Effect of Code Coverage on Software Reliability Measurement

Mei-Hwa Chen, Michael R. Lyu, Senior Member, IEEE, and W. Eric Wong

Abstract—Summary & Conclusions—Existing software reliability-growth models often over-estimate the reliability of a given program. Empirical studies suggest that the over-estimations exist because the models do not account for the nature of the testing. Every testing technique has a limit to its ability to reveal faults in a given system. Thus, as testing continues in its region of saturation, no more faults are discovered and inaccurate reliability-growth phenomena are predicted from the models. This paper presents a technique intended to solve this problem, using both time & code coverage measures for the prediction of software failures in operation. Coverage information collected during testing is used only to consider the effective portion of the test data. Execution time between test cases, which neither increases code coverage nor causes a failure, is reduced by a parameterized factor. Experiments were conducted to evaluate this technique, on a program created in a simulated environment with simulated faults, and on two industrial systems that contained tens of ordinary faults. Two well-known reliability models, Goel-Okumoto and Musa-Okumoto, were applied to both the raw data and to the data adjusted using this technique. Results show that overestimation of reliability is properly corrected in the cases studied. This new approach has potential, not only to achieve more accurate applications of software reliability models, but to reveal effective ways of conducting software testing.

Index Terms—Coverage measures, software reliability estimation, software testing.

ACRONYMS

SRGM software reliability growth model
G-O Goel-Okumoto NHPP model
M-O Musa-Okumoto logarithmic Poisson model
G-Oμ G-O using adjusted data
M-Oμ M-O using adjusted data
F random flow graph generated for the simulation experiment
P application program

NOTATION

\(T_i\) test case \(i\)
\(t_i\) cumulative test-time after executing \(T_i\)
\(f_i\) cumulative failures after executing \(T_i\)
\(c_i\) cumulative block coverage after executing \(T_i\)
\(d_i\) \((t_i, c_i, f_i)\): data collected after executing \(T_i\)
\(\delta t_i\) \(t_i - t_{i-1}\)
\(\delta f_i\) \(f_i - f_{i-1}\)
\(\delta c_i\) \(c_i - c_{i-1}\), if \(c_i - c_{i-1} \neq 0\)
\(\delta c_{i-1}\) otherwise
\(\nu_i^1\) \((\delta t_i,0,\delta f_i)\)
\(\nu_i^2\) \((0,\delta c_{i},\delta f_i)\)
\(n\) number of test cases
\(\rho_i\) compression ratio for \(\delta t_i\), \(0 \leq \rho_i \leq 1\)
parallel (for vectors)

Assumptions

1) All times are CPU time.
2) Times between failures are \(s\)-independent.
3) All inputs are generated using a pre-defined operational profile, for both testing and reliability measurement phases.
4) No new faults are introduced during debugging.
5) Fault repair is instantaneous: as soon as a failure is observed.
6) Each failure is caused by a single fault.

I. INTRODUCTION

The reliability of a program is often defined as the probability that the program does not fail in a given environment, during a specified exposure time interval [13]. Since the late 1960s, several analytic models have been proposed for software reliability estimation [16]. The time-domain models, also called SRGM, have been the most popular as well as most widely studied for the past two decades. These models use the failure history, obtained during testing, to predict the field behavior of the program, under the assumption that testing is performed in accordance with a given operational profile [9]. However, there are some fundamental difficulties with this approach, e.g., the saturation effect of the testing process [3], and the difficulty in obtaining an actual operational profile. To cope with this, sensitivity analyses of usage profile have to be provided for appropriate test-case selection and accurate reliability assessment [19].

Our observations, from both empirical & analytic studies, show that predictions made by the SRGM tend to be too optimistic [3], [6]. Many attempts have been made to improve the SRGM estimation. Some propose that the test data must be pre-processed before they can be used by the SRGM [3], [8], [11], [17]. Others postulate that coverage information should...
be used, instead of test time, to overcome the difficulty of obtaining an operational profile of the given program [12], [15], [18]. However, the relation between test-coverage and defect-coverage (and consequently the improvement of software reliability) can be very complex [1]. There is no formal description in the literature regarding how coverage information should be used in reliability measurement.

