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Correspondence
Imbalanced Learning With a Biased Minimax

Probability Machine

Kaizhu Huang, Haiqin Yang, Irwin King, and Michael R. Lyu

Abstract—Imbalanced learning is a challenged task in machine learning.
In this context, the data associated with one class are far fewer than those
associated with the other class. Traditional machine learning methods
seeking classification accuracy over a full range of instances are not suit-
able to deal with this problem, since they tend to classify all the data into
a majority class, usually the less important class. In this correspondence,
the authors describe a new approach named the biased minimax proba-
bility machine (BMPM) to deal with the problem of imbalanced learning.
This BMPM model is demonstrated to provide an elegant and systematic
way for imbalanced learning. More specifically, by controlling the accuracy
of the majority class under all possible choices of class-conditional densities
with a given mean and covariance matrix, this model can quantitatively
and systematically incorporate a bias for the minority class. By estab-
lishing an explicit connection between the classification accuracy and the
bias, this approach distinguishes itself from the many current imbal-
anced-learning methods; these methods often impose a certain bias on
the minority data by adapting intermediate factors via the trial-and-error
procedure. The authors detail the theoretical foundation, prove its solv-
ability, propose an efficient optimization algorithm, and perform a series
of experiments to evaluate the novel model. The comparison with other
competitive methods demonstrates the effectiveness of this new model.

Index Terms—Fractional programming (FP), imbalanced learning,
receiver operating characteristic (ROC) analysis, worst case accuracy.

I. INTRODUCTION

The problem of imbalanced learning, in which nearly all the in-
stances are labeled as one class while much fewer instances are labeled
as the other class, usually the more important class, presents a chal-
lenge to the community of machine learning. Traditional classifiers
seeking classification accuracy over a full range of instances are not
suitable to deal with imbalanced-learning tasks, since they tend to
classify all the data into the majority class, which is usually the less
important class.

In the machine learning literature, there have been several proposals
for dealing with the problem of imbalanced learning, which includes:
the methods of moving the decision thresholds [29], [33], the methods
of adjusting the costs or weights [6], [29], and the methods of sampling
[7], [22], [27]. The first school of methods tries to adapt the decision
threshold to impose a bias on the minority class. Similarly, the second
school of methods improves the prediction performance by adjusting
the costs or weights for each class. The third school of methods
aims to reduce the data imbalance by downsampling (removing)
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instances from the majority class or upsampling (duplicating) the
training instances from the minority class. A common problem for all
the three families of methods is that they lack a rigorous and systematic
treatment on imbalanced data. For the methods of adjusting the costs
or weights, in order to impose a suitable bias, they have to adapt these
factors by trials or, in particular, by cross validations [20]. Hence, it
is hard for them to build direct connections between the intermedi-
ate factors (e.g., the costs or weights) and the biased-classification
accuracy quantitatively. Therefore, these methods cannot rigorously
handle imbalanced data. For the sampling method, the problem is that
upsampling may introduce excessive weight on the noise data, while
downsampling the data probably may lose some critical data points.
To solve this problem, Chawla et al. proposed synthetic minority over
sampling technique (SMOTE) to introduce minority data points and
remove redundant majority points “intelligently” [7]. This method
is considered as one of the state-of-the-art approach for imbalanced
learning [44].

We propose a novel model named the biased minimax probability
machine (BMPM) [16], different from the aforementioned approaches,
to handle the tasks of learning from imbalanced data. When compared
with the sampling methods, the BMPM does not remove or duplicate
data. When compared with the methods of changing the thresholds
or weights, our model establishes an explicit connection between the
classification accuracy and the bias. It thus offers an elegant way to
incorporate a certain bias into the classification by directly controlling
the classification accuracy. Furthermore, the experiments show that
the BMPM method outperforms the first and the second school of
methods, and demonstrates the competitive performance against the
state-of-the-art method SMOTE.

The rest of this correspondence is organized as follows. In the next
section, we introduce the theoretical foundation of this correspon-
dence, namely the BMPM model including the model definition, the
solvability, and the techniques to incorporate distributional informa-
tion. We then apply, in Section III, the BMPM model to deal with the
imbalanced-learning tasks. After that, we evaluate the BMPM model
based on a series of experiments. In Section V, we discuss some issues
and present future work. Finally, we conclude this correspondence in
Section VI.

II. BIASED MINIMAX PROBABILITY MACHINE

In this section, we first introduce the model definition of the BMPM.
Next, we prove the solvability of the optimization problem associated
with BMPM. After that, we propose an efficient algorithm to solve
this optimization problem. Finally, we make an additional analysis on
the BMPM model when the distributional information for the data is
available.

A. Model Definition

We only consider binary classification in this correspondence. Sup-
pose two random n-dimensional vectors x and y represent two classes
of data, where x belongs to the family of distributions with a given
mean x̄ and a covariance Σx, denoted as x ∼ (x̄,Σx); and, similarly,
y belongs to the family of distributions with a given mean ȳ and a
covariance Σy, denoted as y ∼ (ȳ,Σy). Here, x, y, x̄, ȳ ∈ R

n, and
Σx, Σy ∈ R

n×n. In this correspondence, class x also represents the
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important or minority class, and class y represents the corresponding
less important or majority class.

