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Near-duplicate keyframe (NDK) retrieval techniques are critical to many real-world multimedia applications. Over the last
few years, we have witnessed a surge of attention on studying near-duplicate image/keyframe retrieval in the multimedia
community. To facilitate an effective approach to NDK retrieval on large-scale data, we suggest an effective Multi-Level Ranking
(MLR) scheme that effectively retrieves NDKs in a coarse-to-fine manner. One key stage of the MLR ranking scheme is how to
learn an effective ranking function with extremely small training examples in a near-duplicate detection task. To attack this
challenge, we employ a semi-supervised learning method, semi-supervised support vector machines, which is able to significantly
improve the retrieval performance by exploiting unlabeled data. Another key stage of the MLR scheme is to perform a fine
matching among a subset of keyframe candidates retrieved from the previous coarse ranking stage. In contrast to previous
approaches based on either simple heuristics or rigid matching models, we propose a novel Nonrigid Image Matching (NIM)
approach to tackle near-duplicate keyframe retrieval from real-world video corpora in order to conduct an effective fine matching.
Compared with the conventional methods, the proposed NIM approach can recover explicit mapping between two near-duplicate
images with a few deformation parameters and find out the correct correspondences from noisy data simultaneously. To evaluate
the effectiveness of our proposed approach, we performed extensive experiments on two benchmark testbeds extracted from the
TRECVID2003 and TRECVID2004 corpora. The promising results indicate that our proposed method is more effective than
other state-of-the-art approaches for near-duplicate keyframe retrieval.
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1. INTRODUCTION

Near-Duplicate Keyframes (NDK) detection and retrieval techniques are beneficial for many real-world
applications, such as copyright infringement detection [Ke et al. 2004; Qamra et al. 2005], elimination
of near-duplicates from Web video search results [Wu et al. 2007b], and news video search [Smeaton
et al. 2006]. In general, NDK refers to a pair of keyframes in a video corpus, for which the two
keyframes of the pair are closely similar to each other apart from minor differences mostly due to
the variations of rendering conditions, capturing conditions, or editing operations [Zhang and Chang
2004; Zhao et al. 2007]. NDKs are very common for video retrieval tasks, especially for broadcast
videos [Wu et al. 2007b; Zhang and Chang 2004; Zhao et al. 2007]. Besides the reason of duplicate or
near-duplicate videos, another reason is imperfect video segmentation results. For example, a naive
uniform segmentation approach often leads to generating mass NDKs in the segmentation results.
Even for the state-of-the-art automatic segmentation techniques, NDK is still commonly found in the
segmentation results due to the difficulties of setting very accurate parameters in practice.

Due to some well-known factors, NDK retrieval is a challenging research problem. One is that videos
may be captured by different devices with quite different hardware under a variety of illumination con-
ditions. Additionally, video editing often produces extra geometric and photometric transformations
and occludes the original video by adding captions. Furthermore, there is still a lack of an effective
feature extraction method to represent NDK, while lots of feature descriptors have already been devel-
oped for object recognition [Mikolajczyk and Schmid 2005; Everingham et al. 2007] and face recogni-
tion [Zhao et al. 2003]. Figure 1 shows some example pairs of duplicate keyframes extracted from the
TRECVID2003 video corpus [Smeaton et al. 2006].

During the past several years, there has been a surge of research attention on copy-detection and
NDK retrieval in the multimedia community [Ke et al. 2004; Qamra et al. 2005; Wu et al. 2007b;
Wu et al. 2007c; Zhang and Chang 2004; Zhao et al. 2007; Chum et al. 2007; Xu et al. 2008; Zhu
et al. 2008]. Some methods directly extend the conventional content-based image retrieval (CBIR)
techniques for the NDK detection and retrieval task; these approaches often employ the statistical
information extracted from the whole image, that is, color histogram and color moment [Qamra et al.
2005; Zhang and Chang 2004]. Although usually deemed very efficient in finding identical copies, these
methods may neglect the spatial information, and become not very effective for real NDKs as they often
fail to address the variations of viewpoint changes, illumination changes, partial occlusions and image
editing.

Instead of extracting the features from the whole image, some alternative approaches using local
feature point matches can deal with some geometric transformations and illumination variations by
taking advantage of the recent advances in local feature descriptors [Mikolajczyk and Schmid 2005].
The major drawback of these approaches is that they often incur heavy computational cost in find-
ing feature correspondences. Nevertheless, some efficient solutions have been proposed. For example,
Ke et al. [2004] proposed an efficient method using locality-sensitive hashing indexing for PCA-SIFT
features. However, their method often assumes a rigid projective geometry transformation between
NDKs, which may suffer from some outlier matches due to object movements and focal length changes.
To relax the strong rigid projection assumption, Zhang and Chang [2004] proposed a stochastic At-
tributed Relational Graph (ARG) matching framework, which involves a computationally intensive
process of stochastic belief propagation. In most recent work, Zhao et al. [2007] proposed a one-to-one
symmetric (OOS) matching method, in which a local smoothing constraint is applied to remove the out-
lier matches. In Ngo et al. [2006], Pattern Entropy (PE) rather than the total number of inlier matches
is employed as a similarity measure for OOS method, which achieves the state-of-art performance on
TRECVID2003 dataset. Similar to other bipartite graph matching methods, the OOS method considers
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Fig. 1. Some near-duplicate keyframes examples from TRECVID2003 video corpus. The caption of each subfigure shows the
total number of inlier matches with each of the three methods: projective geometry, OOS-SIFT method (PE is below the number
of inliers), and our NIM method. Since PE > 0.5, OOS-SIFT method failed in (a–d).