This paper presents a technique that models the failure rate with respect to both code-coverage and test-time. The rationale behind this approach is given in this paragraph. When a program is tested successfully against a suite of test cases, the software might continue test, using the same or similar test suite, without any failures. If the time between failures is the only consideration in the reliability estimation process, then obviously, the program reliability might be overestimated, since in practice the operational profile can differ from that implied by the test suite. To overcome this problem, our technique uses code coverage to adjust the failure rate before it is applied to an SRGM. The time intervals between failures are adjusted for any testing effort that is redundant with respect to a chosen coverage criterion, e.g., repeating the same test cases, or not increasing block coverage with new test cases. We applied this approach to G-O [7] and M-O [14] and observed an improvement in the accurate estimation for both models.

Section II describes the technique. Section III describes the experiments & results. Section IV discusses possible future directions.

II. METHODOLOGY

The relationship between coverage and software-reliability has been studied by many researchers. Empirical studies show that fault-detectability s-correlates with code coverage [20], [21]. Consequently, software reliability can also s-correlate with code coverage [5]. This experimental evidence strengthens our belief that code-coverage information should be considered in reliability estimation. SRGM rely on time-dependent failure data. As testing proceeds, and faults are revealed, the test cases generated in the later phases are less likely to cause the program to fail than those generated in the earlier phases. Therefore, the time between failures increases, as do the reliability estimates made by the SRGM.

However, the reliability of the software usually increases when the number of faults in the software is reduced. Therefore, the more redundant a testing effort is, the greater is the chance that reliability will be underestimated. To reduce these overestimates, one needs to determine which test cases are redundant and how much of the test effort is considered effective. In our model, the coverage information is used to determine the effectiveness of a given test effort. A test case that does not ‘increase coverage of the program’ and does not ‘cause a failure’ is considered noneffective. The execution time of such a test case is reduced by using a compression ratio which is based on both execution-time and code-coverage. Section II-A describes the method that applies coverage-information to extract the effective test efforts.

A. Coverage-Enhanced Data Processing Technique

A T_i is considered to be noneffective if: $c_i = c_{i-1}$ and $f_i = f_{i-1}$; in other words, T_i is noneffective if it neither increases the coverage nor causes the program to fail on execution. The v_i^1 vector describes the change in the number of failures with respect to test-time regardless of coverage (it is a discrete partial differential of failures with respect to time), while the v_i^2 vector describes the change in the number of failures with respect to coverage regardless of time (it is a discrete partial differential of failures with respect to coverage). We believe that both time & coverage are crucial factors in predicting failures; thus we combine them to extract the effective test efforts.

If T_i is noneffective, the δt_i is reduced using ρ_i. Therefore, the extracted execution time of T_i, $\tilde{t}_i = \rho_i \cdot \delta t_i$, is to be used by the SRGM. Appendix A derives ρ_i. The remainder of this paragraph illustrates the approach. Let d_{i} represent a noneffective test case T_i; its execution has not increased either the coverage nor the number of failures observed. Let this triplet be projected onto the plane formed by the previous $(t_{i-1}, c_{i-1}, f_{i-1})$ and the v_{i-1}^1 and v_{i-1}^2. The two difference-vectors are orthogonal to each other and they indicate partial rates of change in failures with respect the two exposure parameters as they were estimated after completion of test case $i - 1$. Together with the test case $i - 1$ triplet, they define a ‘no-coverage and no-failure’ plane at that instance of testing. For a noneffective test case i, the only actual change occurred in the direction of the time axis. Projecting this point onto the $i - 1$ ‘no-coverage no-failure’ plane gives an idea of how far in this space we would have moved. Projecting this projected point onto the time axis gives the new or reduced exposure time. The ratio between the new and the reduced time is ρ, the compression ratio.

The ρ_i indicates the effective portion of the execution time of T_i, if T_i is noneffective. This compression ratio differs from the compression factor, defined in [13], which is the ratio of execution time required in the operational phase to execution time required in the test phase to cover the input space of the program.

