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oftxarc reliability has been the subject of wide study o\7er the past 20 
years. At least 40 different niodels have heen published so far.’ Tllii:se 
studies have focused primarily on proposing, analyzing, and evaluating 
the performance of models that assess current reliability and forecast 
future operability from observable failure data, using statistical inference 
techniques. However, none of these models extends over the entire relia- 
bility process; most tend to focus only on Failure observaiice during ttst- 
ing or  operations. Moreover, none of these reliability models h a s  

emerged as the “best” predictor in all cases.? 
Any of several factors may be responsible for this: oversiriiplification of the failure 

process, the quality of observed data, the lack of sufficient data to make sound inferences, 
and serious differelzces between the proposed inodel and the true underlying reliability 
process or processes. T h e  basic nature of the failure processes may conceivably differ 
among individual sofhare  developments. 

W e  propose a general simulation technique that relaxes or removes many of the usual 
reliahility-inodcling assumptions and expands the reliability process to encompass 1:he 
entire software life cycle. Some of these assumptions are 

+ Testing or operations randomly encounter failures. 
+ Failures in nonoverlapping time intervals are independent. 
+ T h e  test space “covers” the use space, or operational profile. 
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RELIABILITY-PROCESS SIMULATION THEORY 

The  fundamental assumption of reliahilig -process siniu- 
lation is that every stochastic event results from an underly- 
ing, instantaneous conditional event-rate random process.' 

Discrete-event simulation framework. A conditional event-rate 
process is one for which the probability that an event occurs 
in the interval (t, t + dt), given that it has not occurred prior 
to time t ,  is equal to p(t) dt  for some function P(t) .  The sta- 
tistical behavior of this process is well-knoam': The proba- 
bility that an event E will have occurred prior to a given time 
t is related by the expression 

When the events ofinterest are failures, P(t) is often 
referred to as the pl-ocexr-haznid r-nte and h(0, t )  is the totnl 
hnza?d. Ifh(0, t) is hiown in closed form, the event probabil- 
ity ca~i  be analyzed as a function of time. But if many related 
eveiits are intricately combined in P(t) ,  the likelihood of a 
closed-form solution for event statistics dims considerably. 
The  expressions to he solved can easily become so con\-olut- 
ed that calculation of results requires a computer pro- 
grainined with comparatively coriiplex algorithms. 

Of special interest here are discrete event-count process- 
es that merely record the occurrences of rate-controlled 
events over time. The  function P,,(t) denotes the conditional 
occurrence rate, given that the mh event has already 
occurred by the time t. The integral of P,,(t) i s  h(0, t). These 
processes are termed nonhomogeneous when p,, (t) depends 
explicitly on t. The  probability PTr(t) that ir events occur in 
(0, t) is much more difficult to express than Equation 1, and 
docs not concern us here. 

One important event-rate process is the discrete Markoff 
process. A Markoff process is said to be homogeneous when 
its rate function is sensitive only to time differences, rather 
than to absolute time values. The  notation P,,(t), in these 
cases, signifies that t is  measured from the occurrence time t,, 
of the nth event. 

When the hazard rate P,, (t) of a Markoff event-count 
process is independent of 12, you may readily x-erify that the 
general event-count behavior is a nonhomogeneous Poisson 
process whose tilean and variance are given by 

The  homogeneous, constant-event-rate Poisson process 
is dcscril-ied by h = Pt.  Homogeneous Poisson-process statis- 
tics thus only apply to the homogeneous Markoff event- 
count process when the Markoff P,,(t) = P is constant. 

Equation 2 shows that, as il increases, the percentage 
deviation of the process decreases. In fact, any event process 

xi-ith independence among events in nonoverlapping time 
intervals will exhibit relative fluctuations that behave as 

~ 

0 , a quantity that gets increasingly sinaller for larger 
5 . This trend signifies that Poisson and Markoff processes 

inT-olx-ing large numbers of event occurrences will tend to 
become, percentagewise, relatively regular. If physical 
processes appear to be very irregular, then it will be impossi- 
ble to simulate them using independent-increment assump- 
tions with regular-rate functions. 

describing the overall software-reliability profile. Software 
reliability grow only as faults are discovered and repaired, 
and these el-ents occur only at a finite nuniber of times dur- 
ing the life cycle. The true hazard rate presumably changes 
discontinuously a t  these times, whereas the NHPP rate 
changes continuously. In any case, the event-count Markoff 
model of sohvare reliability i s  more general than the NHPP 
form, in that there is no assumption that its cumulative rate 
7, is independent of 7z or t,?, 

In one sense, the NHPP form is inappropriate for 

Multiple event processes. Conditional event-rate processes 
are also characterized by the property that the occurrences 
of several independent classes of events, E~ ,..., E~ with rate 
functions P),"'(t), ..., P,,m(t), respectively, together behave as if 
falgorithms of the single-event variety were running siinul- 
taneously, each with its own separate rate Function, 
b e t a  [i] ( n ,  t) , controlling the iith occurrence of event E, 

at  time t. That is, the event occurrence process is equivalent 
to a single erent-rate process governed by its composite-rate 
function, 

ITlnen ex ent occurrences in non-overlapping intervals are 
independent, each (t,, tb) interval is governed by a nonhomo- 
geneous Alarkoff process with rate P,, (t, t,, ). 

i = 1  

ITlen a new event E, is added to or deleted from the dis- 
tinguished class of events, p,) ( t , t r i )  readjusts to include or 
exclude the corresponding ~ j j ( t ,  t,, ) function and the simula- 
tion proceeds. This characteristic provides a simple and 
straightforward method to simulate the effects of fault and 
defect injections and removals. 
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+ All failures are observed when 
they occur. 