only pairwise matches and fails to explore the spatial coherence between the two sets of interest points
in two NDKs. As shown in Figure 1, illumination variations, partial occlusions and image zooming lead
to large PE, in which PE ≤ 0.5 is considered as an NDK pair [Ngo et al. 2006].

To facilitate an effective approach to NDK retrieval on large-scale data, we try to attack this chal-
lenge under a Multi-Level Ranking (MLR) framework, which integrates three different ranking com-
ponents into a unified solution: nearest neighbor ranking, semi-supervised ranking, and NIM-based
ranking. As the image feature representation is essential to nearest neighbor ranking and machine
learning-based ranking methods, we also explore the effective feature extraction methods. In this arti-
cle, five kinds of features are investigated: GIST [Oliva and Torralba 2001], grid color moment, Gabor
wavelets transform [Lades et al. 1993], Local Binary Pattern [Ojala et al. 1996], and edge histogram.

Considering that the previous approaches employ either rigid projective models [Ke et al. 2004]
or bipartite graph matching, we propose a novel Nonrigid Image Matching (NIM) method for near-
duplicate keyframe retrieval in this paper. Unlike the previous conventional approaches, we assume
that there may exist nonrigid transformations between the two NDKs. The key to tackle the NIM
problem is to utilize an iterative coarse-to-fine optimization scheme to progressively reject the outliers,
which takes advantage of a closed-form solution for a given set of local feature matches. As our method
takes into account local deformations, it often obtains more inlier correspondences than conventional
rigid projective geometry models and the OOS graph matching method; this characteristic plays a
very important role in duplicate similarity matching. Figure 1 shows some examples along with the
total numbers of inlier matches found by three different methods on the same set of extracted SIFT
features [Lowe 2004].

Compared with the previous approaches, our proposed NIM method not only delivers better retrieval
performance, but also enjoys some other salient merits. For example, our method is able to find the
exact matching region between two NDKs, which is often not obtainable by conventional methods.
This attractive feature is important for part-based or subimage detection and retrieval. Additionally,
our method is rather efficient, with a processing speed of about ten pairs of keyframes per second in a
regular PC with moderate configuration.

In summary, this paper includes four main contributions. First of all, we propose a novel Nonrigid

Image Matching technique for NDK detection and retrieval, which is significantly different from the
conventional approaches. Our technique overcomes some limitations with the existing approaches and
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hence offers better performance for solving the NDK detection and retrieval tasks. Second, to enable
the proposed technique to be applicable to large-scale applications, we suggest a Multilevel Ranking

framework that can effectively filter out irrelevant results so as to significantly reduce the sample
size for the NIM comparisons. Although this is not the first use of the MLR approach by multimedia
researchers [Hoi et al. 2003; Hoi and Lyu 2008], our contribution is to validate its effectiveness at
improving the NIM scheme in the NDK retrieval tasks. The third major contribution is to employ a
Semi-Supervised Ranking (SSR) method by a Semi-Supervised Support Vector Machine (S3VM) to im-
prove the NDK learning task, which often has extremely few labeled data. The SSR method effectively
improves the filtering performance of traditional supervised learning approaches by taking advantage
of unlabeled data information. Finally, we propose a very effective feature representation scheme for
NDK, which is one of the keys to achieve the excellent performance.

The rest of this article is organized as follows. Section 2 reviews some existing approaches for
NDK retrieval. Section 3 presents a multilevel ranking scheme together with a semi-supervised SVM
method for NDK retrieval. Section 4 proposes the nonrigid image matching method for detecting NDK
with local feature correspondences. Section 5 provides our experimental results and the details of our
experimental implementation. Section 6 sets out our conclusions.

2. RELATED WORK

There are numerous research efforts on near-duplicate image/keyframe detection and retrieval in the
multimedia community [Ke et al. 2004; Qamra et al. 2005; Wu et al. 2007a; Wu et al. 2007c; Zhang and
Chang 2004]. Generally, most of these existing approaches can be roughly categorized into two groups:
appearance-based methods and local feature-based methods.

The appearance-based methods often measure the similarity between two keyframes using the
extracted global visual features, such as color histogram [Zhang and Chang 2004] and color mo-
ments [Zhao et al. 2006]. As the feature is formed by the global statistical information, the associated
spatial information is lost. A remedy to alleviate this issue is to introduce the grid representation [Zhao
et al. 2006; Zhu et al. 2008b]. As keyframes are often compactly represented in the vector space, these
appearance-based methods are advantageous for their high efficiency, and thus can take advantage
of conventional CBIR methods and mature data indexing techniques [Qamra et al. 2005]. The major
drawback for these methods is that they are often not very robust to partial occlusions, illumination
changes, and some geometric transformations.

