer pro-
grainined with comparatively coriiplex algorithms.

Of special interest here are discrete event-count process-
es that merely record the occurrences of rate-controlled
events over time. The function P,,(t) denotes the conditional
occurrence rate, given that the mh event has already
occurred by the time t. The integral of P,,(t) i s h(0, t). These
processes are termed nonhomogeneous when p,, (t) depends
explicitly on t. The probability PTr(t) that ir events occur in
(0, t) is much more difficult to express than Equation 1, and
docs not concern us here.

One important event-rate process is the discrete Markoff
process. A Markoff process is said to be homogeneous when
its rate function is sensitive only to time differences, rather
than to absolute time values. The notation P,,(t), in these
cases, signifies that t is measured from the occurrence time t,,
of the nth event.

When the hazard rate P,, (t) of a Markoff event-count
process is independent of 12, you may readily x-erify that the
general event-count behavior is a nonhomogeneous Poisson
process whose tilean and variance are given by

The homogeneous, constant-event-rate Poisson process
is dcscril-ied by h = Pt. Homogeneous Poisson-process statis-
tics thus only apply to the homogeneous Markoff event-
count process when the Markoff P,,(t) = P is constant.

Equation 2 shows that, as il increases, the percentage
deviation of the process decreases. In fact, any event process

xi-ith independence among events in nonoverlapping time
intervals will exhibit relative fluctuations that behave as

~

0 , a quantity that gets increasingly sinaller for larger
5 . This trend signifies that Poisson and Markoff processes

inT-olx-ing large numbers of event occurrences will tend to
become, percentagewise, relatively regular. If physical
processes appear to be very irregular, then it will be impossi-
ble to simulate them using independent-increment assump-
tions with regular-rate functions.

describing the overall software-reliability profile. Software
reliability grow only as faults are discovered and repaired,
and these el-ents occur only at a finite nuniber of times dur-
ing the life cycle. The true hazard rate presumably changes
discontinuously a t these times, whereas the NHPP rate
changes continuously. In any case, the event-count Markoff
model of sohvare reliability i s more general than the NHPP
form, in that there is no assumption that its cumulative rate
7, is independent of 7z or t,?,

In one sense, the NHPP form is inappropriate for

Multiple event processes. Conditional event-rate processes
are also characterized by the property that the occurrences
of several independent classes of events, E~ ,..., E~ with rate
functions P),"'(t), ..., P,,m(t), respectively, together behave as if
falgorithms of the single-event variety were running siinul-
taneously, each with its own separate rate Function,
b e t a [i] (n , t) , controlling the iith occurrence of event E,

at time t. That is, the event occurrence process is equivalent
to a single erent-rate process governed by its composite-rate
function,

ITlnen ex ent occurrences in non-overlapping intervals are
independent, each (t,, tb) interval is governed by a nonhomo-
geneous Alarkoff process with rate P,, (t, t,,).

i = 1

ITlen a new event E, is added to or deleted from the dis-
tinguished class of events, p,) (t , t r i) readjusts to include or
exclude the corresponding ~ j j (t , t,,) function and the simula-
tion proceeds. This characteristic provides a simple and
straightforward method to simulate the effects of fault and
defect injections and removals.

REFERENCES
1. S. Roberts et al.. h7ti-oiliirtiui7 tu Cunipiirei- Srmul~itio7z, Addison-Wesley,

Reading, .\lass., 1983.

M A R C H 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

+ All failures are observed when
they occur.

+ F d t s are immediately removed
upon failure or are not counted again.

+ Execution time is the relevant
independent variable.

NIany of these assumptions evokc
controversy and require further quahfi
canon, so it is tempting to dismiss them.
In partlcular, the second assumption can
be made less restricnve: Faults produce
independent failures.

The final four assumptlons are not at

all necessary to the technique we pie-
sent . 'The degree of commonal i ty
among test space and use space is rarely
known, but can be modeled if needed.
Simulation can mimic the failure to
observe an error when it has occurred
and can also mimic any system outage
caused by an observed failure.
Furthermore, simulation can easily dis--
tinguish those faults that have been
removed and those that have not, so
inultiple failures from the same unre-
moved fault can be readily reproduced.

Finally, while execution time is per--
tineiit to some life-cycle activities, it ir;
n o t appropriate to others , such a:i
inspections. Simulation can translate
all model-pertinent times to wall-clock
or calendar time by appropriate use of
workload , computer , and res ou r c t:
schedules. This composite process i:;
embodied in a Montc Carlo simulation
too l , SoftRel,' which is available
through NASA's Computer Software
Maiiagemeiit Inforination Center and

on t h e disket te t h a t accompanies
Handbook of Software Reliability
Engine el-ikg. '

But of what interest is a reliability-
process sirnulation tool to the software
practitioner? Oiie powerful way of
understanding a pattern in nature is to
recreate it in a simulation or other rep-
resentative model. Because reliability is
one of the first-cited indicators of qual-
ity, a tool that can reproduce the char-
acteristics of the process that builds
reliability offers a potential for opti-
mization via trade-offs that involve
scheduling, resource allocation, and
the use of alternative technologies and
methodologies. T h e parameters that
characterize that process become met-
rics to be managed as means to achieve
prescribed levels of quality.

A simulation tool may vary from
simple to complex, depending on the
scope of the process being modeled
and the fidelity required by the user.
Most analytic models require only a

become progressively easier a5 expzri-
ence locates the stable aiid volatile ide-
meiits of the projects you undertake
Besides, we believe that the elements
tha t character ize and cont ro l the
process must be estimated anyway -
whether the simulator uses them or not
- to understand and manage the relia-
bility process effectively. Paramel ers
such as the expected fault density ancl
the average defect-repair cost are
familiar values extracted from prior
project histories.