+ F d t s  are immediately removed 
upon failure or are not counted again. 

+ Execution time is the relevant 
independent variable. 

NIany of these assumptions evokc 
controversy and require further quahfi 
canon, so it is tempting to dismiss them. 
In partlcular, the second assumption can 
be made less restricnve: Faults produce 
independent failures. 

The  final four assumptlons are not at 

all necessary to the technique we pie- 
sent .  'The degree of commonal i ty  
among test space and use space is rarely 
known, but can be modeled if needed. 
Simulation can mimic the failure to 
observe an error when it has occurred 
and can also mimic any system outage 
caused by an observed failure. 
Furthermore, simulation can easily dis-- 
tinguish those faults that have been 
removed and those that have not, so  
inultiple failures from the same unre- 
moved fault can be readily reproduced. 

Finally, while execution time is per-- 
tineiit to some life-cycle activities, it ir; 
n o t  appropriate  to others ,  such a:i 
inspections. Simulation can translate 
all model-pertinent times to wall-clock 
or calendar time by appropriate use of 
workload , computer  , and res ou  r c t: 
schedules. This  composite process i:; 
embodied in a Montc Carlo simulation 
too l ,  SoftRel,' which is available 
through NASA's Computer Software 
Maiiagemeiit Inforination Center and 

on  t h e  disket te  t h a t  accompanies  
Handbook of Software Reliability 
Engine el-ikg. ' 

But of what interest is a reliability- 
process sirnulation tool to the software 
practitioner? Oiie powerful way of 
understanding a pattern in nature is to 
recreate it in a simulation or other rep- 
resentative model. Because reliability is 
one of the first-cited indicators of qual- 
ity, a tool that can reproduce the char- 
acteristics of the process that builds 
reliability offers a potential for opti- 
mization via trade-offs that involve 
scheduling, resource allocation, and 
the use of alternative technologies and 
methodologies. T h e  parameters that 
characterize that process become met- 
rics to be managed as means to achieve 
prescribed levels of quality. 

A simulation tool may vary from 
simple to complex, depending on the 
scope of the process being modeled 
and the fidelity required by the user. 
Most analytic models require only a 

become progressively easier a5 expzri- 
ence locates the stable aiid volatile ide- 
meiits of the projects you undertake 
Besides, we believe that the elements 
tha t  character ize  and cont ro l  the 
process must be estimated anyway - 
whether the simulator uses them or not 
- to understand and manage the relia- 
bility process effectively. Paramel ers 
such as the expected fault density ancl 
the  average defect-repair cost are 
familiar values extracted from prior 
project histories. 

SIMULATION BUILDING BLOCKS 

T h e  software-reliability process is a 
cond i t iona l  euent-Pate process, which 
means tha t  the  probability tha t  an 
event occurs in the interval (t, t + dt), 
given that it has not occurred prior to 
time t, is equal to p(t) dr for some func- 
tion p( t ). This  process can be pro- 
grammed in C like this6: 

few Inputs; SoftRel can use Up to 70. / *  and dt are assumed set 
Earlier models could report only a few prior to this p o i n t  * /  
facts about the unfoldiiig process, but 
SoftRel can report up to 90. Of course, 
SoftRel can simulate the simple models 
as well. 

T h e  70 input parameters are spread 
over the 14 activities that comprise the 
reliability process. T h u s ,  each sub- 

events = 0: 
T = 0.; 
while ( T  < t) 
I T += dt; 

if (chance 
(beta(events, 3') 
* dt)j 
events++ : 

I 
Drocess uses. on  average, onlv five / *  the event has occurred a 

Y l  

parameters, some of which quantify 
interrelationships among activities. 
Each of the activity submodels is thus 
fairly straightforward. You need not  
simulate the ciitire process all at  once. 
If you only have data available on the 
failure and  repair  por t ions  of  t h e  
process, then you need input to the 
simulator only the  parameters that  
characterize these activities. 

At first, it may seem a daunting task 
to have to give values to all the devel- 
opment-environment parameters and 
produce a project-resource allocation 
schedule .  But  these  tasks should 

number of times at 
this point * /  

'l'he d t  in  such simulations inust 
always be chosen such that the varia- 
tions in the failure rate P ( t )  over the 
incremental time intervals (t,  t + d t )  are 
negligible, and such that P(t) dr < 1, so 
that the instantaneous event prohahili- 
ty does not reach unity. 

In t h e  code  segment  above,  
chance (xj compares a (0, I)-uniform 
random ( ) value with x, thus attaining 
the specified instantaneous probability 
function. 'I'he form of beta(events, 
T) acknowledges that the event rate 
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Figure 1. Simulation iresults based o n  six so~~are- i -e l inb i l i~~i  wodels. Each diagrmn 
shows the meaiz of' the simulation results as the line ma7-keri ''vi "; t b e  confidence 
internals above the stazdaFFd deviation as the line mn?*ked ' h + s  "; a i d  the confidence 
internals below the standaid deviation as the line marked "v-s .  '' The s t a i d a d  deevi- 
atioz dong the time line is presented as the line marked 'Y' at the bottom. 

function may change over time and 
may be sensitive to the  number of 
event occurrences up to the current 
time. T h e  computational complexity 
of this algorithm is O(BT/At), in con- 
stant space. T h e  @ component repre- 
sents the maximum time required to 
compute p,2(t). Even today's nioderate- 
ly fast computers can easily handle this 
level of complexity. 