On the other hand, the local feature-based methods detect local salient points in two keyframes and
measure their similarity by counting the number of inlier matches between two keypoint sets. Usually,
keypoints are the salient regions detected over image scales and their descriptors are often invariant
to certain variations and transformations. They overcome the limitations of the global appearance-
based methods, and thus often achieve better performance [Ke et al. 2004; Zhao et al. 2007]. But they
may incur a heavy computational cost for the matching of two keypoint sets, which may contain more
than one thousand of keypoints. To reduce the total number of local feature matching between NDKs,
nearest neighbor filtering is performed to shrink the size of candidate list. On the other hand, the
bag-of-words method [Wu et al. 2007c] is also introduced to NDK retrieval task, which wins success in
object recognition [Everingham et al. 2007].

Recently, local feature-based methods have been actively studied. Ke et al. [2004] employed the com-
pact PCA-SIFT feature and speeded up the search of nearest keypoints with the locality sensitive
hashing technique for duplicate image detection and retrieval. Sivic and Zisserman [2003] proposed
the local keypoints approach for object matching and retrieval in movies. Zhao et al. [2007] proposed
an OOS matching approach to NDK detection and reported state-of-the-art performance. The key of
the OOS method is to eliminate noisy outliers during the one-to-one bipartite graph matching process.
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Fig. 2. A multilevel ranking framework for NDK retrieval.

Most of these methods fall in the same category of point-to-point bipartite graph matching. In the
most recent work, Xu et al. [2008] proposed a Spatially Aligned Pyramid Matching approach, which
tends to robustly handle spatial shifts and scale changes. The first matching stage calculates the pair-
wise distances between blocks from the input image using SIFT features and Earth Movers Distance
[Rubner et al. 2000], and the second stage handles the piecewise spatial shifts and scale variation
using a modified Earth Movers Distance.

In this article, the proposed NIM technique goes beyond the conventional point-to-point bipartite
graph matching methods. In contrast to the conventional techniques, our method not only can recover
the explicit mapping between two near-duplicate keyframes with nonrigid transformation models, but
also can effectively find the correct correspondences from noisy data. Though similar techniques are
actively studied for tracking in computer vision and graphics [Zhu and Lyu 2007; Zhu et al. 2008c;
Pilet et al. 2008; Zhu et al. 2009], to the best of our knowledge, we are the first to study nonrigid image
matching comprehensively for NDK retrieval tasks.

3. MULTILEVEL FRAMEWORK OF NEAR-DUPLICATE KEYFRAME RETRIEVAL

3.1 Framework Overview

Since directly applying local feature matching based method to large-scale applications could be com-
putationally intensive, we employ a Multi-Level Ranking (MLR) framework for efficiently tackling the
NDK retrieval task. This framework is able to greatly improve the efficiency and scalability of our pro-
posed solution. This strategy has been widely used, which is also shown to be successful in multimedia
retrieval [Hoi et al. 2003; Hoi and Lyu 2008]. As shown in Figure 2, the proposed MLR framework
attacks the NDK retrieval task in a coarse-to-fine ranking manner. Specifically, our multilevel ranking
scheme integrates three different ranking components.

—Nearest Neighbor Ranking (NNR). This is to rank the keyframes with simple nearest neighbor search
on the global features.

—Semi-Supervised Ranking (SSR). This is to rank the keyframes with a semi-supervised ranking
method. Note that we employ the pseudo relevance feedback technique, in which SSR chooses a
short list of the most dissimilar examples from NNR results as the negative examples.

—Nonrigid Image Matching (NIM). This is to rank the keyframes by applying the proposed NIM
method. We re-rank the top retrieved results from SSR using NIM, where SSR greatly reduces the
searching spaces for NIM.

In summary, the first two ranking components are based on global features for efficiently filtering out
the irrelevant results, and the last component provides a fine reranking based on the local features.
This scheme makes the proposed NIM solution applicable to large-scale real applications.

3.2 Formulation: From a Machine Learning Viewpoint

The NDK retrieval problem can be formulated as a machine learning task with a query set of la-
beled image examples Q = {(x1,+1), . . . , (xl,+1)} and a gallery set of unlabeled image examples

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7, No. 1, Article 4, Publication date: January 2011.



4:6 • J. Zhu et al.

G = {xl+1, . . . , xl+u}, where each image example xi ∈ Rd is represented in a d-dimensional feature
space. The goal of the learning task is to find the relevant near-duplicate examples from G that are
closest to being exact duplicates of examples in Q.

The learning task is tough on account of two difficulties. One is that there is no negative examples
available, as only a query set Q will be provided in the retrieval task. The other is the small sample
learning issue: very few labeled examples will be provided in the retrieval task. To overcome the first
difficulty, we adopt the idea of pseudo-negative examples used in previous multimedia retrieval ap-
proaches [Yan et al. 2003]. Specifically, we can conduct a query-by-example retrieval for ranking the
unlabeled data in G according to their distances from the examples in the query set. Then we select
a short list of the most dissimilar examples as the negative examples based on the Nearest Neighbor
ranking results.