SIMULATION BUILDING BLOCKS

T h e software-reliability process is a
cond i t iona l euent-Pate process, which
means tha t the probability tha t an
event occurs in the interval (t, t + dt),
given that it has not occurred prior to
time t, is equal to p(t) dr for some func-
tion p(t). This process can be pro-
grammed in C like this6:

few Inputs; SoftRel can use Up to 70. / * and dt are assumed set
Earlier models could report only a few prior to this p o i n t * /
facts about the unfoldiiig process, but
SoftRel can report up to 90. Of course,
SoftRel can simulate the simple models
as well.

T h e 70 input parameters are spread
over the 14 activities that comprise the
reliability process. T h u s , each sub-

events = 0:
T = 0.;
while (T < t)
I T += dt;

if (chance
(beta(events, 3')
* dt)j
events++ :

I
Drocess uses. on average, onlv five / * the event has occurred a

Y l

parameters, some of which quantify
interrelationships among activities.
Each of the activity submodels is thus
fairly straightforward. You need not
simulate the ciitire process all at once.
If you only have data available on the
failure and repair por t ions of t h e
process, then you need input to the
simulator only the parameters that
characterize these activities.

At first, it may seem a daunting task
to have to give values to all the devel-
opment-environment parameters and
produce a project-resource allocation
schedule . But these tasks should

number of times at
this point * /

'l'he d t in such simulations inust
always be chosen such that the varia-
tions in the failure rate P (t) over the
incremental time intervals (t, t + d t) are
negligible, and such that P(t) dr < 1, so
that the instantaneous event prohahili-
ty does not reach unity.

In t h e code segment above,
chance (xj compares a (0, I)-uniform
random () value with x, thus attaining
the specified instantaneous probability
function. 'I'he form of beta(events,
T) acknowledges that the event rate

I E E E S O F T W A R E

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

Jelinski-Moranda
beta = 2.5 * (1 - n/25)

30 F

15c

[AI Time, t

Musa-Okumoto
beta = 4.5 * / (1 + 0.5t)
7.- - I

301

15
3

'0 10 20 30 40
[Cl Time, t

Littlewood-Verrall
beta = 1.6 / sqrt(1 + 0.4 t)
7--

Goel-Okumoto
beta = 25 * O 1 * exp(-0 1 t)

30

3

'0 10 20 30 40
[Bl Time, t

Duane
beta = 9 * 0.3 * t (-0.7)

"0 10 20 30 40
[Dl Time, t

Yamado-S
beta = 1.8 * 0.2 t exp(1 -0.2t)

m+s

m
30 -
25 -

?? 15'

5

n I

m+s

m
/ /---

30 -
25 -

"0 10 20 30 40 "0 10 20 30 40
[El Time, t [Fl Time, t

Figure 1. Simulation iresults based o n six so~~are- i -e l inb i l i~~i wodels. Each diagrmn
shows the meaiz of' the simulation results as the line ma7-keri ''vi "; t b e confidence
internals above the stazdaFFd deviation as the line mn?*ked ' h + s "; a i d the confidence
internals below the standaid deviation as the line marked "v-s . '' The s t a i d a d deevi-
atioz dong the time line is presented as the line marked 'Y' at the bottom.

function may change over time and
may be sensitive to the number of
event occurrences up to the current
time. T h e computational complexity
of this algorithm is O(BT/At), in con-
stant space. T h e @ component repre-
sents the maximum time required to
compute p,2(t). Even today's nioderate-
ly fast computers can easily handle this
level of complexity.

T h e preceding simulation illustra-
tion is simple and yet very powerful.
For example, some published analytic

models treat or approximate the overall
reliability growth as a nonhoinoge-
neous Poisson process in execution
time, while others focus on Markoff
execution-time interval statistics. Many
of these differ only in the forms of
their rate functions':

+ T h e Jelinski-Moranda model'
deals with adjacent time-interval sub-
processes in which @,,(t) = f (17" - n) ,
where 72" is the (unknown) number of
initial faults and @ is the per-fault fail-
ure rate.

+ T h e Goel-Okumoto model8 deals
with overall reliability growth, in
which @(t) = no $ e-$t, where q, and 4 are
constant parameters. I t can be shown
that this model produces results very
much like the Jelinski-lMoranda model
with n = q1 (I - 8').

+ T h e Musa-Okumoto model' also
describes overall reliability growth, in
which @ (t) = Bo / (1 + 8t), where Po is
the initial failure rate and 8 is a rate-
decay factor. Both Po and 8 are constant
parameters.

+ T h e Duane model'" is another
overall reliability-growth 'model, where
p(t) = kbt"' and h and b are constant
parameters.

+ T h e Littlewood-Verrall inverse
linear model" is an overall reliabili -

where 4, and h are constant parameters.
+ T h e Yamada delayed S-shape

model'* is yet another overall reliabili-
ty-growth model, with B(t) = 4 yt e('-?'),
where $, the maximum failure rate, and
yare constant parameters.

SoftRel can simulate any of these six
models and use them as a basis for pre-
dicting the reliability of a given soft-
ware project. Although these analytic
models can be run using other coin-
rnercially available software, because of
their rigid, mathematical nature and
their dependence on hard data, these
models are of limited usefulness until
late in a project's life cycle. SoftRel, on
the other hand, uses functions and
parameters to much more accurately
simulate the reliability of a given soft-
ware project. This makes SoftRel more
useful earlier in the project life cycle.

Figure 1 shows the results obtained
from simulating these six models and
their underlying reliability process.
Each of the simulation diagrams lists
the rate hmction (p) and its associated
parameters. T h e parameters are set up
such that there are initially about 2 5
faults in the system. W e chose the
value of 2 5 to emphasize the variability

growth model with P(t) E $/ 3 1 + ht ,

M A R C H 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

of the failure processes a t low fault
rates; a t higher fault concentrations,
the decreasing (r / ?1 produces smaller
deviations.

To simulate the occurreiice of fail-
ure versus testing time, we conducted
several simulations for each model.
Each diagram shows the mean of the
simulation results as the line marked
“m”; the confidence intervals above the
standard deviation as the line marked
“m+s”; and the confidence intervals
below the standard deviation as the line
marked “m-s.” The standard deviation
along the tiineline is presented as the
line marked by “s” at the bottom. These
simulations neither validate nor invali-
date whether a particular model fits an
actual project’s data, but merely show
how easily the characteristics of such a
process can be comparatively analyzed.