A decision hyperplane f(z) = aT z− b, where a ∈ R
n\{0} and

b ∈ R, is constructed as follows. We try to classify each minority case
into a corresponding class (f(z) ≥ 0) with a maximum probability,
while to classify the majority case (f(z) < 0) into a corresponding
class with an acceptable accuracy. Since, normally, the distributional
information for the data is unavailable, we would like to achieve a
decision hyperplane in the worst case scenario. The formulation is
described as follows:

max
α,β,b,a�=0

α s.t. inf
x∼(x̄,Σx)

Pr{aT x ≥ b} ≥ α (1)

inf
y∼(ȳ,Σy)

Pr{aT y ≤ b} ≥ β (2)

β ≥ β0. (3)

Here, α means the lower bound of the probability (accuracy) for
the classification of future cases of the class x with respect to all
distributions with the mean and covariance as x̄, Σx, respectively; in
other words, α is the worst case accuracy for the class x. Similarly, β is
the lower bound of the accuracy of the class y. This optimization aims
to maximize the accuracy (the probability α) for the biased class x
while simultaneously maintaining the class y’s accuracy at an accept-
able level β0 by setting a lower bound as (3). This model presents a
critical extension of a recently proposed competitive model, the MPM
[23], which only considers the balanced data and, therefore, makes α
equal to β. Our optimization setting is more useful in incorporating a
bias into classifications for imbalanced-learning problems. A typical
example can be seen in the epidemic-disease diagnosis problem,
which is usually an imbalanced-classification problem as well. The
ill cases are usually much fewer than the healthy cases. However,
misclassification of the ill class results in more serious consequence
than misclassification of the healthy case. Thus, an unequal treatment
on different classes, namely making α 	= β, is obviously necessary.

B. Appealing Features

We summarize the advantages of our biased model in the following.
First, this method provides a different treatment on different classes,
i.e., the hyperplane a∗T z = b∗ given by the solution of this opti-
mization favors the classification of the important class x over the
less important class y. Second, given reliable mean and covariance
matrices, the derived decision hyperplane is directly associated with
the two real accuracy indicators, i.e., α and β, for each class. Thus, by
varying the lower bound of β, i.e., β0 and deriving the corresponding
classifier, we can quantitatively incorporate a bias into the classifica-
tion. Third, by considering the worst case accuracy, this model contains
a distribution-free feature. With no distribution assumption for the
data, the derived hyperplane appears to be more general and valid
than a large family of classifiers, namely the generative classifiers
[13], [14], [19] including the naive Bayesian (NB) classifier [24]; it has
to make specific distribution assumptions. Fourth, as shown shortly in
Section III, the best β0 can either be automatically searched in terms
of some standard criteria, or selected by the users based on a tradeoff
curve between the accuracies on different classes. Fifth, although the
BMPM contains the aforementioned advantages, it does not trade them
for efficiency. It is shortly shown that the optimization of BMPM can
be cast as a fractional programming (FP) problem [36], [37] and, thus,
can be solved efficiently. Finally, although, previously, the decision
boundary derived from BMPM is given in a linear configuration,
we can apply kernelization techniques to extend it to a nonlinear
classification. As shown in [17], [18], and [23], the kernelization

trick can be used to map the n-dimensional data points into a high-
dimensional feature space, in which a linear classifier corresponds to a
nonlinear hyperplane in the original space. Since the kernelization trick
is the standard technique, we omit the elaboration of the kernelization
and refer the interested readers to [17], [18], and [23]. In short, with
these important features, BMPM appears to offer a more direct and
rigorous scheme to handle biased-classification tasks, especially for
the imbalanced classifications, where the importance or cost for each
class is unequal.

C. Model Solvability

In the following, we propose to solve this optimization problem.
First, we borrow Lemma 1 from [23].

Lemma 1: Given a 	= 0, b such that aT y ≤ b, and β ∈ [0, 1), the
condition

inf
y∈{y,Σy}

Pr{aT y ≤ b} ≥ β

holds if and only if b − aT y ≥ κ(β)
√

aT Σya with κ(β) =√
β/(1 − β).
This lemma can be proven by using the Lagrangian multiplier

method and the following theory developed in [32]:

sup
y∈{y,Σy}

Pr{aT y ≥ b} =
1

1 + d2

with d2 = inf
aT y≥b

(y − y)T Σ−1
y (y − y). (4)

Details about the proof can be seen in [23].
By using Lemma 1, we obtain the following transformed optimiza-

tion problem:

max
α,β,b,a�=0

α s.t. (5)

− b + aT x ≥ κ(α)
√

aT Σxa (6)

b − aT y ≥ κ(β)
√

aT Σya (7)
β ≥ β0 (8)

where κ(α) =
√

α/(1 − α), κ(β) =
√

β/(1 − β). The inequality of
(7) is directly obtained from (2) by using Lemma 1. Similarly, by
changing aT x ≥ b to aT (−x) ≤ −b, (6) can be obtained from (1).
From (6) and (7), we get

aT y + κ(β)
√

aT Σya ≤ b ≤ aT x− κ(α)
√

aT Σxa. (9)