To this end, with both positive and negative examples, we can formulate the learning task as a
general binary classification task, which can then be solved by existing classification techniques. In
our approach, we apply Support Vector Machines (SVM) for the learning task. SVM is a well-known
and state-of-the-art learning technique [Vapnik 1998], which we briefly review here. SVM is used for
learning an optimal hyperplane with maximal margin, and can learn nonlinear decision boundaries
by exploiting powerful kernel tricks. SVM can be generally formulated in a regularization framework:

min
f ∈HK

1

l

l∑

i=1

max(0, 1 − yi f (xi)) + λ‖ f ‖2
HK

, (1)

where f is the hyperplane function f (x) =
∑l

i=1 αi yik(x, xi), k is some kernel function, and HK is the
associated reproducing kernel Hilbert space.

While SVM can be directly applied to solve the learning task, its performance may be poor when
there are only a limited number of labeled examples. In fact, this is the case of an NDK retrieval task,
as extremely few positive examples will be provided for each query. To overcome the second difficulty,
we next introduce a semi-supervised learning technique for exploring both labeled and unlabeled data
for the retrieval tasks.

3.3 Semisupervised Support Vector Machine

To overcome the challenge of small sample learning, we suggest a semi-supervised retrieval (SSR) ap-
proach to attack the learning task via a semi-supervised SVM technique. Semi-supervised learning
has been extensively studied in recent years, and numerous approaches have been proposed to exploit
it [Xu et al. 2007; Zhu 2005; Zhu et al. 2008a]. In this article, we employ a unified kernel learning
approach for semi-supervised SVM. The key idea is to first learn a data-dependent kernel from the
unlabeled data, and then apply the learned kernel to train a supervised SVM based on the regular-
ization learning framework. In our approach, we adopt the kernel deformation principle for learning a
data-dependent kernel from unlabeled data [Sindhwani et al. 2005].

The main idea of kernel deformation is to first estimate the geometry of the underlying marginal dis-
tribution from both labeled and unlabeled data, and then derive a data-dependent kernel by incorpo-
rating estimated geometry [Sindhwani et al. 2005]. Let H denote the original Hilbert space reproduced
by kernel function k(·, ·), and H̃ denote the deformed Hilbert space. Sindhwani et al. [2005] assume the
following relationship between the two Hilbert spaces:

< f, g>H̃ = < f, g>H + f⊤Mg,

where f (·) and g(·) are two functions, f = ( f (x1), . . . , f (x1)) evaluates the function f (·) for both labeled
and unlabeled data, and M is the distance metric that captures the geometric relationship among
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all the data points. The deformation term f⊤Mg is introduced to assess the relationship between the
functions f (·) and g(·) based on the observed data. Given an input kernel k, the explicit form of the new
kernel function k̃ can be derived as follows:

k̃(x, y) = k(x, y) + κ⊤
y d(x),

where κy = (k(x1, y), . . . , k(xn, y))⊤. The coefficients vector d(x) can be computed by: d(x) = −(I +

MK)−1Mκx, where K = [k(xi, x j)]n×n is the original kernel matrix for all the data, and κx =

(k(x1, z), . . . , k(xn, z))⊤. To capture the underlying geometry of the data, a common approach is to define
M as a function of graph Laplacian L, for example, M = Lp where p is an integer. A graph Laplacian
is defined as L = diag(S1) − S, where 1 denotes a vector with all one elements. Moreover, S ∈ Rn×n is
a similarity matrix and each element Si, j is calculated by:

Si j = Sji =

⎧
⎨
⎩

e
−

‖xi−x j ‖
2
2

2ς2 , xi and x j are adjacent,

0, otherwise,

where ς denotes the kernel width for a graph Laplacian. Various similarity measures can be used to
build the adjacent matrix, such as L1 norm, L2 norm, and cosine similarity.

Consequently, the new kernel k can be formulated as follows:

k̃(x, y) = k(x, y) − κ⊤
y (I + MK)−1Mκx. (2)

Replacing the kernel k in Equation (1) by the kernel k̃ in Equation (2), we can train the semi-
supervised SVM classifier. That is to say, we employ the deformed kernel to train a regular SVM,
in which the query NDK and the selected pseudo negative examples are treated as the labeled data.
Note that Equation (2) can also be used to compute the kernel for transductive learning, and the new
deformed kernel matrix K̃ ∈ Rn×n can be derived as follows:

K̃ = K − K(I + MK)−1MK. (3)

It can further be simplified through Kailath Variant:

K̃ = (I + KM)−1K.

In addition, we have the further equality

K̃ = K(I + MK)−1. (4)

From the previous equations, we summarize the complete S3VM reranking algorithm into Figure 3.

4. NONRIGID IMAGE MATCHING

In this section, we present the nonrigid image matching approach to near-duplicate keyframe detec-
tion. We first give our formulation of the nonrigid image matching problem, and then solve it by a
coarse-to-fine optimization technique.