Poisson-process simulation. T h e NHPP’
is also easily simulated when the haz-
ard function h(t,l, ti,) is known in closed.
form. T h e program for counting the
overall number of N H P P events that:
will occur over a given time interval is

#define produce (x) \
random-poisson(x)

events = produce(1ambda
. . .

(ta, tb)):

where random_poisson(x) is a subpro-
gram that produces a Poisson-distrib-
uted random value when passed the
parameter X. Donald Knuth has pub-
lished an algorithm for generating
Poisson random numbers.”

T h e time profile of an NHPP may
be simulated by slicing the (0, t) inter--
val into dt time slots, recording the
behavior in each slot, and progressively
accumulating the details to obtain the
ovcrall event-count profile, as in the
following algorithm:

t = 0 . ;
while (t < t-max)
[n = produce(1ambda

(t, t + dt));

I E E E S O F T W A R E

/ * n is t h e fine
structure * I

events += n;
t += dt:

I

T h e form of the cumulative rate
function lambda(t, t + dt) may be
extended to include a dependence on
events, thereby causing the algorithm
above to approximate a nonhomoge-
neous Markoff event-count process with
increasing fidelity as d t becomes suffi-
ciently small that multiple events per d t
interval become rare. As mentioned pre-
viously, however, the behavior of such
simulations may be indistinguishable,
even at larger dt , on the basis of single
realizations of the event process. This
hybrid form can speed up the simulation
by removing the necessity of slicing
time into extremely small intervals.

This modified form of the simula-
tion algorithm is called the piecewise-
Poisson approximation of the Markoff
event-count process.

Multiple categories of events. If the set
of events {E~: i = I , ... , n} that were
classed together previously are now
partitioned into categorized subsets
according to some given differentiation
criteria - for example, faults distin-
guished as being critical, major, or
minor - t hen the par t i t ion ing of
events into categories likewise parti-
tions their rate functions into corre-
sponding categories, to which integers
could be used as indices.

W h e n an event occurs, the algo-
rithm shown in the box on page 78
produces the index of a rate function.
Finding this index among the catego-
rized subsets of integers relates the
event to the distinguished category of
occurreiices. You can thus easily simu-
late the behavior of multiple categories
of events by changing from a single
event counter, events, to an array of
event counters, events [I , and alter-
ing the program as follows:

i = event-.index(n, t) :
c = event-category(n, $ 1 :
events [cl++:

T h e overall event-classification scheme
is thus encapsulated within a sin:;le
event-category0 function for the
entire categorization of events.

Other event processes. Often in the
software life cycle, if an event of cine
type occurs there is a uniform proloa-
bilityp < 1 that another event of a dif-
fe ren t type will be t r iggered. € o r
example, suppose that for each unit of

code generated there is a probability p
that a fault is created. If there are n
events of the first type, then the k
events of the second type are governed
by the binomial distribution function,
which is also easily simulated.’’

Moreover, when n itself is a Poisson
random variable with parameter h, the
distribution of k is also Poisson, with
parameter p h. Thus, occurrences, of
events of the second type may be sirnu-
lated without actually counting events
o f the first type by using the p r o -
duce () function with parameter p h.

random_binomial(n, p)
#define select(n, p) \

. . .
n = produce(lambda(t, t + d t)) ;
k = s e l e c t (n , p) :

Finally, when the re is an ult i-
m a t e n u m b e r of events N t h a t a
Poisson process may reach before
i t is terminated, and N is specified
i n advance , t h e n t h e g r o w t h of
events over time must be stopped
after the Nth occurrence. Th i s type
of pal-limited process is also easily
simulated.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

olec
cteristics

\ /

Figure 2. SoftRel execution context.
The tmo data sets of project attributes
and scheduled 7Tesozwces are me7rged into
n single f i l e for processing by SoftRel,
which oi4 tp t . s a f i l e that caFz be imported
into a .qmzd.heet jbr filrther analysis.

General event-rate processes. T h e sirn-
d a t i o n method we describe here is
more general than required for pro-
duct ion of Markoff process'es and
NHPPs. T h e Poisson-process simula-
tion algorithm just described springs
directly from our method, which can
s imulate all event-rate randoni
processes.

Thus wc can simulate life-cycle
activities that may have event-count
dependencies between nonoverlapping
time intervals as well as rate functions
that depend on variable schedules and
o t h e r i r regular i t ies over t ime.
Whenever event functions produce
homogeneous LVarkoff processes in a
piecewise fashion, the event processes
simulated during each of these seg-
ments will follow t h e piecewise-
Poisson approximation. T h e programs
presented previously can thus simulate
a much more general and realistic reli-
ability process than has been hypothe-
sized by any o ther analytic model
kno\?ln to us.

T h e six programs described previ-
ously typifv the methods traditionally
used to analyze stochastic processes
over a variety of input conditions.
F r o m a programming perspective,

then, we require \-er]\- little sophistica-
tion to simulate a reliability process.
Ins ight , care , and n l i d a t i o n a r e
re quire d , h owe7-e r , i n ni o deli n g the
intricate systeni-d>-namic interrelation-
ships aniong the T-arious rate functions
that characterize that process.

SORREL

W e have embodied these simulation
techniques in a reliabilityprocess simu-
lation package, SoftRel. It simulates the
entire reliability life cycle, including the
effects of interrelatioiiships among
activities. For example, SoftRel pro-
vides for an increased likelihood of
faults injected into code as the result of
missing or defectire requirements spec-
ifications. SoftRel also acknowledges
that testing requires the preparation
and consumption of test cases, and that
repairs must follow identification aiid
isolation. SoftRel further requires that
human and computer resources be
scheduled for all actix-ities.