If we eliminate b from this inequality, we obtain

aT (x− y) ≥ κ(α)
√

aT Σxa + κ(β)
√

aT Σya. (10)

We observe that the magnitude of a does not influence the solution
of (10). Without loss of generality, we can set aT (x− y) = 1. In
addition, since κ(α) increases monotonically with α, maximizing α
is equivalent to maximizing κ(α). Thus, the problem can further be
modified to

max
α,β,a�=0

κ(α) s.t. (11)

1 ≥ κ(α)
√

aT Σxa + κ(β)
√

aT Σya (12)
aT (x− y) = 1 (13)
κ(β) ≥ κ(β0) (14)

where (14) is equivalent to (8) due to the monotonic property of the
function κ.
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Lemma 2: The maximum value of κ(α) under the constraints of
(12)–(14) is achieved when the right-hand side of (12) is strictly
equal to 1.

Proof: Assume that the maximum is achieved when 1 >
κ(α)

√
aT Σxa + κ(β)

√
aT Σya. A new solution constructed by in-

creasing κ(α) with a small positive amount and maintaining κ(β)
and a unchanged will satisfy the constraints and will be a better
solution. �

Σx and Σy can be considered as positive definite matrices; oth-
erwise, we can always add a small positive amount to the diagonal
elements of these two matrices and make them positive definite.
We can obtain κ(α) = (1 − κ(β)

√
aT Σya)/

√
aT Σxa. It is a linear

function with respect to κ(β). Since
√

aT Σya is a positive term,
this optimization function is maximized when κ(β) is set to its lower
bound κ(β0). The BMPM optimization problem is changed to

max
a�=0

1 − κ(β0)
√

aT Σya√
aT Σxa

s.t. aT (x− y) = 1. (15)

Furthermore, the aforementioned formulation (15) can be written as
the so-called FP problem [36]

max
a�=0

f(a)

g(a)
s.t. a ∈ A =

{
a|aT (x− y) = 1

}
(16)

where f(a) = 1 − κ(β0)
√

aT Σya and g(a) =
√

aT Σxa. In the fol-
lowing, we propose Lemma 3 to show that this FP problem is solvable.

Lemma 3: The FP problem (16) is strictly a quasi-concave problem
and is, thus, solvable.

Proof: It is easy to see that domain A is a convex set on R
n;

f(a) and g(a) are differentiable on A. Moreover, since Σx and Σy

can be both considered as positive definite matrices, f(a) is a concave
function on A and g(a) is a convex function on A. Then, f(a)/g(a)
is a concave–convex FP or a pseudoconcave problem. Hence, it is
strictly quasi-concave on A according to [36]. Therefore, every local
maximum is a global maximum [36]. In other words, this FP problem
is solvable. �

D. Practical Solving Method

To solve the FP problem, there are many methods. For example, a
conjugate-gradient method can solve this problem in n (the dimension
of the data points) steps if the initial point is suitably assigned [3]. In
each step, the computational cost to calculate the conjugate gradient is
O(n2). Thus, this method has a worst case O(n3) time complexity.
Adding the time cost to estimate x, y, Σx, and Σy, the total cost
is O(n3 + Nn2), where N is the number of the data points. This
computational cost is in the same order as the MPM [23] and the linear
support vector machine [39].

In this correspondence, the Rosen gradient projection method [3] is
adopted to solve the concave–convex FP problem. This method attains
a local maximum with a worse case linear convergence rate [3]. More
importantly, the local maximum will be exactly the global maximum
in this problem.

In the previous section, we only talk about how to solve a. We now
turn to finding the optimal b. From Lemma 2, we can see that the
inequalities in (9) will become equalities at the maximum point. The
optimal b will thus be obtained by

b∗ = aT
∗ x− κ(α∗)

√
aT
∗ Σxa∗ = aT

∗ y + κ(β0)
√

aT
∗ Σya∗

where a∗ and α∗ are obtained by solving the FP problem.

E. Assuming Specific Distributions

Although the BMPM model assumes no distribution for the data, it
is interesting to explore the properties of BMPM when distributional
information is available. In the following, we show that when certain
distributions, in particular a Gaussian distribution, are assumed for the
data, maximizing the worst case accuracy strictly leads to maximizing
the real accuracy with respect to future data.

Assuming that x and y are two sets of data with Gaussian distribu-
tions N (x,Σx) and N (y,Σy), respectively, (1) becomes

inf
x∼N (x,Σx)

Pr{aT x ≥ b} = Pr
x∼N (x,Σx)

{aT x ≥ b}

= Pr

{
N (0, 1) ≥ b − aT x√

aT Σxa

}

=1 − Φ

(
b − aT x√
aT Σxa

)

=Φ

(
−b + aT x√

aT Σxa

)
≥ α (17)

where Φ(z) is the cumulative-distribution function for the standard
Gaussian distribution

Φ(z) = Pr {N (0, 1) ≤ z} =
1√
2π

z∫
−∞

exp

(
−s2

2

)
ds.