T h e  preceding simulation illustra- 
tion is simple and yet very powerful. 
For example, some published analytic 

models treat or approximate the overall 
reliability growth as a nonhoinoge- 
neous Poisson process in execution 
time, while others focus on Markoff 
execution-time interval statistics. Many 
of these differ only in the forms of 
their rate functions': 

+ T h e  Jelinski-Moranda model' 
deals with adjacent time-interval sub- 
processes in which @,,(t) = f (17" - n ) ,  
where 72" is the (unknown) number of 
initial faults and @ is the per-fault fail- 
ure rate. 

+ T h e  Goel-Okumoto model8 deals 
with overall reliability growth,  in 
which @(t) = no $ e-$t, where q, and 4 are 
constant parameters. I t  can be shown 
that this model produces results very 
much like the Jelinski-lMoranda model 
with n = q1 (I - 8'). 

+ T h e  Musa-Okumoto model' also 
describes overall reliability growth, in 
which @ (t) = Bo / (1 + 8t ), where Po is 
the initial failure rate and 8 is a rate- 
decay factor. Both Po and 8 are constant 
parameters. 

+ T h e  Duane model'" is another 
overall reliability-growth 'model, where 
p( t )  = kbt"' and h and b are constant 
parameters. 

+ T h e  Littlewood-Verrall inverse 
linear model" is an overall reliabili - 

where 4, and h are constant parameters. 
+ T h e  Yamada delayed S-shape 

model'* is yet another overall reliabili- 
ty-growth model, with B(t)  = 4 yt e('-?'), 
where $, the maximum failure rate, and 
yare constant parameters. 

SoftRel can simulate any of these six 
models and use them as a basis for pre- 
dicting the reliability of a given soft- 
ware project. Although these analytic 
models can be run using other coin- 
rnercially available software, because of 
their rigid, mathematical nature and 
their dependence on hard data, these 
models are of limited usefulness until 
late in a project's life cycle. SoftRel, on 
the other  hand,  uses functions and 
parameters to much more accurately 
simulate the reliability of a given soft- 
ware project. This makes SoftRel more 
useful earlier in the project life cycle. 

Figure 1 shows the results obtained 
from simulating these six models and 
their underlying reliability process. 
Each of the simulation diagrams lists 
the rate hmction (p) and its associated 
parameters. T h e  parameters are set up 
such that there are initially about 2 5  
faults in the system. W e  chose the 
value of 2 5 to emphasize the variability 

growth model with P(t) E $/ 3 1 + ht , 
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of the failure processes a t  low fault 
rates; a t  higher fault concentrations, 
the decreasing (r / ?1 produces smaller 
deviations. 

To simulate the occurreiice of fail- 
ure versus testing time, we conducted 
several simulations for each model. 
Each diagram shows the mean of the 
simulation results as the line marked 
“m”; the confidence intervals above the 
standard deviation as the line marked 
“m+s”; and the confidence intervals 
below the standard deviation as the line 
marked “m-s.” The  standard deviation 
along the tiineline is presented as the 
line marked by “s” at the bottom. These 
simulations neither validate nor invali- 
date whether a particular model fits an 
actual project’s data, but merely show 
how easily the characteristics of such a 
process can be comparatively analyzed. 

Poisson-process simulation. T h e  NHPP’ 
is also easily simulated when the haz- 
ard function h(t,l, ti,) is known in closed. 
form. T h e  program for counting the 
overall number of N H P P  events that: 
will occur over a given time interval is 

#define produce (x) \ 
random-poisson(x) 

events = produce(1ambda 
. . .  

(ta, tb)): 

where random_poisson(x) is a subpro- 
gram that produces a Poisson-distrib- 
uted random value when passed the 
parameter X. Donald Knuth has pub- 
lished an algorithm for generating 
Poisson random numbers.” 

T h e  time profile of an NHPP may 
be simulated by slicing the (0, t) inter-- 
val into dt  time slots, recording the 
behavior in each slot, and progressively 
accumulating the details to obtain the 
ovcrall event-count profile, as in the 
following algorithm: 

t = 0 . ;  
while (t < t-max) 
[ n = produce(1ambda 

(t, t + dt)); 

I E E E  S O F T W A R E  

/ *  n is t h e  fine 
structure * I  

events += n; 
t += dt: 

I 

T h e  form of the cumulative rate 
function lambda(t, t + dt) may be 
extended to include a dependence on 
events, thereby causing the algorithm 
above to approximate a nonhomoge- 
neous Markoff event-count process with 
increasing fidelity as d t  becomes suffi- 
ciently small that multiple events per d t  
interval become rare. As mentioned pre- 
viously, however, the behavior of such 
simulations may be indistinguishable, 
even at larger dt , on the basis of single 
realizations of the event process. This 
hybrid form can speed up the simulation 
by removing the necessity of slicing 
time into extremely small intervals. 

This modified form of the simula- 
tion algorithm is called the piecewise- 
Poisson approximation of the Markoff 
event-count process. 