T h e SoftRel package is a prototype,
cur ren t 1 y c on f i g u r e d t o si mu1 a t e
processes having constant event rates
per causal unit. \Ire do not advocate
that constant-rate processes necessarily
model software reliability, nor do we
endorse the prototype as a model ready
for industrial use. Rather, we regard it
as a framework for experimentation, for
generating da ta tJ-pical of analytic-
in o d e 1 ass ump t i o n s for c o inp a r i s o n
with actual collected project data, and
for inference of project characteristics
from comparisons. Other event-rate
functions will be accommodated in
later versions by changing current coii-
stant rates and other parameters to
properly defined functions indicated by
project histories.

T h e current input to SoftRel coli-
sists of a single file that specifies the dt
time slice, ahout 70 traits of the soft-
ware project and its reliability process,

and a list of activity, schedule, and
resource allocations. Internally, these
form a data structure called the m o d e l .

Also internally, the set of status moni-
tors a t any given time are stored in a
data s t ructure called facts, which
records

+ the elapsed wall-cluck time,
+ the time and resources consumed

by each activity - 42 measures in
total, and

+ a snapshot of 48 measures of pro-
ject status.

SoftRel outputs a single file that
contains the series of facts produced a t
each dt interval of time. SoftRel simu-
lates two types of failure events: defects
in specification documents aiid faults in
code. Figure 2 shows the execution
context of SoftRel. A project's charac-
teristics are divided into two contexts:

+ a fixed number of project attrib-
utes as embodied in numeric size and
rate parameters, and

+ a variable number of scheduled
resources to he applied, each desigiiat-
ing the event to which it applies, the
time slot over which it is valid, the staff
(work resource per uni t time), and
computer resources (CPU hours per
unit time) available.

Both of these data sets are merged
into a single file that forms the input
model processed by SoftRel. T h e cal-
culated response to the model is collect-
ed into a facts file and output by the
program in a form suitable for input to
a spreadsheet for plotting and furthcr
analysis.

Major components. SoftRel is initial-
ized by setting sizes of items for coli-
struction, integration, and inspection.
These could have been designed just to
equal the goal values given in t h e
model, but the model values are only
approximate. Sizes are set to Poisson
random values, with the model input
values as means.

In a typical software-engineering life

M A R C H 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

cycle, several interrelated software-reli-
ability subprocesses take place concur-
rently. T h e simulator uses 14 major
components to characterize the activ-
ties in these subprocesses, with appro-
priate staffing and resource levels,
devoted to each activity:

I. Document consnu t ion : The siniu-
lator assumes that document genera-
tion and integration are piecewise-
Poisson approximations with coiistaiit
mean rates per workday specified in the
model, not to exceed the goal values,
Defects are assumed injected a t a con--
stant probability per documentation
unit. At each injection of a defect, the
document hazard increases according
to the defect-detection characteristic.

2. Document integrnfion: Document
in t e gr a t io n cons i s ts of acquir ing
reus ab 1 e tl o c LI 111 en t a ti on , de 1 e t in g
unwanted portions, adding new mater--
ial, and making minor changes. T h e
simulator assumes that each of these
subactivities is a goal-limited piece.-
wise-Poisson approxirna tion siinilar to
the document-construction process.
Each subactivity results in defect cre--
ation. Documentation is integrated at a
constant mean rate per workday, and
defects are injected at a constant prob-
ability per documentation unit. Mazard
increases at each defect according to
th e defect - d c t e c ti o n char act er i s ti 1:

assumed. T h e total current documen-
tation units consist of new units, reused
minus deleted units, and added units;
changes do not alter the total volume
of documentation.

3. Dorumeat inspection: Document
inspection is a goal-limited, piecewise-
Poisson approximation of a type simi-
lar to document constructioii. Both
new and integrated reused documenta-
tion are assumed to be inspected a t the
satne rate and with the same efficiency.
Documentation is inspected at a mean
constant rate per workday. Inspected
units are allocated among new docu-
ments and reused documents in pro-

I E E E S O F T W A R E

portion to the relatiLe amounts of doc-
umentation in these two categories.
Defects detected during inspections
may not exceed those injected, the sim-
ulator characterizes the discovery of
defects as a goal- l imited binoinial
p roces T h e defect-discoleery rate IS

assumed to be proportional to the cur-
rent dccumuhted document hazard
and the inspection efficiency

4 Document coi'F-ectzon Defect cor-
rections are produced a t d rate deter-
mined by the staff level and the
dttemptcd-fix rate given in the model.
Actual corrections take place according
to the defect-fix adequacy, no t t o
exceed the actual number of defects

exceed the total number of as yet
undiscovered faults. T h e simula.tor
assumes that the fault-discovery rate is
proportional to the current accumulat-
ed fault hazard and the inspection eff-
ciency. Because previously discovered
faults may not yet have been removed

discovered - a goal-limited, binomial a t the time of discovery, the nunibei- of
situation. Attenlpted fixes can also newly discovered faults is assumed to
inject new defects and can change the be proportional to the number of as yet
overall amount of documentat ion. undiscovered faults.
True corrections decrease the docu- , 8. Code c o v e c t i o n : Code-correction
inent hazard; the injection of new simulation follows the same algorithm
defects increases it. given for document correction, ti-ans-

5, Code c o m t m c t i o n : Code produc- lated to code units. Fault hazard is
tion follows the same formula as docu- reduced upon correction of a fault :md
ment construction. However, the aver- increased if any new faults are injected
age pace at which faults are created is , by the correction process. Documen-
influenced not only by the usual fault ' tat ion changes a re produced a t
density that may occur as a normal assumed cons tan t mean rates per
consequence of coding, but also by the , attempted correction.
density of undiscovered defects in doc- 9. Test pepa?patioiz: Test preparalion
unientat ion and by the amount of consists of producing a number of test
missing documentation. Each fault cases in each d t slot in proportion to the
injected increases the code hazard. test-preparation rate, which is a constant
However, whereas document defects mean number of test cases per workclay.
are found only by inspection, code 10. Testing: Testing simulation has
faults may be found by both inspection two parts: If a test outage is in effect,
and testing, and at different rates. the outage-time indicator decrements