4.1 Formulation

Instead of assuming an affine transformation or projective projection as in the conventional methods,
we employ the nonrigid mapping relation between the NDKs. Therefore, the proposed method can
tackle not only geometric transformations and viewpoint changes, but also small object movements.
The Nonrigid Image Matching refers to the problem of recovering the explicit mapping between the
two images with a few deformation parameters and finding out the correct correspondences from noisy
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Fig. 3. Semi supervised SVM reranking algorithm.

data simultaneously. This method has been successfully applied to real-time nonrigid surface tracking
in computer vision [Pilet et al. 2008; Zhu and Lyu 2007; Zhu et al. 2009]. Unlike the traditional non-
rigid image registration, the NIM method is a fully automatic solution and does not require manual
initialization.

The main idea of NIM is to recover the local deformations from the salient feature matches between
the two images and to reject the outlier matches simultaneously. Thus, we can simply choose the
total number of inlier matches τ as a confidence measure to decide whether the two keyframes are
near-duplicate or not. More specifically, given a set of correspondences M between the model and
the input image built through a local feature matching algorithm, we manage to find the nonrigid
mapping from these correspondences. Therefore, a pair of matched points is represented in the form of
m = {m0, m1} ∈ M, where m0 is defined as the 2D coordinates of a feature point in the training image
and m1 = (u, v) is the coordinates of its match in the input image. We represent the query keyframe
as a deformation grid, which is explicitly represented by triangulated meshes with N hexagonally
connected vertices. The vertices’ coordinates are formed into a shape vector s = (u v)⊤, where u ∈ RN

and v ∈ RN are the vectors of the coordinates of mesh vertices. Therefore, s is the variable to be
estimated from the 2D correspondences.

We commence by assuming that a point m lies in a triangle whose three vertices’ coordinates are
(ui, vi),(uj, v j), and (uk, vk) respectively, and {i, j, k} ⊂ [1, N] is the index of each vertex. The piece-
wise affine transformation is used to map the image points inside the corresponding triangle into the
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Fig. 4. Illustration of the regularization for an hexagonal unit in the mesh model.

vertices in the mesh. Thus, the mapping function Ts(m) is defined as follows:

Ts(m) =

[
ui uj uk

vi v j vk

] [
ξ1 ξ2 ξ3

]⊤
, (5)

where (ξ1, ξ2, ξ3) are the barycentric coordinates for the point m, and ξ1 + ξ2 + ξ3 = 1.
Then, the correspondence error Ec(s) is defined as the sum of the weighted square error residuals

for the matched points, which can be formulated as follows:

Ec(s) =
∑

m∈M

ωmV(δ, σ ), (6)

where V(δ, σ ) is a robust estimator with compact support size σ , and ωm ∈ [0, 1] is a weight linked with
each correspondence. Moreover, δ is the residual error, which is defined as follows:

δ(m) = ‖m1 − Ts(m0)‖. (7)

The robust estimator function V(δ, σ ) that assesses a fixed penalty for residuals larger than a thresh-
old σ is employed in the present work; this approach is relatively insensitive to outliers [Boyd and
Vandenberghe 2004]:

V(δ, σ ) =

{
δ(m)
σ ν , M1 =

{
m|δ(m) ≤ σ 2

}

σ 2−ν, M2 = M1

, (8)

where the set M1 contains the inlier matches, and M2 is the set of the outliers. In addition, the order ν

determines the scale of the residual. The larger the value of the support σ is, the larger the number of
the correspondences is included. Conversely, when σ decreases, the robust estimator becomes narrower
and more selective.

In general, the NIM problem approximates a 2D mesh with N vertices from the keypoint correspon-
dences, which is usually ill-posed. One effective way to attack this problem is to introduce regular-
ization, which preserves the regularity of a deformable mesh and constrains the searching space. In
particular, we consider the following regularized objective function for energy minimization:

E(s) = Ec(s) + λr Er(s), (9)

where Er(s) is the regularization term that represents the deformation energy, and λr is a regular-
ization coefficient. Similar energy functions have been used in deformable surface fitting [Kass et al.
1988; Pilet et al. 2008; Zhu et al. 2008b].

The regularization term Er in the given formulation, also known as “internal force” in Snakes [Kass
et al. 1988], is composed of the sum of the squared second-order derivatives of the mesh vertex coor-
dinates. Specifically, since the mesh is regular, the length differences between two colinear connected
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edges is penalized, as illustrated in Figure 4. Thus, the regularization energy er [Fua and Leclerc 1995;
Pilet et al. 2008] for each edge pair in the conlinear connected edges set E can be written as follows:

er = [(u1 − u2) − (u2 − u3)]2 + [(v1 − v2) − (v2 − v3)]2

= ([ 1 −2 1 ]⊤[ u1 u2 u3 ])2 + ([ 1 −2 1 ]⊤[ v1 v2 v3 ])2. (10)

Let h ∈ RN be an auxiliary vector containing a set of coefficients so that we can rewrite er with respect
to the vertex coordinates:

er = (h⊤u)2 + (h⊤v)2 = u⊤(hh⊤)u + v⊤(hh⊤)v.

Furthermore, Er(s) can be formulated as the summation of all edge pairs:

Er(s) =
∑

E

u⊤(hh⊤)u + v⊤(hh⊤)v = s⊤

[
K 0
0 K

]
s, (11)

where K =
∑

E
hh⊤ is a sparse and banded matrix, which is determined by the structure of the explicit

mesh model.