Due to the monotonous nature of Φ(z), we can further write (17) as

−b + aT x ≥ Φ−1(α)
√

aT Σxa.

The inequality of (2) can be reformulated in the similar form. The
optimization of the BMPM model is then changed to

max
α,β,b,a�=0

α s.t.

− b + aT x ≥ Φ−1(α)
√

aT Σxa (18)

b − aT y ≥ Φ−1(β)
√

aT Σya (19)

β ≥ β0. (20)

The aforementioned optimization is nearly the same as (5) subjected
to the constraints of (6)–(8), except that κ(α) is equal to Φ−1(α),
instead of

√
α/(1 − α). Thus, it can be similarly solved based on the

proposed FP method.
We further provide an analysis on BMPM when other gen-

eral distributions are assumed. Similarly, assuming x ∼ S(x,Σx),
y ∼ S(y,Σy), where S means a specific distribution, we have

inf
x∼S(x,Σx)

Pr{aT x ≥ b} = Pr
x∼S(x,Σx)

{aT x ≥ b}.

We note that the random variable aT x contains the mean aT x and
the variance aT Σxa. Thus, the normalized random variable (aT x−
aT x)/

√
aT Σxa will have the mean 0 and the variance 1. If the distri-

bution of the normalized random variable (aT x− aT x)/
√

aT Σxa,
denoted as NS, is independent of a, as the case in the Gaussian
distribution, a formulation similar to that in the Gaussian case can
be easily derived, except that Φ(z) is changed to Pr{NS(0, 1) ≤ z}.
Otherwise, it may not be easy to incorporate the distributional infor-
mation into the optimization of BMPM.

Another interesting finding is that, given an n-dimensional random
variable x, a linear combination of its component variable xi, 1 ≤
i ≤ n, namely aT x, tends toward a Gaussian distribution, as n grows.
This shows that, when the dimension n grows and the data distribution
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Fig. 1. Artificially generated ROC Curve.

is unknown, it may be suitable to use Φ−1(α), the inverse func-
tion of the normal cumulative distribution, instead of

√
α/(1 − α),

to perform the optimization of BMPM. This topic deserves further
exploration.

III. LEARNING FROM IMBALANCED DATA BY USING BMPM

In this section, we propose to apply the novel BMPM model into the
tasks of learning from imbalanced data. We first review four standard
imbalanced-learning criteria. We then, based on two of them, apply
BMPM into imbalanced-learning tasks.

A. Four Criteria to Evaluate Learning From Imbalanced Data

In general, four criteria are exploited to evaluate the imbalanced
learning. They are: 1) the criterion of minimum cost (MC); 2) the
criterion of the maximum geometry mean (MGM) of the accuracies
on the majority class and the minority class; 3) the criterion of the
maximum sum (MS) of the accuracies on the majority class and the
minority class; and 4) the criterion of the receiver operating charac-
teristic (ROC) analysis. We review these criteria as follows.

Aiming to solve problems caused by maximizing the accuracy over
a full range of data, instead, Grzymala-Busse et al. [11] maximized the
sum of the accuracies on the minority class and the majority class (or
maximized the difference between the true-positive and false-positive
accuracies). This criterion is also widely used in other fields, e.g.,
graph detection, especially line detection and arc detection, where it
is called vector recovery index [8], [28]. Similarly, Kubat et al. [21]
proposed to use the geometric mean instead of the sum of the accura-
cies. However, compared to maximizing the sum, this criterion has a
nonlinear form, which is not easy to be automatically optimized. On
the other hand, when the cost of misclassification is known, an MC
measure defined in (21) should be used [5]

Cost = Fp · CFp + Fn · CFn (21)

where Fp is the number of the false positive, CFp is the cost of the false
positive, Fn is the number of the false negative, and CFn is the cost
of the false negative. However, because the cost of misclassification
is generally unknown in real cases, the usage of this measure is
somewhat restricted. Considering this point, some researchers intro-
duced the ROC analysis [29], [41]. This criterion plots a so-called
ROC curve to visualize the tradeoff between the false-positive rate
and the true-positive rate and leaves the task of the selection of a
specific tradeoff to the practitioners. Fig. 1 illustrates an artificially
generated ROC curve. It has been suggested that the area beneath an
ROC curve can be used as a measure of accuracy in many applications

[34], [40]. Thus, a good classifier for imbalanced learning should have
a larger area.

Based on the aforementioned review, in this correspondence, we
will focus on using the criterion of MS and the ROC-curve analysis
to evaluate imbalanced learning.

B. BMPM for Maximizing the Sum of the Accuracies

In the following, we first modify the formulation of BMPM to
maximize the sum of the accuracy for the two classes. We then
propose to solve the optimization associated with the modification
version.

1) Model Modification: When applying the BMPM for the crite-
rion of MS, we can modify the formulation of BMPM as follows:

max
α,β,b,a�=0

α + β s.t. (22)

inf
x∼{x,Σx}

Pr{aT x ≥ b} ≥ α (23)

inf
y∼{y,Σy}

Pr{aT y ≤ b} ≥ β. (24)

The aforementioned formulation directly maximizes the sum of the
lower bounds of the accuracies so as to maximize the sum of the
accuracies. In comparison, to achieve the MS of the accuracies, some
other approaches, e.g., the methods of sampling or the methods of
adapting the weights, have to search the best sampling proportion or
the best weights by trials, which are, in general, very time consuming.