6 . Code imp-ation: Simulation of and the t ime-and-effor t indicator
code integration is similar to that for increments ; if an outage is no't in
document integration, except that code effect, failures occur at the mode. ted
units replace document units and cod- rate - the number observed is coni-
ing rates replace documentation rates. puted as a binomial process regulated
1 he fault-injection rate is of the same by the probability of observation. The
form as that for code construction. failure r a t e function returns a v:ilue
Each ftlult increases the code hazard. proportional t o the current hazard

7. Code impection: Code inspection level. T h e function also consumes
mirrors document inspection. T h e ~ computer resources and test cases, the
number of faults discovered will not latter at a mean constant rate.

r 7

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

1600

1400

1200
z
7 3 :: 1000
.- :
% c 800

5 600 x
400

t

CI

200

Key:

B

- Documentation goal - Documentation produced
Documentation inspected

Key:
- Documentation goal - Documentation produced

Documentation inspected

'0 200 400 600 800 1000 1200 1400 1600
Time, days

Figure 3. Simulated document coi~sti-zictioi?, ii?tegi~~~tion1 nud iiispection fb i - the
CDS p u j e c t . Althozg-b the volume of'doo~'zmeritntior7 iizits renehed its goal, becnzise of'
inade.c/uate r-esource allocntion ov ly about 61 percent of the rlormreiitiitioi? irns nrtii-
ally inspected.

18,000

16,000

14,000

12,000
._ -
$ 10,000
3

97
a- 8,000

" 6,000
a

4,000

2,000

L~~ ~

Key:
~ Codegoal - Code produced

Code inspected

"0 200 400 600 800 1000 1200 1400 1600
Time, days

Figure 4. Si7nulated code comtmctioi i , iiitegi-ation, nizd impection for the CDS p7.0-

ject. The volume $code mits r-eached its g o n l mid 90 per-ceut of the iizspection g.onl
mas met as well.

1 I . E'ilult zdentlfziutzon T h e total
number of failures aiialyred n u y not
exceed t h e n u m b e r of failures
observed. Failures are aiialyxd a t a
iiiean constant rate per workday T h e
identification of faults is limited in
nunilier to those still remaining in the
system. 'The isolation process is regu-
lated by the fraction of faults remain-

ing undiscovered, the adequacy of the
analysis process, and the prohability of
faithful isolation.

12 . I;ilult wpnii.-: T h e number of
attempted repairs may not exceed the
number of faults identified by inspec-
tions and testing, less those corrected
after inspection, plus those identified
for rework by validation and retesting.

Of those atteinpted, a s e l e c t number
will really be repaired, while the rest
will mistakenly be reported a s repaired.
Repairs are assumed here to be made
on faults identified for rework first. A
select nuinbcr of iiew faults inay be
created by the attempt, and code units
n i ~ y be altered deleted, added, or
changed. Attempted repairs take place
a t a mean constant rate per workday.

13. Valzd~ztzon of i-epazrc T h e valida-
tion of attempted repairs takes place a t
'in assuined mean constant rate per
workday. '1 he number of repairs vali-
dated may not exceed the number of
1 epairs a t tempted T h e number of
faulty repairs detected 1s a select
nuniber determined by the probability
that validation will recognize an uiire-
paired fault when one exists and the
p r o h h l i t y that unrepaired faults are
among those attempted repairs being
validated (the repair adequacy), the
detected had fixes cannot exceed the
'ictual number of nii5repaired faults.
Detected b'id fixes are designated for
rework and removed from the unre-
paired, undiscovered fault count.

1 1 . Retesttng Retesting takes place
at a mean constant nuiiiber of retests
per workday and consuines computer
resources a t the scheduled rate per day.
No new test cases are generated or
coiisuined, because the original test
c a m are assumed available for regres-
sion Retes t ing 15 assumed t o
encounter only those failures caused by
unrepaired faults

Input and output. SoftRel tracks 70
input mode l parameters and 90 output
facts parameters, all of which are
described fully elsewhere.' T h e input
file addi t ional ly contains a list of
staffing and computer-resource pack-
ets, each of which allocates resources
to specified activities and time slots.
Time slots inay overlap or leave gaps,
a t the discretion of the user. Such
schedules arc the natural outcome of

M A R C H 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

dcvelopinent-process planning and are
of fundaiiiental importance in shaping
the reliability process. You need a t
least 14 schedule packets to allocate
resources and time slots to each of the
14 assurncd reliability process activi-
ties. More packets Inay appear when an
activity repeats or has a nonconstant
resource-allocatioii profile.

Output values consist of all product,
work, CPU, resource, fault, failure, and
outage values. These are time-tagged in
the form of a f a c t s data struchire and
written to the output file a t each d t
time in tend for later scrutiny - plot-
ting, trending, and m o d e l rcadjust-
ments, for example - by other applica-
tion programs such as spreadsheets.

We in tend t h a t t h e reIiahility
process etnboctiecl in the prototype be
fairly cornprehensive with respect to
what really transpires during sofnvarc
development. T h e simulator therefore
re quires par anie t er s re 1 a tin g to the
ways in which pcople and processes
interact. T h e large number of parame-
ters in the simulator might, a t first,
seem t o present an overwhelming,
iinpractical barrier to modeling, but
you must remember that the true relia-
bility process is even more complex.
W e felt that the number of parameters.
used was the least that would be capa-
ble of reproducing the realism we
hoped for. Reducing the number of
parameters might either reduce thc:
fidelity of the simulation or the gener-.
ality of the reliability-process model.
Our assessiiient may change after suffi-.
cient experimentation has taken place,
whereupon selective alterations o r
combinations of the parameters may he
indicated. In any case, these parameters
could be independently estimated ancl
continuously refined with use.