Fig. 1 depicts the geometrical interpretation of the projection, where: $(t_{i-1}, c_{i-1}, f_{i-1})$ and $(\tilde{t}_i, c_{i-1}, f_{i-1})$ are test data, (\tilde{t}_i, f_{i-1}) are the compressed data. The adjusted data \tilde{t}_i, $i = 1, \ldots, n$, can be used by the SRGM, where δt_i is the adjusted execution time of T_i.

The computation of ρ is: given:

$$\tilde{t}_1 = t_1,$$ \hspace{1cm} (1)

then

$$\tilde{t}_i = \tilde{t}_{i-1} + \delta t_i,$$ \hspace{1cm} (2)

$$\delta t_i = \rho_i \cdot \delta t_i,$$ \hspace{1cm} (3)

and given that

$$\delta c_i = c_i,$$ \hspace{1cm} (4)

then

$$\delta c_i = \begin{cases} c_i - c_{i-1} & \text{if } c_i - c_{i-1} \neq 0 \\ c_{i-1} & \text{otherwise} \end{cases}$$ \hspace{1cm} (5)
The projection process (Appendix A) yields:

$$
p_i = \begin{cases}
\frac{1}{\tilde{t}_i + \delta \tilde{t}_i}, & \text{if } T_i \text{ is effective} \\
\frac{\delta \tilde{t}_i}{\tilde{t}_i + \delta \tilde{t}_i + \delta \tilde{c}_i}, & \text{otherwise}
\end{cases}
$$

(6)

The value of p_i is computed from $\delta \tilde{t}_i$ and $\delta \tilde{c}_i$ as shown in (6). In practice, the c and t parameter values are usually scaled to get their numerical values in the range of interest to be of roughly the same magnitude. This numerically stabilizes computation of p. The coverage measure is usually scaled to the range that is closest to the average execution time of one test case. The scaling can be adjusted at various phases of testing. The scaled values of t_i are used in computing p_i. In the reliability estimation, the raw t values and the t values are adjusted using the compression ratios. Scaling of the execution time does not affect the reliability estimation process.

B. Simulation

This section describes an experiment which was conducted under the simulation environment, TQ@RSE [4]. M-O [13] & G-O [7] are models for reliability estimation. The procedure used in our study is listed here.

Begin Procedure

1) Generate a program flow graph F with 1000 nodes.
2) Annotate F with faults by assigning fault infection probability and fault propagation probability to each node.
3) Test F by using the random testing technique with respect to a uniform profile. Faults causing failures are removed during the debugging.
4) Apply the data collected in step 3 to SRGM and obtain reliability estimates.
5) Use the coverage-enhanced technique to exclude noneffective testing efforts in step 3; then apply such extracted failure data to the models for reliability estimation.
6) Compute reliability by simulating the execution of F with respect to the same profile used in step 3.

End Procedure

Fig. 2 shows the reliability estimates obtained by applying the original data to the G-O & M-O models, and by applying the extracted data to both models (G-O & M-O). The estimates were compared with the reliability computed in step 6 (labeled R). The results show that at 270,000 units of test-time our technique reduces the overestimate of the G-O model from 0.23 (33.7%) to 0.00 (0.0%), M-O model from 0.083 (12.17%) to 0.004 (0.55%). Similarly, at test-time of 300,000 units, the overestimate is reduced from 0.205 (29.3%) to 0.02 (2.86%), and from 0.087 (12.4%) to 0.01 (1.43%), respectively, for the G-O and M-O models. The reliability overestimates made by G-O & M-O can be appreciably reduced by considering the effective testing efforts.

III. APPLICATIONS

To demonstrate our technique in real applications, we conducted experiments on two programs: autopilot and orecolo.

A. autopilot Project

The autopilot project was developed by multiple independent teams at the University of Iowa and the Rockwell/Collins Avionics Division [10]. The application program is an ‘automatic flight control function for the landing of commercial airliners’ that has been implemented by the avionics industry. It has five redundant yet independently developed program versions for a total of 7000 lines of code (4200 executable statements) and 30 natural faults.