Multiple categories of events. If the set 
of events {E~:  i = I ,  ... , n} that were 
classed together previously are now 
partitioned into categorized subsets 
according to some given differentiation 
criteria - for example, faults distin- 
guished as being critical, major, or  
minor - t hen  the  par t i t ion ing  of 
events into categories likewise parti- 
tions their rate functions into corre- 
sponding categories, to which integers 
could be used as indices. 

W h e n  an event occurs, the algo- 
rithm shown in the box on page 78 
produces the index of a rate function. 
Finding this index among the catego- 
rized subsets of integers relates the 
event to the distinguished category of 
occurreiices. You can thus easily simu- 
late the behavior of multiple categories 
of events by changing from a single 
event counter, events, to an array of 
event counters, events [ I ,  and alter- 
ing the program as follows: 

i = event-.index(n, t) : 
c = event-category(n, $ 1 :  
events [cl++: 

T h e  overall event-classification scheme 
is thus encapsulated within a sin:;le 
event-category0 function for the 
entire categorization of events. 

Other event processes. Often in the 
software life cycle, if an event of cine 
type occurs there is a uniform proloa- 
bilityp < 1 that another event of  a dif- 
fe ren t  type will be t r iggered.  € o r  
example, suppose that for each unit of 

code generated there is a probability p 
that a fault is created. If there are n 
events of the  first type, then the k 
events of the second type are governed 
by the binomial distribution function, 
which is also easily simulated.’’ 

Moreover, when n itself is a Poisson 
random variable with parameter h, the 
distribution of k is also Poisson, with 
parameter p h. Thus,  occurrences, of 
events of the second type may be sirnu- 
lated without actually counting events 
o f  the first type by using the p r o -  
duce ( ) function with parameter p h. 

random_binomial(n, p )  
#define select(n, p) \ 

. . .  
n = produce(lambda(t, t + d t ) ) ;  
k = s e l e c t ( n ,  p )  : 

Finally,  when the re  is an ult i-  
m a t e  n u m b e r  of events  N t h a t  a 
Poisson process may reach before 
i t  is terminated, and N is specified 
i n  advance ,  t h e n  t h e  g r o w t h  of 
events over time must be stopped 
after the Nth  occurrence. Th i s  type 
of pal-limited process is also easily 
simulated. 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:03 UTC from IEEE Xplore.  Restrictions apply. 



olec 
cteristics 

\ / 

Figure 2. SoftRel execution context. 
The tmo data sets of project attributes 
and scheduled 7Tesozwces are me7rged into 
n single f i l e  for processing by SoftRel, 
which oi4 tp t . s  a f i l e  that caFz be imported 
into a .qmzd.heet jbr filrther analysis. 

General event-rate processes. T h e  sirn- 
d a t i o n  method we describe here is 
more general than required for pro- 
duct ion of Markoff  process'es and 
NHPPs. T h e  Poisson-process simula- 
tion algorithm just described springs 
directly from our method, which can 
s imulate  all event-rate  randoni  
processes. 

Thus  wc can simulate life-cycle 
activities that may have event-count 
dependencies between nonoverlapping 
time intervals as well as rate functions 
that depend on variable schedules and 
o t h e r  i r regular i t ies  over  t ime.  
Whenever  event functions produce 
homogeneous LVarkoff processes in a 
piecewise fashion, the event processes 
simulated during each of these seg-  
ments  will follow t h e  piecewise- 
Poisson approximation. T h e  programs 
presented previously can thus simulate 
a much more general and realistic reli- 
ability process than has been hypothe- 
sized by any o ther  analytic model  
kno\?ln to us. 

T h e  six programs described previ- 
ously typifv the methods traditionally 
used to analyze stochastic processes 
over a variety of input  conditions. 
F r o m  a programming perspective, 

then, we require \-er]\- little sophistica- 
tion to simulate a reliability process. 
Ins ight ,  care ,  and  n l i d a t i o n  a r e  
re quire d , h owe7-e r , i n ni o deli n g the 
intricate systeni-d>-namic interrelation- 
ships aniong the T-arious rate functions 
that characterize that process. 

SORREL 

W e  have embodied these simulation 
techniques in a reliabilityprocess simu- 
lation package, SoftRel. It simulates the 
entire reliability life cycle, including the 
effects of interrelatioiiships among 
activities. For example, SoftRel pro- 
vides for an increased likelihood of 
faults injected into code as the result of 
missing or defectire requirements spec- 
ifications. SoftRel also acknowledges 
that testing requires the preparation 
and consumption of test cases, and that 
repairs must follow identification aiid 
isolation. SoftRel further requires that 
human and computer  resources be 
scheduled for all actix-ities. 

T h e  SoftRel package is a prototype, 
cur ren t  1 y c on  f i g u r e d t o  si mu1 a t  e 
processes having constant event rates 
per causal unit. \Ire do not advocate 
that constant-rate processes necessarily 
model software reliability, nor do we 
endorse the prototype as a model ready 
for industrial use. Rather, we regard it 
as a framework for experimentation, for 
generating da ta  tJ-pical of analytic- 
in o d e 1 ass ump t i o n s for c o inp a r i s o n 
with actual collected project data, and 
for inference of project characteristics 
from comparisons. Other  event-rate 
functions will be accommodated in  
later versions by changing current coii- 
stant rates and other  parameters to 
properly defined functions indicated by 
project histories. 