If projects do not have sufficieni;
data about past projects to give value:;
to certain parameters, then sensitivity
analyses using SoftRel can indicate:
which are the most influential and

500

450

400

350

300

3 250

200

150

100

50

U) c

E

/

/--
I

Key:
- Defects injected

Defects detected
I -*- Defects removed

I
1

8

/ s

0
0 200 400 600 800 1000 1200 1400 1600

Time, days

Fa’pre 5. Simulated c ie f i r t dzscovcty and cowectzon for t he CDS pi-(yect. All iLhe
detected deficts were iovected, hit a szznble m m l m of dej2ct.s were inserted d~iruig
the comer t im i period nnd more than 100 dejicts were le? in t h e dociinwntc.

400

350 ,

U

100 -

0

- - I /-
r___ J J - Key:

Faults discovered
by inspection

- Inspection faults
removed

Faults discovered I

-~ Toto1 faults inlected I

!
I

by testing /

-Test faults removed

L ~-

200 400 600 800 1000 1200 1400 1600
Time, days

Figwe 6. Szmiilated jiiilt itzjertzon, discoveiy, ro iv i t ion , and repair for the C DS
pl-qert. By the eiid of the prqeit , about m e i t faults per KLOC had been foulid Z I L

znspectzons nnd con-ected, and about 22 fa& per KLOC had been mcovered by ti’st-
zHg a d removed; the fnult deeuzszty at delivesy was about 0.2 faults pel7 KLOC.

thereby in what area a metrics effort
may prove iiiost useful in reliability
management. Alternatively, by making
some of the parameters inactive, users
may simplify the model to focus on
only one or two activities a t a time.
This may be done by assigning typical
or default values to the parameters -
usually 0 or 1 - thereby reducing the

number of measured parameters t o
only those deemed pertinent and real-
istic within the project context.

SOFCREL CASE STUDY

SoftRel has already been applied to
a real-world project: a subsystem of the

I E E E S O F T W A R E

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

30 -~~ -~ n Key:

25

% 20
T
L
a,

15
P
- .-
U

10

5

- Field data
JM model

- MOmodel
A LV model
+ Simulation

y x

/
1- ~~~ a

‘0 5 10 15 20 30 30 35 40 45
Calendar week

Gali leo F l ight Pro jec t ;It t h e J e t
Propuls ion Lal ioratory. I I e r c we
describe that project, api~ly the simula-
t ion technique, and compare t h e
results with those obtained from sever-
al traditional reliability models.

Project description. Galileo is an outer
planet spacecraft project that began in
1977, a mission that was originally enti-
tled “Jupiter Orbiter and Probe,” or
JOP. Unlike previous outer solar sys-
tein missions, the (Milco orbiter was
designed to remain in Jovian orbit for
an extended period. This would allow
oliservations of variations in planetary
and satellite features over time, aug-
menting the information obtained b y
previous fly-by missions. Galileo was
launchcd in October 1989 and reached
the Jovian system in late 1995.

T h e Galileo spacecraft has two
innjor on-board flight computers ,
largely embodied in software: T h e
At ti tu d e and Ar t i cu I a ti o n C o ii t rol
Subsystem, and thc Command and
D a t a S y s t e m . O u r c a s e s t u d y
focuses on the CDS software-relia-
hility profile.

‘l’he CDS flight software is real-
time embedded software, written in
17,000 lilies of assembly code (includ-
ing 500 reused lines), with about 1,400

pages of d o cum en t a t i on (including
100 reused pages), produced over a
period of approzirnately 1,500 calen-
dar days, excludiiig weekends. This
project went through several design
reviews and code inspections, under-
went structured analysis and design,
and recorded and tracked failures dur-
ing its testing phase.

Estimations and results. TT’hen sirnulat-
iiig an end-to-end dei-elopment project
based on data from the Galileo CDS
project, we took soine of the project
parameters from project records, per-
son n el iv i th i n the project estimated
other values, and we chose the rcmain-
ing values as probably typical of this
project’s hehavior despite the lack of
iininediately available data for them.
For example, we adopted parameter
values we believed to be typical of
injecting faults in the correction and
repair processes. S o n e of the m o d e l

input parameters was set to zero.
Thus , even though few verifiable

m o d e l parameters were available out-
side the testing phase, we were able
nevertheless to form an entire plausible
hypothetical model to illustrate sirnula-
t ion of an end- to-end reliability
process. Lacking better development
life-cycle data, we presumed all CDS

activities other than testing - con-
struction, inspection, and anomaly
removal - took place serially, merely
to observe what their simulated behav-
iors would be. T o view typical Markoff
reliability behavior, this overall study
also presumed that each activity took
place without resource aiid schedule
variations.

Figures 3 through 6 show the simu-
lated docurnentation, code, defect, and
fault profiles of the software, sampled
every 10 days. Of particular note are
the behaviors of the documentation,
code, injected defects, and injected
faults - precisely those activities for
which no project data exists. Because
the numbers of units are comparatively
large, the relative irregularity levels arc
low, as predicted from Equation 2.

Figure 3 shows that the volume of
docuinentation units did reach its goal,
but in this case, only about 63 percent
of the documentat ion was actually
inspected, even though t h e m o d e l

placed a goal of 95 percent on inspec-
tion. This is an instance where inade-
quate resources were allocated to the
inspection process: More resources
would have been required to reach the
goal. T h e effects of correcting defects
on page count are not visible. T h e sec-
ond rise in docurnentation is due to the
integration of the reused 100 pages.

Figure 4 similarly shows that the
volunie of code units did reach its goal
and that the 90 percent inspection goal
was met as well. T h e effects of correct-
ing aiid repairing faults on code size,
however, are again not visible.

T h e inject ion, de tec t ion , aiid
removal of defects , shown in Figure 5,
are a little noisier than documentation
and code production, but not much.
All the detected defects were corrected,
but a sizable number of defects were
inserted during the correction period,
which spanned days 5 2 0 t o 580.
Finally, niore than 100 defects were
left in the documents.