1) Testing and Debugging: Flight simulation testing of autopilot represents various execution scenarios in a feedback loop, where different flight modes are entered & exercised. The sequence of testing & debugging is:
TABLE I

RELIABILITY OBSERVED, AND RELIABILITY ESTIMATES FROM THE G-O & M-O MODELS FOR autopilot.

<table>
<thead>
<tr>
<th>Time</th>
<th>G-O</th>
<th>G-O*</th>
<th>M-O</th>
<th>M-O*</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>5153.60</td>
<td>0.90</td>
<td>0.83</td>
<td>0.81</td>
<td>0.74</td>
<td>0.45</td>
</tr>
<tr>
<td>5742.10</td>
<td>0.78</td>
<td>0.71</td>
<td>0.77</td>
<td>0.71</td>
<td>-</td>
</tr>
<tr>
<td>6001.10</td>
<td>0.75</td>
<td>0.69</td>
<td>0.76</td>
<td>0.70</td>
<td>-</td>
</tr>
<tr>
<td>6538.75</td>
<td>0.70</td>
<td>0.65</td>
<td>0.75</td>
<td>0.70</td>
<td>0.62</td>
</tr>
<tr>
<td>7066.85</td>
<td>0.76</td>
<td>0.74</td>
<td>0.78</td>
<td>0.73</td>
<td>-</td>
</tr>
<tr>
<td>7593.45</td>
<td>0.83</td>
<td>0.79</td>
<td>0.80</td>
<td>0.76</td>
<td>-</td>
</tr>
<tr>
<td>8025.10</td>
<td>0.77</td>
<td>0.72</td>
<td>0.78</td>
<td>0.74</td>
<td>0.81</td>
</tr>
<tr>
<td>8553.05</td>
<td>0.82</td>
<td>0.75</td>
<td>0.80</td>
<td>0.75</td>
<td>-</td>
</tr>
<tr>
<td>9081.50</td>
<td>0.86</td>
<td>0.80</td>
<td>0.82</td>
<td>0.78</td>
<td>-</td>
</tr>
<tr>
<td>9688.35</td>
<td>0.86</td>
<td>0.78</td>
<td>0.82</td>
<td>0.77</td>
<td>-</td>
</tr>
<tr>
<td>10215.45</td>
<td>0.89</td>
<td>0.82</td>
<td>0.83</td>
<td>0.79</td>
<td>-</td>
</tr>
<tr>
<td>10563.15</td>
<td>0.87</td>
<td>0.79</td>
<td>0.83</td>
<td>0.79</td>
<td>-</td>
</tr>
<tr>
<td>11169.60</td>
<td>0.86</td>
<td>0.77</td>
<td>0.83</td>
<td>0.79</td>
<td>-</td>
</tr>
<tr>
<td>11697.50</td>
<td>0.89</td>
<td>0.80</td>
<td>0.84</td>
<td>0.80</td>
<td>-</td>
</tr>
<tr>
<td>12040.80</td>
<td>0.87</td>
<td>0.78</td>
<td>0.84</td>
<td>0.79</td>
<td>-</td>
</tr>
<tr>
<td>12648.25</td>
<td>0.86</td>
<td>0.76</td>
<td>0.84</td>
<td>0.79</td>
<td>-</td>
</tr>
<tr>
<td>13171.55</td>
<td>0.88</td>
<td>0.79</td>
<td>0.85</td>
<td>0.80</td>
<td>-</td>
</tr>
<tr>
<td>13519.25</td>
<td>0.87</td>
<td>0.76</td>
<td>0.84</td>
<td>0.80</td>
<td>-</td>
</tr>
<tr>
<td>14047.30</td>
<td>0.88</td>
<td>0.79</td>
<td>0.85</td>
<td>0.81</td>
<td>-</td>
</tr>
<tr>
<td>14574.20</td>
<td>0.90</td>
<td>0.81</td>
<td>0.86</td>
<td>0.81</td>
<td>-</td>
</tr>
<tr>
<td>15180.90</td>
<td>0.90</td>
<td>0.79</td>
<td>0.86</td>
<td>0.82</td>
<td>-</td>
</tr>
<tr>
<td>15708.50</td>
<td>0.91</td>
<td>0.82</td>
<td>0.87</td>
<td>0.82</td>
<td>-</td>
</tr>
</tbody>
</table>

Sequence.