2) Solving Method: Similar to the standard BMPM, we can trans-
form the aforementioned optimization problem as follows:

max
α,β,b,a�=0

α + β s.t.

− b + aT x ≥ κ(α)
√

aT Σxa

b − aT y ≥ κ(β)
√

aT Σya

where κ(α) =
√

α/(1 − α) and κ(β) =
√

β/(1 − β).
Similarly, we can eliminate b and obtain the following inequality:

aT (x− y) ≥ κ(α)
√

aT Σxa + κ(β)
√

aT Σya.

Furthermore, we transform the optimization into the following formu-
lation by setting aT (x− y) = 1:

max
α,β,a�=0

α + β s.t. (25)

1 ≥ κ(α)
√

aT Σxa + κ(β)
√

aT Σya (26)

aT (x− y) = 1. (27)

It is easily verified that the maximum value of α + β under the
constraints of (26) and (27) is achieved when the right-hand side of
(26) is strictly equal to 1. Therefore, the optimization problem can be
further transformed as follows:

max
β,a�=0

κ2(α)

κ2(α) + 1
+ β s.t. aT (x− y) = 1 (28)

where κ(α) = (1 − κ(β)
√

aT Σya)/
√

aT Σxa.
The optimization of (28) corresponds to finding an optimal β∗,

making f(β∗) = κ2(α)/(κ2(α) + 1) + β∗ maximal. Therefore, if we
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Fig. 2. Three-point pattern and quadratic line-search method. A βnew is
obtained, and a new three-point pattern is constructed by βnew and two of β1,
β2, and β3.

fix β to a specific value within [0, 1), the optimization is equivalent
to maximizing κ2(α)/(κ2(α) + 1), and is further equivalent to max-
imizing κ(α), which is exactly the BMPM problem. We then change
β and repeat the BMPM optimization procedure until an optimal β∗ is
found, such that f(β∗) is maximized. The aforementioned procedure
is also the so-called line-search problem [3]. Many methods can be
used to solve the line-search problem. In this correspondence, we use
the quadratic interpolation (QI) method [3]. As illustrated in Fig. 2, QI
finds the maximum point by updating a three-point pattern (β1, β2, β3)
repeatedly. The new β, denoted by βnew, is given by the QI from the
three-point pattern. Then, a new three-point pattern is constructed by
βnew and two of β1, β2, and β3. This method is shown to converge
superlinearly [3].

C. BMPM for ROC Analysis

It is straightforward to apply the BMPM model to plot the ROC
curve, since the lower bounds α and β directly and quantitatively
control the accuracies for two classes. We only need to adapt the
acceptable level for β, namely β0, from 0 to 1, to obtain a sequence
of tradeoffs between the accuracy of the important class and the
negative class. We address again, since β0 represents the lower bound
of the accuracy of the less important class, and varying β0 provides a
direct and quantitative way to move the decision plane with different
tradeoffs. Directly associating accuracies, with the moving of the
hyperplane while assuming no distribution, is one of the advantages of
BMPM over the other methods by adapting the weights or thresholds.

IV. EXPERIMENTAL RESULTS

In this section, we first illustrate the BMPM model with a toy
example. We then evaluate the performance of BMPM on five real-
world imbalanced datasets in comparison with the SMOTE method,
the NB classifier, the k-nearest neighbor (k-NN) method [1], and the
decision-tree classifier C4.5 [35]. Note that the NB, the k-NN, and
the C4.5 are all modified so that they can be applied to imbalanced
learning.

A. Toy Example

We present a toy example to illustrate the BMPM model in this
section. Suppose, 15 data points of the class x are generated from a

two-dimensional Gaussian distribution with the mean and covariance
matrix as x = [0 1.5]T and Σx = [0.5 0; 0 0.5], and 65 data points of
the class y from another two-dimensional Gaussian distribution with
y = [0 0]T and Σy = [0.5 0; 0 0.5].

By adapting the lower bound accuracy β0 for the class y and then
optimizing the corresponding BMPM, we obtain a series of decision
boundaries for the toy example when using the Gaussian kernel
exp[−‖x− y‖2/σ] with the parameter σ as 5. These boundaries
are illustrated in Fig. 3. Shaded regions are classified as the class
x represented by crosses, whereas those outside shaded regions are
judged as the class y plotted as squares. It is clear to observe that
the lower bound β0 directly controls the accuracy of the class y.
More specifically, when β0 is set to small values such as 10.00%,
60.00%, and 95.00%, the boundary is biased toward the class x. When
β0 is set to larger values such as 99.00%, the classification is biased
toward the class y. Moreover, we demonstrate in Table I that the
lower bounds β0 and α can serve as the accuracy indicators. It is
observed that these lower bounds work well, i.e., the corresponding
accuracy is slightly higher than the lower bounder except in the case
when β0 = 95.00%. The exception, i.e., the value of α, which is
99.16%, is greater than the real accuracy 93.33%, is understandable
due to the relatively smaller number of training samples. One single
misclassification will influence the classification results significantly.
This toy example demonstrates that, by changing β0, BMPM pro-
vides an elegant and direct way to incorporate the bias into the
classification.