T h e  current input to SoftRel coli- 
sists of a single file that specifies the dt 
time slice, ahout 70 traits of the soft- 
ware project and its reliability process, 

and a list of activity, schedule, and 
resource allocations. Internally, these 
form a data structure called the m o d e l .  

Also internally, the set of status moni- 
tors a t  any given time are stored in a 
data s t ructure  called facts, which 
records 

+ the elapsed wall-cluck time, 
+ the time and resources consumed 

by each activity - 42 measures in  
total, and 

+ a snapshot of 48 measures of pro- 
ject status. 

SoftRel outputs a single file that  
contains the series of facts produced a t  
each dt  interval of time. SoftRel simu- 
lates two types of failure events: defects 
in specification documents aiid faults in 
code. Figure 2 shows the execution 
context of SoftRel. A project's charac- 
teristics are divided into two contexts: 

+ a fixed number of project attrib- 
utes as embodied in numeric size and 
rate parameters, and 

+ a variable number of scheduled 
resources to he applied, each desigiiat- 
ing the event to which it applies, the 
time slot over which it is valid, the staff 
(work resource per  uni t  time), and 
computer resources (CPU hours per 
unit time) available. 

Both of these data sets are merged 
into a single file that forms the input 
model processed by SoftRel. T h e  cal- 
culated response to the model is collect- 
ed into a facts file and output by the 
program in a form suitable for input to 
a spreadsheet for plotting and furthcr 
analysis. 

Major components. SoftRel is initial- 
ized by setting sizes of items for coli- 
struction, integration, and inspection. 
These could have been designed just to 
equal the  goal values given in  t h e  
model, but the model values are only 
approximate. Sizes are set to Poisson 
random values, with the model input 
values as means. 

In a typical software-engineering life 
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cycle, several interrelated software-reli- 
ability subprocesses take place concur- 
rently. T h e  simulator uses 14 major 
components to characterize the activ- 
ties in these subprocesses, with appro- 
priate staffing and resource levels, 
devoted to each activity: 

I.  Document consnu t ion :  The siniu- 
lator assumes that document genera- 
tion and integration are piecewise- 
Poisson approximations with coiistaiit 
mean rates per workday specified in the 
model, not to exceed the goal values, 
Defects are assumed injected a t  a con-- 
stant probability per documentation 
unit. At each injection of a defect, the 
document hazard increases according 
to the defect-detection characteristic. 

2.  Document integrnfion: Document 
in  t e gr a t io n cons i s ts of acquir ing 
reus ab  1 e tl o c  LI 111 en  t a  ti on ,  de 1 e t in g 
unwanted portions, adding new mater-- 
ial, and making minor changes. T h e  
simulator assumes that each of these 
subactivities is a goal-limited piece.- 
wise-Poisson approxirna tion siinilar to 
the document-construction process. 
Each subactivity results in defect cre-- 
ation. Documentation is integrated at a 
constant mean rate per workday, and 
defects are injected at a constant prob- 
ability per documentation unit. Mazard 
increases at each defect according to 
th e defect - d c t e c ti o n char act  er i s ti  1: 

assumed. T h e  total current documen- 
tation units consist of new units, reused 
minus deleted units, and added units; 
changes do not alter the total volume 
of documentation. 

3. Dorumeat inspection: Document 
inspection is a goal-limited, piecewise- 
Poisson approximation of a type simi- 
lar to document constructioii. Both 
new and integrated reused documenta- 
tion are assumed to be inspected a t  the 
satne rate and with the same efficiency. 
Documentation is inspected at a mean 
constant rate per workday. Inspected 
units are allocated among new docu- 
ments and reused documents in pro- 
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portion to the relatiLe amounts of doc- 
umentation in these two categories. 
Defects detected during inspections 
may not exceed those injected, the sim- 
ulator characterizes the discovery of 
defects as a goal- l imited binoinial 
p roces  T h e  defect-discoleery rate IS 

assumed to be proportional to the cur- 
rent dccumuhted document  hazard 
and the inspection efficiency 

4 Document coi'F-ectzon Defect cor- 
rections are produced a t  d rate deter- 
mined by the  staff level and the  
dttemptcd-fix rate given in the model. 
Actual corrections take place according 
to  the  defect-fix adequacy, no t  t o  
exceed the actual number of defects 

exceed the  total  number  of as  yet  
undiscovered faults. T h e  simula.tor 
assumes that the fault-discovery rate is 
proportional to the current accumulat- 
ed fault hazard and the inspection eff- 
ciency. Because previously discovered 
faults may not yet have been removed 

discovered - a goal-limited, binomial a t  the time of discovery, the nunibei- of 
situation. Attenlpted fixes can also newly discovered faults is assumed to 
inject new defects and can change the be proportional to the number of as yet 
overall amount  of documentat ion.  undiscovered faults. 
True  corrections decrease the docu- , 8. Code c o v e c t i o n :  Code-correction 
inent  hazard; the  injection of new simulation follows the same algorithm 
defects increases it. given for document correction, ti-ans- 