1. Generate a test pool \(\mathcal{X} \).
2. Set the flag \(\text{TEST}_{\text{REPEAT}} \) to false.
3. If \(\text{TEST}_{\text{REPEAT}} \) is false
 a. Select a test case \(T \) from \(\mathcal{X} \) according to a
 uniform distribution profile.
 Else
 b. Re-use the test case \(T \) saved in 5a
 End If
4. Test the program \(\mathcal{P} \) against \(T \).
5. if (\(\mathcal{P} \) fails on \(T \))
 Then
 a. Find the fault which is responsible for the failure.
 b. Remove the fault detected in 5a.
 c. Set the flag \(\text{TEST}_{\text{REPEAT}} \) to true.
 d. Save \(T \) for re-use in 3b
 Else
 Set the flag \(\text{TEST}_{\text{REPEAT}} \) to false.
 End if
6. Go to 3.
End Sequence

An important characteristic of this testing & debugging process is that \(\mathcal{P} \) can be executed against the same \(T \) more than once. For example, let the first execution of \(\mathcal{P} \) on \(T \) fail at time \(t_f \). After the fault responsible for this failure is removed, then \(\mathcal{P} \) is executed again on \(T \). Let it fail at time \(t_f' \). Because the simulation is not yet completed, \(\mathcal{P} \) is re-executed against \(T \) after debugging. This process continues until \(\mathcal{P} \) succeeds on \(T \).

2) Reliability Estimation: Table I and Fig. 3 show the reliability estimates obtained by applying the original data, collected from the testing & debugging process in Section III-A1, and the adjusted data, processed by using the coverage-enhanced technique, to the G-O & M-O models. The exposure time used in the estimation process is the maximum flight time: 265 seconds. The reliability estimates obtained from the G-O & M-O models using the original data are labeled G-O and M-O, respectively. Similarly, G-O* and M-O* denote the reliability estimates obtained from the G-O and the M-O models using the adjusted data.

The \(R \) measured as the ratio of the number of successful executions to the total number of executions, were computed for the test-times of 5153.60, 6538.75, 8025.10 seconds. These 3 points represent 3 fault-correction activities in the 3 phases of the test. To estimate \(R \), the program was executed against inputs based on the same operational profile as used in the test process. The process of reliability measurement was repeated until the reliability measure converged to a 95\% confidence interval.

In applying the coverage-enhanced technique, we used block coverage measurement. To compute the compression ratio, the coverage measure and the execution time were scaled by multiplying each of them by a constant factor. These constant scaling factors were set, beginning at the test-time 5153.60 seconds, the time when reliability measurement of our interest began.

For the G-O, the differences between the reliability and its estimates ranged from \(-0.04\%\) to 0.45 (4.9\% to 100.0\%); with the coverage-enhanced technique, they ranged from \(-0.09\%\) to 0.38 (11.1\% to 84.4\%). For the M-O, these differences ranged from \(-0.03\%\) to 0.36 (3.7\% to 80.0\%); with the coverage-enhanced technique, they ranged from \(-0.07\%\) to 0.29 (8.6\% to 64.4\%).

This study shows that by adjusting the testing efforts using the coverage-enhanced technique, the reliability estimates made by the SRGM are much closer to the actual reliability. However, the improvement of the two models is not as large as that obtained from the simulation experiment in Section II-B, because the reliability was compared in the later phase of the testing while there were very few faults remaining in the program.

B. The orecolo Program

The orecolo program, was developed for the European Space Agency, to provide a language-oriented user interface that allows the user to describe the configuration of an array of antennas by using a high level language [2]. The application consists of about 10 000 lines of code (6 100 executable lines) and 33 natural faults.
TABLE II
RELIABILITY OBSERVED, AND RELIABILITY ESTIMATES OBTAINED FROM THE G-O & M-O MODELS FOR orecolo.