4.2 Optimization

We now present an effective technique to solve the optimization task as shown in Equation (9). Since
the robust estimator function in Equation (8) is nonconvex, it leads to a hard combinational optimiza-
tion problem for the associated penalty function approximation. To tackle this problem, we employ a
progressive finite Newton optimization method [Zhu and Lyu 2007; Zhu et al. 2009]. Given a set of
inlier matches M1, the solution for the optimization problem in Equation (9) can be obtained through
solving the following two linear equations via LU decomposition:

(λrK + A)u = bu (12)

(λrK + A)v = bv, (13)

where A ∈ RN×N is computed as follows:

A =
∑

m∈M1

ωm

σ ν
tt⊤ (14)

and the vector bu ∈ RN and bv ∈ RN are defined as follows:

bu =
∑

m∈M1

ωm

σ ν
ut and bv =

∑

m∈M1

ωm

σ ν
vt, (15)

where t ∈ RN containing the barycentric coordinates is defined as follows:

ti = ξ1 t j = ξ2 tk = ξ3,

while the remaining elements in the vector t are all set to zero. It can be observed that the overall
complexity of the NIM method is that of a single Newton step, which is determined by the total number
of mesh vertices N.

Obviously, we can directly compute s by the given closed-form solution if the correspondences set M
contains no outliers. However, the incorrect matches cannot be avoided in the first stage of the match-
ing process where only local image descriptors are compared. Therefore, a coarse-to-fine optimization
scheme is introduced to reject the outliers gradually, which progressively decays the support σ of the
robust estimator V(δ, σ ) at a constant rate η. For each value of σ , the object function E is minimized
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Fig. 5. The Nonrigid Image Matching (NIM) algorithm.

through the finite Newton step and the result is employed as the initial state for the next minimiza-
tion. The optimization procedure stops when σ reaches a value close to the expected precision, which is
usually one or two pixels. Thus, the whole optimization problem can be solved within a finite number
of steps. As the derivatives of V(δ, σ ) are inversely proportional to the support σ , the regularization
coefficient λr is kept constant during the optimization.

Before starting the optimization, we need to select the initial active set. One strategy is to set the ini-
tial value of σ to a sufficiently large value in order to select most of the correspondences into the initial
active set and to avoid getting stuck at local minima. This method may need a few steps to compensate
for the errors generated by the variations in object positions between the images. Alternatively, we can
select the active set through a modified RANSAC [Chum and Matas 2005; Fischler and Bolles 1981]
approach by taking advantage of our closed-form solution. Note that it is usually hard to directly apply
the robust estimator to a system with a large number of free variables. To reduce the total number of
RANSAC trials, we draw from progressively larger sets of top-ranked correspondences with the high-
est similarities. In the experiments, the sampling process stopped within five trials. Since the result of
RANSAC is usually quite close to the solution, the initial value of σ can be relatively small. Thus, the
proposed progressive scheme usually requires fewer steps empirically. From all of these, we summarize
the details of the nonrigid image matching (NIM) algorithm in Figure 5.

4.3 Local Feature Matching

Interest point detection and matching is a fundamental research problem in computer vision. Many
effective approaches have been proposed in literature. One of the most widely used methods is SIFT
[Lowe 2004], which computes a histogram of local oriented gradients around the interest point and
stores the bins in a 128-dimensional vector. To improve SIFT, Ke et al. [2004] proposed an extended
method by applying Principle Component Analysis [Fukunaga 1990] on the gradient image, which
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Fig. 6. Examples of our detection results on view point changes. (a) We overlaid the estimated mesh onto the test image. (b)
The model mesh is mapped to the input image using homography estimated by rigid matching. The white lines are the inlier
matches, and the blue lines (black lines on the grayscale printed paper) are outlier matches. We use the same notation in the
following examples.

then yields a 36-dimensional descriptor that is more compact and faster for matching. However, the
PCA-SIFT has been empirically shown to be less distinctive than the original SIFT in a comparative
study [Mikolajczyk and Schmid 2005], and is also slower than the original SIFT in the feature extrac-
tion. Instead of using SIFT or PCA-SIFT, we adopt SURF [Bay et al. 2006], another emerging local
feature descriptor to detect and extract local features, which takes advantage of fast feature extraction
using integral images for image convolutions. Specifically, a 64-dimensional feature vector is used for
representing each keypoint with SURF. Compared to SIFT, it is more compact and hence reduces the
computational cost for keypoint matching.

4.4 Case Studies: Detecting Various NDKs

To illustrate how the proposed NIM technique can effectively detect various NDKs appearing in news
video domains, we show part of our detection results to demonstrate the advantages of our technique.
To compare the conventional methods based on the rigid projective geometry assumption, we also con-
duct the experiments with the same set of feature correspondences using RANSAC fitting. Specifically,
we employ the homography estimation technique [Chum et al. 2007], which is typically used in the
pairwise image matching. In the experiment, we also take advantage of the feature matching score to
reduce the total number of RANSAC trails, and set the inlier threshold to two pixels. To make compar-
ison with the NIM results, we map the model mesh in the reference image onto the input image with
estimated homography matrix.