5,  Code c o m t m c t i o n :  Code produc- lated to code units. Fault hazard is 
tion follows the same formula as docu- reduced upon correction of a fault :md 
ment construction. However, the aver- increased if any new faults are injected 
age pace at which faults are created is , by the correction process. Documen- 
influenced not only by the usual fault ' tat ion changes a re  produced a t  
density that may occur as a normal assumed cons tan t  mean rates per 
consequence of coding, but also by the , attempted correction. 
density of undiscovered defects in doc- 9. Test pepa?patioiz: Test preparalion 
unientat ion and by  the  amount  of consists of producing a number of test 
missing documentation. Each fault cases in each d t  slot in proportion to the 
injected increases the  code hazard. test-preparation rate, which is a constant 
However, whereas document defects mean number of test cases per workclay. 
are found only by inspection, code 10. Testing: Testing simulation has 
faults may be found by both inspection two parts: If a test outage is in effect, 
and testing, and at different rates. the outage-time indicator decrements 

6 .  Code imp-ation: Simulation of and the  t ime-and-effor t  indicator  
code integration is similar to that for increments ;  if an outage is  no't in  
document integration, except that code effect, failures occur at the mode. ted 
units replace document units and cod- rate - the number observed is coni- 
ing rates replace documentation rates. puted as a binomial process regulated 
1 he fault-injection rate is of the same by the probability of observation. The  
form as that for code construction. failure r a t e  function returns a v:ilue 
Each ftlult increases the code hazard. proportional t o  the current  hazard 

7. Code impection: Code inspection level. T h e  function also consumes 
mirrors document  inspection. T h e  ~ computer resources and test cases, the 
number of faults discovered will not latter at a mean constant rate. 
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Figure 4. Si7nulated code comtmctioi i ,  iiitegi-ation, nizd impection for the  CDS p7.0- 

ject. The volume $code mits r-eached its g o n l  mid 90 per-ceut of the iizspection g.onl 
mas met as well. 

1 I .  E'ilult zdentlfziutzon T h e  total 
number of failures aiialyred n u y  not 
exceed t h e  n u m b e r  of failures 
observed. Failures are aiialyxd a t  a 
iiiean constant rate per workday T h e  
identification of faults is limited in 
nunilier to those still remaining in the 
system. 'The isolation process is regu- 
lated by the fraction of faults remain- 

ing undiscovered, the adequacy of the 
analysis process, and the prohability of 
faithful isolation. 

12 .  I;ilult wpnii.-: T h e  number of 
attempted repairs may not exceed the 
number of faults identified by inspec- 
tions and testing, less those corrected 
after inspection, plus those identified 
for rework by validation and retesting. 

Of those atteinpted, a s e l e c t  number 
will really be repaired, while the rest 
will mistakenly be reported a s  repaired. 
Repairs are assumed here to be made 
on faults identified for rework first. A 
select nuinbcr of iiew faults inay be 
created by the attempt, and code units 
n i ~ y  be  altered deleted, added, or  
changed. Attempted repairs take place 
a t  a mean constant rate per workday. 

13.  Valzd~ztzon of i-epazrc T h e  valida- 
tion of attempted repairs takes place a t  
'in assuined mean constant rate per 
workday. '1 he number of repairs vali- 
dated may not exceed the number of 
1 epairs a t tempted T h e  number  of 
faulty repairs detected 1s a select 
nuniber determined by the probability 
that validation will recognize an uiire- 
paired fault when one exists and the 
p r o h h l i t y  that unrepaired faults are 
among those attempted repairs being 
validated (the repair adequacy), the  
detected had  fixes cannot exceed the 
'ictual number of nii5repaired faults. 
Detected b'id fixes are designated for 
rework and removed from the unre- 
paired, undiscovered fault count. 

1 1 .  Retesttng Retesting takes place 
at a mean constant nuiiiber of retests 
per workday and consuines computer 
resources a t  the scheduled rate per day. 
No new test cases are generated or 
coiisuined, because the original test 
c a m  are assumed available for regres- 
sion Retes t ing  15 assumed t o  
encounter only those failures caused by 
unrepaired faults 

Input and output. SoftRel tracks 70 
input mode l  parameters and 90 output 
facts parameters, all of which are 
described fully elsewhere.' T h e  input 
file addi t ional ly  contains  a list of  
staffing and computer-resource pack- 
ets, each of which allocates resources 
to specified activities and time slots. 
Time slots inay overlap or leave gaps, 
a t  the  discretion of the user. Such 
schedules arc the natural outcome of 
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dcvelopinent-process planning and are 
of fundaiiiental importance in shaping 
the reliability process. You need a t  
least 14 schedule packets to allocate 
resources and time slots to each of the 
14 assurncd reliability process activi- 
ties. More packets Inay appear when an 
activity repeats or has a nonconstant 
resource-allocatioii profile. 

Output values consist of all product, 
work, CPU, resource, fault, failure, and 
outage values. These are time-tagged in 
the form of a f a c t s  data struchire and 
written to the output file a t  each d t  
time in tend  for later scrutiny - plot- 
ting, trending, and m o d e l  rcadjust- 
ments, for example - by other applica- 
tion programs such as spreadsheets. 