B. Evaluations on Real-World Imbalanced Datasets

1) Modification on Learning Techniques: We first investigate and
modify three learning techniques. The NB classifier [15], [24] is
proposed based on a very simple assumption, i.e., each attribute is
conditionally independent of each other when given the class variable.
The decision in a two-category prediction task is made according
to the calculation of the posterior probability p(C|z), where C is
the class variable and z represents the observation. When p(C1|z) ≥
0.5 or another equivalent yet more convenient rule is satisfied, i.e.,
p(C1)p(z|C1) ≥ p(C2)p(z|C2), z is classified into C1; otherwise,
it is judged as C2. Even with the strong conditionally independent
assumption, the NB classifier demonstrates a surprisingly good perfor-
mance when compared with state-of-the-art classifiers [10], [25], such
as support vector machines [42] and C4.5 in many domains. By simply
introducing a parameter τ into the decision rule p(C1)p(z|C1) ≥
τp(C2)p(z|C2), the NB classifier can be adapted into the imbal-
anced learning. For example, specifying τ < 1 imposes a bias toward
the C1 class, whereas specifying τ > 1 imposes a bias toward the
C2 class.

In the k-NN classification [1], based on certain distance measures
(e.g, the Euclidean distance measure), k data points closest to the
query point are selected. The query point is then labeled as the most
frequent class among the chosen k points. Although this method is very
simple and may suffer from difficulties in high dimensions, it achieves
satisfactory performance in many real domains. Following [29], we
alter the distance measure δj for class Cj to handle imbalanced-
learning tasks according to

δj = dE(z, zj) − τjdE(z, zj) (29)

where zj is the closest point from class Cj to the query point, and
dE(z, zj) represents the Euclidean distance measure. Similar to the
NB classifier, by modifying τj , the NN method can build biased
classifiers.
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Fig. 3. Toy example to illustrate BMPM. The data of the class x are plotted as crosses, and the data of class y as squares. The shaded area represents the
classification region of the class x, while the area outside the shaded region is classified as the class y.

TABLE I
LOWER BOUNDS OF ACCURACIES, α, β0, AND THE REAL ACCURACIES

C4.5 is a kind of algorithm, introduced by Quinlan, for inducing
classification models, also called decision trees, from the data [35]. By
selecting the attributes according to the gain ratio criterion, an infor-
mation measure of homogeneity, C4.5 builds up a decision tree, where

each path from the root to a leaf represents a specific classification
rule. We adapt C4.5 to learn from imbalanced dataset based on the
similar method in [29], i.e., by changing the prior probability to bias
the classification.

2) Evaluations on Five Real-World Datasets: We evaluate the
BMPM model on five real-world datasets including audiology, glass,
hepatitis, recidivism, and rooftop datasets. The first three datasets are
obtained from the University of California at Irvine machine learning
repository [4]. Originally, they are multiclass datasets. In order to gen-
erate imbalanced two-class data, we intentionally consider the 19th,
7th, and 1st classes as the minority or the positive class, respectively,
for these datasets, while all other classes are regarded as the majority
class or the negative class. The recidivism dataset was obtained from a
cohort of releasees of the North Carolina prison system during the time
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TABLE II
DESCRIPTION OF THE DATASETS USED IN

THIS CORRESPONDENCE

period from July 1, 1977 to June 30, 1978 [38]. The rooftop dataset
consists of 17 829 overhead images of Fort Hood, TX, collected as part
of the RADIUS project [9], which are of a military base. Regarding
whether they are buildings (with a detected rooftop) or not, 781 images
in this dataset are labeled as positive examples while 17 048 images are
labeled as negative examples [26]. For audiology, glass, hepatitis, and
rooftop datasets, we randomly split them into a training set with 60%
data and a test set with 40% data. We then construct classifiers from the
imbalanced data based on the training dataset, and perform evaluations
on the test data. We repeat this procedure ten times and use the average
of the results as the performance metric. For recidivism, training data
containing 72.5% data and test data containing 27.5% are provided
when the data are first released. For easy comparison with the literature
[38], we, therefore, do not perform a hold-out evaluation. The detailed
information about the datasets is described in Table II.

We compare the performance of our proposed BMPM model, in
both the linear BMPM (BMPML) and the Gaussian kernel setting
(BMPMG), with the SMOTE method, the modified NB classifier,
the modified C4.5, and the modified k-NN method. The latter three
methods are adjusted to the imbalanced learning according to the
methods introduced in the previous section. For SMOTE, the best
amount of SMOTE is searched from 1 to 4, and only the best result
is presented for brevity. Similarly, we run k-NN methods for k =
1, 3, 5, . . . , 21 and only present the best result. The width parameter
for the Gaussian kernel is tuned via cross validation [20]. For C4.5, we
use default parameter setting.