<table>
<thead>
<tr>
<th>Time</th>
<th>G-O</th>
<th>G-O'</th>
<th>M-O</th>
<th>M-O'</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>1.00</td>
<td>0.89</td>
<td>0.96</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>156</td>
<td>0.99</td>
<td>0.93</td>
<td>0.96</td>
<td>0.90</td>
<td>0.92</td>
</tr>
<tr>
<td>230</td>
<td>1.00</td>
<td>0.95</td>
<td>0.98</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>599</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
<td>0.98</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Fig. 4. Reliability observed, and reliability estimates obtained from the G-O & M-O models for the orecolo project.

1) Testing and Debugging: Testing is performed by using the input generator, Copia, which produces input test cases based on a pre-defined operational profile. The output of the faulty program is compared with the output of the correct version. If they differ, the debugging process proceeds and the corresponding faults are removed.

2) Reliability Estimation: The results obtained from this experiment are in Table II and Fig. 4. The execution unit is measured as the number of test cases, instead of the execution time, due to the nature of the application program. Similarly, the exposure time used in the estimation process is one test execution. The R were computed at the completion of 132, 156, 230, and 599 test cases.

Table III shows that, for G-O the differences between the reliability and its estimates ranged from 3.1% to 12.4%; for the coverage-enhanced technique, they ranged from 0.0% to 2.1%. For M-O, the differences ranged from 2.1% to 7.9%; for the coverage-enhanced technique, they ranged from 0.0% to 0.0%. At the end of the testing process, overestimates made by G-O were reduced from 3.1% to 2.1%, and those made by M-O were reduced from 2.1% to 1.0%. The improvement of the estimation for orecolo was not as large as that for autopilot.

Fig. 4. Reliability observed, and reliability estimates obtained from the G-O & M-O models for the orecolo project.

IV. FUTURE PLANS

Our technique measures test-coverage in the estimation of software reliability. This technique appears to improve the applicability & accuracy of G-O & M-O. This should give the user a better understanding of the software quality, and helps the developer conduct a more effective testing scheme. It indicates to the tester when:

- a testing technique becomes ineffective and should be switched to another one,
- to stop testing without overestimating the achieved reliability.

Our experiments conducted by a simulated program and two real-world projects suggest the advantages of this technique.

To investigate the relation between the ‘strength of the coverage criteria used’ and the ‘improvement of the estimation made by this technique’, we plan to apply stronger coverage measurements like ‘branch, all-uses, and mutation coverage’, for more empirical studies of this technique on industrial projects. While reliabilities measured by SRGM are somewhat insensitive to the fluctuations in the operational profiles, the actual reliabilities are sensitive, and our technique captures such a phenomenon. We plan to formulate this relationship quantitatively by a sensitivity study. We also hope to establish the criteria that will meet a reliability threshold specified for an ultra high reliable software system by applying this technique to avoid redundant test efforts.

APPENDIX

Assuming Plane \(G \) is formed by

Point \((t_{i-1}, c_{i-1}, f_{i-1})\),

Vector \((a, b, c)\)

\[
\begin{align*}
 v^1_{i-1} & = v^2_{i-1} \\
 v^1_{i-1} & = (-\delta c_{i-1} \cdot \delta f_{i-1}, -\delta t_{i-1} \cdot \delta f_{i-1}, \delta t_{i-1} \cdot \delta c_{i-1}) \\
 v^2_{i-1} & = \delta t_{i-1}, 0, \delta f_{i-1}, \\
 \delta f_{i-1} & = 1, \\
 G : a \cdot (x - t_{i-1}) + b \cdot (y - c_{i-1}) + c \cdot (z - f_{i-1}) & = 0.
\end{align*}
\]

Let the projection of

Point \((t_{i}, c_{i}, f_{i})\) on \(G \) be \((x_0, y_0, z_0)\).