M A R C H 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

5
13

2 3

33

Figure 6 shows the fault activity.,
which exhibits the noisiest behavior of
all, but is still fairly regular. T h e initial
rise in injected Faults resulted froin con-
struction; the second rise, which is not
visible, resulted from integration; the
third, a sharp rise again, resultcd from
the imperfect fault-correction process:,
and the final, gradual rise resulted froin
the imperfect fault-repair process. By
the end of the 1 ,SOO-day project, about.
seven faults per thousand lines of code
had been found in inspections and cor-
rected, and about 22 faults per K I D C
had been uncovered by testing and,
removed. ‘I‘hc fault deiisity at delivery
was about 0.2 faults per KLOC.

Although we consider t h e final
fault-discovery count to be accurate.,
the t imc profile of t h e simulation
results does not appear to he as irregu-.
lar as the actual projcct data. It seeins
likely, then, that the fault-discovery
process here is probably not homoge-
iieous, either. OTI the basis of this cast.
study, it appears that the simulation of
all rcliability subprocesses will requirt:
the use of iioiilioinogcneous event-rate
models that reflect irregular workloads
and schedules of life-cycle activities.

Comparisons with other models. ‘1.0 sim--
ulate the details of Galileo CDS testing
activity, we separated its testing phase
into five subactivities that had constant:
staffing hut irregular CPU and sched--
ule allocations, a s T a b l e 1 shows.
’I’hese schedule parameters wert .
obtained as those necessary to fit thc
simulator output to project data. ’I‘ht:
fit appears adequate to describe the
underlying nature o f the randon-fail-
lire process.

1;igure 7 shows the field data, the

I E E E S O F T W A R E

13

2 3

33

40

results obtained from the piecewise-
hotnogcncoiis simulation pro
the results from three other models
J e 1 ins ki -MO r an d a , M u s a - 0 kumo t o ,
and 1,ittleuood-Verrall. For bctter vis-
ihility of process granularity, data IS

shown in tlic form of falures per weck,
ra ther than cuniulatively. T h e JiM,
MO, and LV statistics were calculated
to be “one-week-ahead” predictions, in
which all the failure data LIP to a given
week were used to predict the number
of failures for the next week

Figure 7 shows that 5oftKel’s simu-
lation technique produced a very good
forecast that could have been used for
trackiiig the reliability status during
the ent i re testing phase. T h e e r i o i
devzance for the SoftRel simulation
rcsults in Figure 7 is 24 5, while the
error deviances for the JLU, ,UO, and
LV inodcls are 18.8, 43.3, and 99.7,
respectively. W e conjecture that the
reliability forecast could have been
accurately simulated prior to the start
of testing, had actual schedule and
resource plans been used a pt’zoi-z. T h c
other models above were inadequate to
predict even one weel, ahead, the LV
model turned out to be particularly
optirnistic

eliability modelers seldom have R the luxury of several realizations
of the same failure process to test their
hypotheses concerning the iiatllre of a
system’s reliability. Nor are they ever
provided with data that faithfully match
the assumed natures of their models.
N o r are they able to probe into the
underlying error and failure inechd-
niwi5 in a controlled way. Rather, they
are faced with the problem of not only
guessing the forms and particulars of

the underlying, random error and fail-
ure processes from the scant, uncert a n
data they possess, but also u i th the
problem of best forecasting future fail-
ures froin &is single data set

T h e assuinptions of the Softliel
simulation approach arc certainly less
restrictive than those underlying ana-
lytic models T h e simulation approach
solves software-relidbility prediction
problems by producing data confoi in-

ing precisely to the softu are-fail tire
assumptions. Simulation enables in\ es-
tigation of questions such as, “ H o w
does a project’s observed data compare
with that emanciting from an NHPP
having the following char‘icteristits~”
and “Which malytic prediction inodel
is the best under the following assui lip-
tioiis2” W e believe that the Soft Re1
tool and i t s offspring vi11 offer signifi-
cant potential to researchers and prac-
titioiiers i n answering such questions,
111 ev,iluating the seiisitivity of predic-
tions to various error a i d failure m > d -
eling assumptions, m d in forec‘isting
softwarc-project status profiles, such as
time-lines of work products and the
progress of testing, fault i s o l a t i 311,

repair, validauon, and retest efforts
Simulation of a real-world project

reinforced our confidence in the \a1 idi-
ty o f the approach. We believe that
h o tn o g c n e o u s Ll/la r ko ff even t - co I in t
in o d cl s tha t u n 1 fo rm 1 y con sum e
resources do not adequately model the
statistical failure profile of aii actual
project. T h e nonhomogeneous, v x -
able-resource-schedule event-rate s 1x1-

ulation model produced good early
forecasts of reliability grou th that
could prove useful for proccss-status
assc~sriient

W e expect that further collabora-
tions between government agcnc ies
and industry ~ 1 1 1 coiitiiiue to refine the
reliability simulation technique and
lead to a better understanding of the

and to improvemtiits
in the SoftRel genre of tools

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS
We thank Yi-Ring T i n of National Chiao T u n g University and

Yu-Yun Ho of Rel lcore for the i r valuable input . P o r t i o n s of t h e
r c s e a r c h d e s c r i b e d in t h i s p a p e r w e r e c a r r i e d o u t b y the J e t
Propulsion Laboratory, California Iiistitute of Technology, uiider a
contract with t h e Nat iona l Aeronautics a n d Space Administration.

REFERENCES
1.J.D. !Uusa, A. Janiiiiio, aiid I<. Okumoto, Soficnr-e Reiinbilq ~

P ~ e d i ~ t z o n , Appl~cution, McGraw-Hill, New York, 198T
kora, “Using Software Reliability \lodcls \lorc
o j h a r - e , Ju ly 1992, pp. 43-52.

3. A. voii Mayrhauser et al., “On the hTeed for Simulntion for Better
Reliahility,” Proc. 4th ht‘l Sjnrp. Sufii.117-e
CS Prcss, Los .Mamito\, Calif., 1993, p p

264.273.