We first report the experimental results based on the MS criterion
in Table III. To be more comparable, we show the average of the true-
positive (Tp) rate and the true-negative (Tn) rate (instead of their sum)
when each classifier attains the point of MS. When compared with
the state-of-the-art imbalance learning method SMOTE, the BMPML
and BMPMG demonstrate a competitive performance. In more details,
the BMPM approach performs the best in audiology, glass, and re-
cidivism, while SMOTE performs the best in hepatitis and rooftop.
When compared with the other three methods, i.e., the modified
NB, the modified k-NN, and the modified C4.5, the BMPML and
BMPMG consistently demonstrate a better performance. Moreover,
the t-test analysis shows that the accuracy of BMPML and BMPMG
is significantly different from that of the modified NB, the modified
k-NN, and the modified C4.5 at p ≤ 0.1 in audiology, glass, hepatitis,
and rooftop.

In Table III, we also report the results of MPM in the linear case
(MPML) and the Gaussian kernel case (MPMG). BMPM demonstrates
a better performance than MPM in both the linear case and the MPMG.
Moreover, the t test shows that, except in the linear case of rooftop,
the differences between BMPM and MPM (i.e., between BMPML and
MPML, and between BMPMG and MPMG) are significant at p ≤ 0.1
in audiology, glass, hepatitis, and rooftop.

Note that, in the previous section, our BMPM model directly
achieves the objective of MS by maximizing the sum of the worst case
accuracies for two classes. In contrast, MPM forces the equal worst

TABLE III
PERFORMANCE BASED ON THE MS CRITERION

case accuracies and, therefore, does not necessarily maximize the sum
of accuracies. Hence, it is natural that BMPM outperforms MPM in
terms of the MS criterion.

We now present the experimental results based on the ROC analysis.
By setting the thresholds or costs by trials for NB, k-NN, and C4.5,
the ROC curves are generated with good shapes as evenly distributed
along their length as possible. The ROC curve of SMOTE is generated
according to [7], i.e., it is created by first “smoting” the minority class
and then undersampling the majority class gradually. For the BMPM
model, since the lower bound β0 serves as the accuracy indicators,
we simply vary it from 0 to 1 to generate the corresponding ROC
curve. The ROC curves for audiology, glass, and hepatitis are plotted
in Fig. 4, and the ROC curves for recidivism and rooftop are drawn in
Fig. 5. As seen in these two figures, the performance of BMPML and
BMPMG is comparable with the SMOTE method: The ROC curves
of BMPML and BMPMG covers that of SMOTE in audiology, glass,
and recidivism in most parts, while the ROC curve of SMOTE covers
those of BMPML and BMPMG in hepatitis and rooftop in most of
the parts. When compared with the other three methods, BMPML and
BMPMG once again demonstrate the better performance, since their
ROC curves dominate those of other models in most parts. To quan-
titatively demonstrate the difference, we also show the areas beneath
the ROC curves approximated by using the trapezoid rule in Table IV.
The BMPML and BMPMG outperform SMOTE in audiology, glass,
and recidivism, while their performances are not as good as that
of SMOTE in hepatitis and rooftop. Furthermore, the BMPML and
BMPMG show a consistent superiority to the other three models. The
t test on the areas shows that the values of BMPML and BMPMG
is significantly different from that of the modified NB, the modified
k-NN, and the modified C4.5 at p ≤ 0.1 in audiology, glass, hepatitis,
and rooftop.

In addition, in real applications, not all portions of the ROC curve
are of great interest [31]. Usually, those with a small false-positive rate
and a high true-positive rate should be of more interest and importance
[45]. We, thus, show the portion of the ROC curve in the range
when the false-positive rate Fp ∈ [0, 0.5] and the true-positive rate
Tp ∈ [0.5, 1]. As seen in Fig. 4(b), (d), and (f) and Fig. 5(b) and (d) in
this range, the superiority of the BMPML and BMPMG to the modified
NB, the modified k-NN, and the modified C4.5 is more obvious than
the whole ROC-curve analysis. In comparison with the SMOTE, the
previous conclusion can also be drawn, i.e., the BMPML and BMPMG
outperforms SMOTE in audiology, glass, and recidivism, but their
performance is not as good as SMOTE’s in hepatitis and rooftop.

Remark: Note that, in the previous section, we do not compare
BMPM with MPM in terms of the ROC criterion. Due to the balanced
nature of MPM, it cannot generate an ROC curve. Moreover, the true-
positive and the true-negative outputs by the MPM model have been
incorporated in the ROC curve: its result corresponds to a certain point
in the ROC curve, where the worst case true positive and the worst
case true negative are equal.
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Fig. 4. ROC curves for the audiology, glass, and hepatitis datasets. (a), (c), and (e) show a full range of the ROC curves, while (b), (d), and (f) show a
critical proportion of the ROC curves, which is of more interest in real applications. (a) Audiology: 0 ≤ Tp, Tn ≤ 1. (b) Audiology: 0.5 ≤ Tp, Tn ≤ 1.
(c) Glass: 0 ≤ Tp, Tn ≤ 1. (d) Glass: 0.5 ≤ Tp, Tn ≤ 1. (e) Hepatitis: 0 ≤ Tp, Tn ≤ 1. (f) Hepatitis: 0.5 ≤ Tp, Tn ≤ 1.