We in tend  t h a t  t h e  reIiahility 
process etnboctiecl in the prototype be 
fairly cornprehensive with respect to 
what really transpires during sofnvarc 
development. T h e  simulator therefore 
re  quires par anie t er  s re 1 a tin g to  the 
ways in which pcople and processes 
interact. T h e  large number of parame- 
ters in the simulator might, a t  first, 
seem t o  present an overwhelming, 
iinpractical barrier to modeling, but 
you must remember that the true relia- 
bility process is even more complex. 
W e  felt that  the number of parameters. 
used was the least that would be capa- 
ble of reproducing the  realism we 
hoped for. Reducing the number of 
parameters might either reduce thc: 
fidelity of the simulation or the gener-. 
ality of the reliability-process model. 
Our assessiiient may change after suffi-. 
cient experimentation has taken place, 
whereupon selective alterations o r  
combinations of the parameters may he 
indicated. In any case, these parameters 
could be independently estimated ancl 
continuously refined with use. 

If projects do not  have sufficieni; 
data about past projects to give value:; 
to certain parameters, then sensitivity 
analyses using SoftRel can indicate: 
which are the most influential and 
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thereby in what area a metrics effort 
may prove iiiost useful in reliability 
management. Alternatively, by making 
some of the parameters inactive, users 
may simplify the model to focus on  
only one or two activities a t  a time. 
This may be done by assigning typical 
or default values to the parameters - 
usually 0 or 1 - thereby reducing the 

number of measured parameters t o  
only those deemed pertinent and real- 
istic within the project context. 

SOFCREL CASE STUDY 

SoftRel has already been applied to 
a real-world project: a subsystem of the 
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Gali leo F l ight  Pro jec t  ;It t h e  J e t  
Propuls ion  Lal ioratory.  I I e r c  we 
describe that project, api~ly the simula- 
t ion technique,  and compare  t h e  
results with those obtained from sever- 
al traditional reliability models. 

Project description. Galileo is an outer 
planet spacecraft project that began in 
1977, a mission that was originally enti- 
tled “Jupiter Orbiter and Probe,” or 
JOP. Unlike previous outer solar sys- 
tein missions, the (Milco orbiter was 
designed to remain in Jovian orbit for 
an extended period. This would allow 
oliservations of variations in planetary 
and satellite features over time, aug- 
menting the information obtained b y  
previous fly-by missions. Galileo was 
launchcd in October 1989 and reached 
the Jovian system in late 1995. 

T h e  Galileo spacecraft has two 
innjor on-board  flight computers ,  
largely embodied in software: T h e  
At  ti tu  d e and Ar t i  cu I a ti  o n  C o ii t rol  
Subsystem, and thc Command and 
D a t a  S y s t e m .  O u r  c a s e  s t u d y  
focuses on the CDS software-relia- 
hility profile. 

‘l’he CDS flight software is real- 
time embedded software, written in 
17,000 lilies of assembly code (includ- 
ing 500 reused lines), with about 1,400 

pages of d o cum en t a t i on (including 
100 reused pages), produced over a 
period of approzirnately 1,500 calen- 
dar days, excludiiig weekends. This  
project went through several design 
reviews and code inspections, under- 
went structured analysis and design, 
and recorded and tracked failures dur- 
ing its testing phase. 

Estimations and results. TT’hen sirnulat- 
iiig an  end-to-end dei-elopment project 
based on data from the Galileo CDS 
project, we took soine of the project 
parameters from project records, per- 
son n el iv  i th i n the project estimated 
other values, and we chose the rcmain- 
ing values as probably typical of this 
project’s hehavior despite the lack of 
iininediately available data for them. 
For example, we adopted parameter 
values we believed to  be typical of 
injecting faults in the correction and 
repair processes. S o n e  of the m o d e l  

input parameters was set to zero. 
Thus ,  even though few verifiable 

m o d e l  parameters were available out- 
side the testing phase, we were able 
nevertheless to form an entire plausible 
hypothetical model to illustrate sirnula- 
t ion  of an  end- to-end  reliability 
process. Lacking better development 
life-cycle data, we presumed all CDS 

activities other than testing - con- 
struction, inspection, and anomaly 
removal - took place serially, merely 
to observe what their simulated behav- 
iors would be. T o  view typical Markoff 
reliability behavior, this overall study 
also presumed that each activity took 
place without resource aiid schedule 
variations. 

Figures 3 through 6 show the simu- 
lated docurnentation, code, defect, and 
fault profiles of the software, sampled 
every 10 days. Of particular note are 
the behaviors of the documentation, 
code, injected defects, and injected 
faults - precisely those activities for 
which no  project data exists. Because 
the numbers of units are comparatively 
large, the relative irregularity levels arc 
low, as predicted from Equation 2. 

Figure 3 shows that the volume of 
docuinentation units did reach its goal, 
but in this case, only about 63 percent 
of the  documentat ion was actually 
inspected,  even though t h e  m o d e l  

placed a goal of 95 percent on inspec- 
tion. This is an instance where inade- 
quate resources were allocated to the 
inspection process: More  resources 
would have been required to reach the 
goal. T h e  effects of correcting defects 
on page count are not visible. T h e  sec- 
ond rise in docurnentation is due to the 
integration of the reused 100 pages. 

Figure 4 similarly shows that the 
volunie of code units did reach its goal 
and that the 90 percent inspection goal 
was met as well. T h e  effects of correct- 
ing aiid repairing faults on code size, 
however, are again not visible. 