Technique,” Tech. Report 9 1-7, Jet Propulsion Laboraton, Pasadena,
Calif., 1991.

4. li. ‘I‘auswoi-the, “A General Sofbare Reliability Process Simulation

of Soj’hn7-~ Rebnhility Enginee7&g, Sl-u, cd., McGr-aa -1Iill
C S Press, New York, 1996.

6. IT-. Kreutzer, S y s t e m Siniiilntioii: Pl-ogl-milmi7zg Stypes n7zd Lnngziages,

7 . Z. Jelinsh and P.B. Ahranda, “Software Reliability Research,” in Srntzsticnl
.iddison-IIesley, Reading, Mass., 1986.

Coiirputei- Peifoi?niince Evnliiutio7z, E W. Freiherber, ed., Acadeinic Press, San
Diego. Calif., I X Z , pp. 465-484.

S. AL. Goel aiid K. Okumoto, “Time-Dependent Error-Dctcction Rate
\lode1 for Sofni are Reliability aiid Other Performance Measures,” I?
Ti-mis. Reliniiiii?y, 1979; pp. 206-211.

9. J.D. M u ? a and K. Okuinoto, “A Logarithmic Poissoii Execution Time
llodel for Softnare Reliability Measurement,” P~TJC. Seveizrh Int’l COT$

10 J.T Duane, “Learning Curve Approach to Reliability Monitoring,” IEEE
%-oiis. .-Jei-ospoce, 1964, pp. $63.566.

11. B. Littlen ood a n d J.S. Verrall, “A Rayesim Reliability Growth Model for
Computer Sofh\arc,”y. Roynl Sratirticr Society, 1973, pp. 332-346.

12. S . Yamada. \I. Ohha, and S. Osaki, “S-Shaped Kcliahiiity Growth

CS Press, Los Alaniitos, Calif., 1984, pp. 230-238.

r Software Error Detection,”

1 3 . D.E. Ihuth , The Art of Coniputei- Pl-opmmzng: Semi-Numeiicni A l p i t h i s ,

I+. X. Roberts et al., Izin.orlzicrio77 t o Computer- Szmulatzuiz, Addison-Wesley,

1.5. A. Papoulis, l‘7-obdzlity, Rnizdoin Vn7*mble.s, aizd StochaJtic Pi-ocesses,

Addison-IVesley, Reading, Mass., 1970.

Reading, I l a s . , 1‘183

AlcGraw-Hill, S e w York, 1965.

by Michael R. Lyu

C o n t a i n s t h e best
c u r r e n t softmwe rcliahtlity e n g i n e e r -
ing prac t ices that can he a p p l i e d t o
a var ie ty of 1-eal-worlci p ro jec ts . I t is
a def in i t ive g u i d e to t o d a y ’ s inost-
uscd reliabil i ty t e c h n i q u e s , moclels,
t o o l s , aiid s o l u t i o n s . This tx)ok/disk
s e t cover5 xneasurc incnt , p r e d i c t i o n ,
and the ef fec ts o f p r o d u c t p r o c e s s
r i ie t r ics on o p e r a t i o n a l s o f t w a r e
b e h a v i o r . I t also deci-ilxs how t o
apply t h i s knowledge i n s p e c i f y i n g
and g u i d i n g s o f t w a r e developincnt,
a c q u i s i t i o n , use, and m a i n t e n a n c e .

850 pages. April 7 996.

Catalog # RS00030
$66.50 Members / $69.50 List

ISBN 0-07-039400-8.

To order call: +1-800-CS-BOOKS

Robert C. Tausuorthe is a senior research engineer and the chief technologist of the
Intormation SI stems Del elopiiient a i d Operatmiis Dimion of NASA’s Jet Propulsion
Lahornton Prel iOU5h he sened as software chief e i i p e e i of Deep Space Netu~irk
D i p l ST ?terns manager of JPL’s Insntutional Software Standaids development, aiid
as depun soh\ are manager of the Galileo project I le is the author of Stuiziln&xd
Dr;elopmeizt o j Coiiipritei Yojkaz e (Prenuce-Hall), 25 papers in aoftware inethoddogy
and malvsis, and more than 100 papers in cornniuiiicatioiis theorv and mathematics

1 ~ U S M orthe ieceir ed a USkk froin New Mcxico Statc Univ~rsity ai
PhD fi 0111 the Calitoi nia Insutute ofTechnology He is a fellow of the
niembei of iC \ l and S i p a x1

,
1 ’ Laboratory, as aii assistant protcssor in the electrical aiid coinputcr enginccring
I departinelit at the University of Iowa, aiid as a incmbcr of thc technical \taff in thc

kpplied Reseaich k e a of Bellcore Lyti initiated the first liiteriiatioiial Symposium
on S o h a ie Reliabilih bngineering in 1990 H e has edited two books, Sofinre Fnult
1 ole7 n i ~ i e (Wilev) and ~~n:ln?z&ook’ of Sof~~n?e Keinbzbty Eng17?eerzng (IEEE diid
McGrau -Hill) and has publirlied moie than 50 papers in the areas of software-reha-
hilitv engineering, software fault tolei ance, and distributcd processing

Lni recen ed a RS in eleitrical engineering froin National Taiwan University, an

Lhchael R. Lyu is a iiiernher of the technical staff a t A T K l Rcscarch Laboratorics
Preriousl), he worked a? member of the technical staff a t the Jet Propulsion

M S tlegiee in electiical m d Computer engineering froiii U C Santa Barbara, and a PhD in computer science
from UCLh

iddress questions about this article to Tausworthe a t Jet Propulsioii Laboratory, 4800 Oak Grove Dr.,
Pasadena, CL\ 91 109, Kobert.C.Tauswortlie@jpi.nasa.gov; or Syu a t AT&T Research Labs, 600 Mountain
Ave., Murray Hill, NJ 07974; lyu@research.att.coin.

M A R C H 1996

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore. Restrictions apply.