V. DISCUSSION

In this section, we first show that the BMPM model can easily be
adapted when the cost for each class is known. Next, we discuss the
limitations of the BMPM model and present future work.

A. When the Cost for Each Class Is Known

There exists cases in which the cost for each class can be given by
experts. In the following, we show that the BMPM model can naturally
be adapted into this type of tasks.
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Fig. 5. ROC curves for recidivism and rooftop datasets. ROC curves for the audiology, glass, and hepatitis datasets. (a) and (c) show a full range of the
ROC curves, while (b) and (d) show a critical proportion of the ROC curves, which is of more interest in real applications. (a) Recidivism: 0 ≤ Tp, Tn ≤ 1.
(b) Recidivism: 0.5 ≤ Tp, Tn ≤ 1. (c) Rooftop: 0 ≤ Tp, Tn ≤ 1. (d) Rooftop: 0.5 ≤ Tp, Tn ≤ 1.

TABLE IV
PERFORMANCE BASED ON THE AREA OF THE ROC CURVE

Assuming x and y are the minority class and the majority class,
respectively, it is easily verified that minimizing the optimization
function given by (21) is equivalent to maximizing the following
formulation:

max rxKx + ryKy

where rx is the true-positive rate or the accuracy of the class x, ry is
the true-negative rate or the accuracy of the class y, and Kx and Ky

are two constants, which are equal to CFpNy and CFnNx, respectively
(Nx and Ny are the number of data points labeled as class x and y,

respectively). Similar to the optimization procedure of MS, we can
naturally modify the BMPM model into the following formulation:

max
α,β,b,a�=0

Kxα + Kyβ

s.t. inf
x∼{x,Σx}

Pr{aT x ≥ b} ≥ α

inf
y∼{y,Σy}

Pr{aT y ≤ b} ≥ β.

The aforementioned optimization derives the classification boundary
by maximizing the weighted lower bound of the real accuracies or
the weighted worst case real accuracies so as to minimize the overall
classification risk. Moreover, similar to the MS case, it is easily
validated that this optimization problem can be cast as a sequential
BMPM problem. Hence, it can similarly be solved based on the
method presented in Section III.

B. Open Problems and Future Work

We discuss the limitations of the BMPM model and present future
work. First, currently, the applications of the MPM model and the
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BMPM model are restricted in the two-category classification domain.
Although there are systematic methods, e.g., one-versus-all or one-
versus-one [2], [12], to extend the two-category classifications into
multiway classifications, for BMPM, it needs to be careful. To derive a
multiway boundary efficiently while maintaining a tight lower bound
is not straightforward. Further explorations and considerations on this
topic are deserved.

Second, although we propose efficient algorithms to solve the
BMPM optimization problems, one interesting question for both MPM
and BMPM is that whether any techniques can be used to speed
up the training process, especially the kernelized training process.
Another problem in training the MPM or the BMPM model with
kernels, e.g., the Gaussian kernel, is that the parameter σ has to be
determined via the time-consuming cross-validation procedure. How
to speed up these processes is one of the open problems for both MPM
and BMPM.

Third, to assure a tight lower bound of the accuracy, both the MPM
and the BMPM models require that the mean and the covariance
matrices estimated from the dataset can reliably represent the true
mean and covariance matrices. It is empirically verified that the direct
plug-in estimation achieves a satisfactory performance on many real
classification tasks [18], [23]. However, there exist cases where the
estimation will be inaccurate and cause problems, i.e., the worst case
accuracy cannot bind the real test-set accuracy. To tackle this problem,
some robust-estimation techniques could be applied. For example,
under the computational consideration, a specific uncertainty model in
[23] is proposed to correct the plug-in estimations. However, seeking
more robust estimation based on general uncertainty models remains
to be an open problem and, therefore, is one of our research topics in
the future.

Finally, we have mainly compared our proposed BMPM model with
three competitive machine learning techniques, NB, C4.5, and k-NN.
Although these methods are widely used in machine learning and even
refereed to as state-of-the-art classifiers in some literature [25], [43],
there are still many other competitive approaches that can be adopted
and modified for imbalanced learning such as those found in [30].
Evaluating our BMPM against other competitive approaches is inter-
esting. We leave this topic as a future work.

VI. CONCLUSION

A novel model named the BMPM has been proposed to deal with
imbalanced-learning problems. This new model can incorporate a
certain bias into classification by directly and quantitatively control-
ling the lower bound of the real accuracy. Therefore, it provides a
systematic and rigorous treatment on imbalanced data. We have proved
the solvability, provided the technique to incorporate distributional
information, and proposed an efficient algorithm to solve the optimiza-
tion problem of BMPM. Moreover, we have illustrated our approach
on a synthetic toy dataset. We have also evaluated our novel model
on five real-world datasets in terms of two criteria. In both criteria,
the performance is shown to be competitive with the state-of-the-
art imbalanced-learning approach, SMOTE. When compared with the
other three competitive methods, such as the modified NB classifier,
the modified k-NN method, and the modified decision-tree classifier,
C4.5, our method, significantly outperforms them.
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