T h e  inject ion,  de tec t ion ,  aiid 
removal of defects , shown in Figure 5, 
are a little noisier than documentation 
and code production, but not  much. 
All the detected defects were corrected, 
but a sizable number of defects were 
inserted during the correction period, 
which spanned  days 5 2 0  t o  580. 
Finally, niore than 100 defects were 
left in the documents. 
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Figure 6 shows the fault activity., 
which exhibits the noisiest behavior of 
all, but is still fairly regular. T h e  initial 
rise in injected Faults resulted froin con- 
struction; the second rise, which is not 
visible, resulted from integration; the 
third, a sharp rise again, resultcd from 
the imperfect fault-correction process:, 
and the final, gradual rise resulted froin 
the imperfect fault-repair process. By 
the end of the 1 ,SOO-day project, about. 
seven faults per thousand lines of code 
had been found in inspections and cor- 
rected, and about 22 faults per K I D C  
had been uncovered by testing and, 
removed. ‘I‘hc fault deiisity at delivery 
was about 0.2 faults per KLOC. 

Although we consider  t h e  final 
fault-discovery count to be accurate., 
the  t imc profile of t h e  simulation 
results does not appear to he as irregu-. 
lar as the actual projcct data. It seeins 
likely, then, that the fault-discovery 
process here is probably not homoge- 
iieous, either. OTI the basis of this cast. 
study, it appears that the simulation of 
all rcliability subprocesses will requirt: 
the use of iioiilioinogcneous event-rate 
models that reflect irregular workloads 
and schedules of life-cycle activities. 

Comparisons with other models. ‘1.0 sim-- 
ulate the details of Galileo CDS testing 
activity, we separated its testing phase 
into five subactivities that had constant: 
staffing hut irregular CPU and sched-- 
ule allocations, a s  T a b l e  1 shows.  
’I’hese schedule  parameters  wert .  
obtained as those necessary to fit thc 
simulator output to project data. ’I‘ht: 
fit appears adequate to describe the 
underlying nature o f  the randon-fail- 
lire process. 

1;igure 7 shows the field data, the 
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results obtained from the piecewise- 
hotnogcncoiis simulation pro 
the results from three other models 
J e 1 ins ki -MO r an d a ,  M u s  a - 0 kumo t o , 
and 1,ittleuood-Verrall. For bctter vis- 
ihility of process granularity, data IS 

shown in tlic form of falures per weck, 
ra ther  than cuniulatively. T h e  JiM, 
MO, and LV statistics were calculated 
to be “one-week-ahead” predictions, in 
which all the failure data LIP to a given 
week were used to predict the number 
of failures for the next week 

Figure 7 shows that 5oftKel’s simu- 
lation technique produced a very good 
forecast that could have been used for 
trackiiig the reliability status during 
the ent i re  testing phase. T h e  e r i o i  
devzance for the  SoftRel simulation 
rcsults in Figure 7 is 24 5, while the 
error deviances for the JLU, ,UO, and 
LV inodcls are 18.8, 43.3, and 99.7, 
respectively. W e  conjecture that the 
reliability forecast could have been 
accurately simulated prior to the start 
of testing, had actual schedule and 
resource plans been used a pt’zoi-z. T h c  
other models above were inadequate to 
predict even one weel, ahead, the LV 
model turned out  to be particularly 
optirnistic 

eliability modelers seldom have R the luxury of several realizations 
of the same failure process to test their 
hypotheses concerning the iiatllre of a 
system’s reliability. Nor  are they ever 
provided with data that faithfully match 
the assumed natures of their models. 
N o r  are they able to probe into the 
underlying error and failure inechd- 
niwi5 in a controlled way. Rather, they 
are faced with the problem of not only 
guessing the forms and particulars of 

the underlying, random error and fail- 
ure processes from the scant, uncert a n  
data they possess, but also u i th  the 
problem of best forecasting future fail- 
ures froin &is single data set 

T h e  assuinptions of the Softliel 
simulation approach arc certainly less 
restrictive than those underlying ana- 
lytic models T h e  simulation approach 
solves software-relidbility prediction 
problems by producing data confoi in- 

ing precisely to  the softu are-fail tire 
assumptions. Simulation enables in\ es- 
tigation of questions such as, “ H o w  
does a project’s observed data compare 
with that emanciting from an NHPP 
having the following char‘icteristits~” 
and “Which malytic prediction inodel 
is the best under the following assui lip- 
tioiis2” W e  believe that the Soft Re1 
tool and i t s  offspring vi11 offer signifi- 
cant potential to researchers and prac- 
titioiiers i n  answering such questions, 
111 ev,iluating the seiisitivity of predic- 
tions to various error a i d  failure m > d -  
eling assumptions, m d  in forec‘isting 
softwarc-project status profiles, such as 
time-lines of work products and the 
progress of testing, fault i s o l a t i  311, 

repair, validauon, and retest efforts 
Simulation of a real-world project 

reinforced our confidence in the \a1 idi- 
ty o f  the approach. We believe that 
h o tn o g c n e o u s Ll/la r ko ff even t - co I in  t 
in o d cl s tha t  u n  1 fo rm 1 y con sum e 
resources do not adequately model the 
statistical failure profile of aii actual 
project. T h e  nonhomogeneous, v x -  
able-resource-schedule event-rate s 1x1- 

ulation model produced good early 
forecasts of reliability grou th that  
could prove useful for proccss-status 
assc~sriient 

W e  expect that further collabora- 
tions between government agcnc ies 
and industry ~ 1 1 1  coiitiiiue to refine the 
reliability simulation technique and 
lead to a better understanding of the 

and to improvemtiits 
in the SoftRel genre of tools 
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