Figures 6–11 show some examples of the detection results using NIM and rigid matching for the
various kinds of NDKs. All results on the duplicate pairs from Columbia’s TRECVID2003 dataset can
be found at the Web page.1 In particular, the proposed NIM technique can effectively detect a variety
of NDKs including, but not limited to, the following cases.

—Viewpoint change. This is very common for the shots extracted from news video sequences.

—Object movement. This is due to the relative movements caused by the camera or some objects.

—Lens change. This case is caused by the changes of camera lens, such as zooming in or zooming out.

1http://www.cse.cuhk.edu.hk/∼jkzhu/dup detect.html.
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Fig. 7. Examples of our detection results on the keyframes with object movements.

Fig. 8. Examples of our detection results on the lens changes.

Fig. 9. Examples of our detection results on the subimage duplicates.
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Fig. 10. Examples of our detection results on the keyframes with small regional changes.

Fig. 11. Examples of our detection results on the keyframes with partial occlusions.

—Subimage duplicate. Such duplicates could be caused either by lens changes or some editing effects.

—Small regional change. These duplicates only have small regional differences. They are often cap-
tured in the same scenario with slight changes.

—Partial occlusion. This case arises from the added captions or text descriptions in the videos.

From these results, we can clearly see that NIM obtains more inliers than rigid matching. This
is because that most of the NDK pairs contain the spatial deformations due to object movements or
different capture conditions. These deformations can be captured by the nonrigid mapping in the most
cases. Being the local feature-based methods, both NIM and rigid image matching are effective for
partial occlusions and the subimages.

5. EXPERIMENTS

In this section, we perform our empirical evaluation on the proposed techniques for NDK retrieval
task. Two key techniques in our proposed approach are studied comprehensively in the experiments.
In the first experiment, we examine the effectiveness of the Multilevel Ranking scheme for filtering
out the irrelevant results. In particular, we would like to study whether the semi-supervised ranking
method using S3V M is more effective than the conventional ranking approaches. The second and more
important experiment is to evaluate the performance of the proposed NIM technique for NDK retrieval
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in comparison with some state-of-the-art approaches. In the following experiments, we mainly report
quantitative evaluations.

5.1 Experimental Testbeds and Setup

To conduct comprehensive evaluations, we employ two benchmark datasets for NDK retrieval as our
experimental testbeds. One is the widely used Columbia’s TRECVID2003 dataset [Zhang and Chang
2004], which consists of 600 keyframes with 150 near duplicate image pairs and 300 nonduplicate
images extracted from the TRECVID2003 corpus [Zhang and Chang 2004]. All the keyframes are with
the same size, 352 × 264. The other is CityU’s TRECVID2004 dataset2 recently collected by Ngo et al.
[2006]. It contains 7,006 keyframes with 3,388 near-duplicate image pairs, which are selected from the
TRECVID2004 video corpus. In the TRECVID2004 dataset, the near-duplicate image pairs involve a
total of 1,953 keyframes, which is about 28% of the whole collection. Note that one keyframe may be
associated with several near-duplicate pairs.

In our experiments, we adopt the evaluation protocol used in Zhao et al. [2007] in order to make a fair
comparison with the state-of-the-art approaches. More specifically, all NDK pairs are treated as queries
for performance evaluation. Each query set Q contains a single keyframe image; other remaining
keyframes are regarded as the gallery set G. For the retrieval task, each algorithm produces a list of
relevant results by ranking the keyframes in the gallery set. To evaluate the retrieval performance, the
average cumulative accuracy metric is adopted as a performance metric [Zhao et al. 2007], in which the
accuracy is measured by judging whether the retrieved keyframe is one of the corresponding pairwise
duplicates in the ground truth query set. More specifically, cumulative accuracy is defined as the ratio
between the number of correctly retrieved NDKs and the ground truth of total number of NDKs in the
top k returned the keyframes. As a yardstick for assessing the performance, we compare our method
with the recently proposed OOS matching algorithm [Zhao et al. 2007], one state-of-the-art method for
NDK detection and retrieval.

For the experimental setups, the kernel function used in both SVM and S3VM is an RBF kernel
with fixed width. Regarding the parameter settings, the penalty parameter C of SVMs is set to 10
(or γA = 10−1) and the graph regularization parameter of S3VM is set to γI = 10−1. Moreover, the
Laplacian graph is constructed based on heat kernel.

All the experiments in this paper were carried out on a notebook computer with Intel Core-2 Duo
2.0GHz processor and 2GB RAM. All the proposed methods are implemented in Matlab, for which
some routines are written in C code. The code can be downloaded from the Web page.3

5.2 Image Representation

To facilitate the effective Nearest Neighbor Ranking and Semi-Supervised Ranking, we need represent
the images by the feature vectors, which is a key step for NDK retrieval. In the past decade, the
global feature representation techniques have been extensively studied in image processing and CBIR
community. Also, a wide variety of global feature extraction techniques were proposed. Comparing
to the four kinds of features used in Zhu et al. [2008], we also add the GIST feature in this paper.
Therefore, we extract following five kinds of effective global features:

5.2.1 GIST Feature. GIST feature [Oliva and Torralba 2001] is an effective tool for representing
scene structure by the spatial envelope, and obtains state-of-art performance in scene recognition.
GIST is based on a set of 2D Fourier Transform of the input image, which is partitioned into 4×4 grid.