Then,

\[
\begin{align*}
 a \cdot (x_0 - t_{i}) + b \cdot (y_0 - c_{i}) + c \cdot (z_0 - f_{i}) & = 0; \\
 (x_0 - t_{i}, y_0 - c_{i}, z_0 - f_{i}) & \parallel (a, b, c), \\
 \frac{x_0 - t_{i}}{a} & = \frac{y_0 - c_{i}}{b} = \frac{z_0 - f_{i}}{c}.
\end{align*}
\]
Given

\[(t_2, c_2, f_2) = (t_1, c_{i-1}, f_{i-1})\]

then

\[\frac{x_0 - t_i}{a} = \frac{y_0 - c_{i-1}}{b} = \frac{z_0 - f_{i-1}}{c}. \quad (A-5)\]

Given \((A-2)\) & \((A-5)\) then

\[\frac{x_0 - t_{i-1}}{t_i - t_{i-1}} = \frac{b^2 + c^2}{a^2 + b^2 + c^2}. \quad (A-6)\]

From \((A-6)\), the compression ratio is computed:

\[\rho_i = \frac{x_0 - t_{i-1}}{t_i - t_{i-1}} = \frac{\delta t_{i-1}^2 + \delta c_{i-1}^2 + \delta f_{i-1}^2}{\delta t_{i-1}^2 + \delta c_{i-1}^2 + \delta f_{i-1}^2}. \quad (A-7)\]

ACKNOWLEDGMENT

The model proposed in this paper was initially developed while Dr. Chen was a Ph.D. student at Purdue University under the supervision of Dr. Mathur & Dr. Rego. The concept of using coverage to enhance reliability measurement was originated from these supervisors’ research. Due to the limitation on the listed number of authors, we did not include them as coauthors. We are especially pleased to thank them here for their valuable contributions to this work.

We are also pleased to thank Dr. J. R. Horgan at Telcordia Technologies for his valuable comments on this work, and Dr. A. Pasquini for providing the orecolo program. We are pleased to thank Dr. M. Vouk for many constructive suggestions in making this paper more precise & readable.

REFERENCES

Michael R. Lyu received the B.S. (1981) in electrical engineering from the National Taiwan University, the M.S. (1985) in computer engineering from the University of California, Santa Barbara, and Ph.D. (1988) in computer science from University of California, Los Angeles. He is an Associate Professor at the Computer Science & Engineering Dept. of the Chinese University of Hong Kong. He worked at the Jet Propulsion Laboratory, Bellcore (now Telcordia) and Bell Labs, and taught at the University of Iowa. His current research interests include software reliability engineering, distributed systems, fault-tolerant computing, web technologies, web-based multimedia systems, and wireless communications. He has published over 100 refereed journal & conference papers in these areas. Dr. Lyu initiated (1990) the first Intl. Symposium on Software Reliability Engineering (ISSRE). He was the program chair for ISSRE’1996, PRDC’1999, and WWW10, and has served on program committees for numerous international conferences, including ISSRE, SRDS, HASE, IEECCS, IST, FTCS, ICDSN, APSEC, PRDC, PSAM, and ICCCIN. He also serves as General Chair for ISSRE’2001. He is the editor for two books: Software Fault Tolerance, 1995, published by Wiley, and the Handbook of Software Reliability Engineering, 1996, published by IEEE & McGraw-Hill. He is on the editorial board for IEEE Trans. Knowledge & Data Engineering, IEEE Trans. Reliability, and J. Information Science & Engineering.

Mei-Hwa Chen is an Associate Professor of Computer Science at SUNY Albany. Her research interests include software reliability modeling, software architecture, design metrics, software testing, and component-based software engineering. Dr. Chen is a member of the IEEE and the Association of Computing Machinery.

W. Eric Wong is a Senior Research Scientist in Applied Research at Telcordia Technologies. He received his B.S. in computer science from Eastern Michigan University, and his M.S. and Ph.D. in computer science from Purdue University. His primary research interests involve creating technologies for program- and architecture-based assessment and diagnosis to reduce the cost of software production and improving software dependability, reliability as well as quality at the same time. He is also a principal investigator at Telcordia responsible for developing a set of metrics for evaluating the overall quality of highly complex telecommunication systems. In 1997, Dr. Wong received the Quality Assurance Special Achievement Award from Johnson Space Center, NASA.