2http://vireo.cs.cityu.edu.hk/research/NDK/ndk.html.
3http://www.cse.cuhk.edu.hk/∼jkzhu/dup detect.html.
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Fig. 12. Cumulative accuracy of similarity measure and features using Nearest Neighbor Ranking on the TRECVID2003
dataset (600 keyframes) and the TRECVID2004 dataset (7006 keyframes).

For each grid, the mean value is extracted as a feature point. The size of the GIST feature vector is
512.

5.2.2 Grid Color Moment. We adopt the grid color moment to extract color features from keyframes.
Specifically, an image is partitioned into 3 × 3 grids. For each grid, we extract three kinds of color mo-
ments: color mean, color variance, and color skewness in each color channel (R, G, and B), respectively.
Thus, an 81-dimensional grid color moment vector is adopted for color features.

5.2.3 Local Binary Pattern (LBP). The local binary pattern [Ojala et al. 1996] is defined as a gray-
scale invariant texture measure, derived from a general definition of texture in a local neighborhood.
In our experiment, a 59-dimensional LBP histogram vector is adopted.

5.2.4 Gabor Wavelets Texture. To extract Gabor texture features, each image is first scaled to 64×64
pixels. The Gabor wavelet transform [Lades et al. 1993] is then applied on the scaled image with 5
levels and 8 orientations, which results in 40 subimages. For each subimage, 3 moments are calculated:
mean, variance and skewness. Thus, a 120-dimensional vector is used for Gabor texture features.

5.2.5 Edge. An edge orientation histogram is extracted for each image. We first convert an image
into a gray image, and then employ a Canny edge detector [Canny 1986] to obtain the edge map for
computing the edge orientation histogram. The edge orientation histogram is quantized into 36 bins
of 10 degrees each. An additional bin is used to count the number of pixels without edge information.
Hence, a 37-dimensional vector is used for shape features.

Thus, a 809-dimensional vector in total is used to represent all the global features for each keyframe
in the datasets.

5.3 Experiment I: Ranking with NN

In this part, we evaluate the effectiveness of the proposed multi-level ranking scheme for filtering out
the irrelevant keyframes by ranking on global features. We first evaluate the retrieval performance of
the global features with nearest neighbor ranking.

To examine how effective the global features are, we measure the retrieval performance of different
distance measures with the global features on both datasets, as shown in Figure 12. From the results,
we first observe that different distance metrics have different impacts on the retrieval results with the
same global features. In particular, the L1 norm outperforms both the L2 norm and the cosine metric
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on both datasets, and the cosine similarity is slightly better than the L2 norm. Note that we normalize
the feature vectors into zero mean and unit variance in order to ensure the numerical stability in
computing the cosine distance measure. As a result, we employ the L1 norm as the similarity measure
in all of the remaining experiments.

In addition, we also assess the performance of each component of the global features as well as
the combined features. From the results shown in Figure 12, we can see that the approaches with
the combined features clearly outperform the approaches with individual features. For the individual
features, we found that the results using GIST feature outperforms the other four methods. Also, both
GIST feature and gird color moment significantly outperform the other three methods, especially in
a large dataset like TRECVID2004 dataset. Based on the experimental results, we also analyze the
reason for the effectiveness of GIST features in detail. In contrast to grid color moment and color
histogram, GIST features are robust to large illumination changes and the occlusions due to video
editing. Moreover, GIST features obtain good results on the NDK with cluttered background. From
these observations, we can conclude that this mainly benefits from the effective Gabor filters built-in
GIST method which can capture the important structure information in images.

5.4 Experiment II: Reranking with S3VM

In this part, we compare the proposed semi-supervised ranking approach using the S3VM method
with other conventional appearance-based methods on global features, such as the approaches with
color histogram [Zhang and Chang 2004] and color moments [Zhao et al. 2006]. Note that we employ
the Nearest Neighbor ranking results to select the most dissimilar examples as the negative samples
for training S3VM. Figure 13 and Figure 15(b) show the experimental results on the two datasets.
Obviously, S3VM significantly outperforms the color moment and color histogram methods. Specifically,
S3VM obtains about 33% improvement over the color moment method on the TRECVID2003 dataset.
To make a fair comparison, we also apply the S3VM method on the color moment. It can be clearly
observed that the semi-supervised ranking boosts the performance of the color moment method at
a large margin. Compared with the unsupervised Nearest Neighbor ranking and supervised SVM
ranking methods, S3VM also obtains better results. In particular, S3VM ranking method achieves very
high cumulative accuracy with the top 30 returns, about 98.3%.

5.5 Experiment III: Reranking with NIM

5.5.1 Parameter Settings. The last key ranking stage for the MLR scheme is the NIM ranking using
the proposed NDK matching technique. To deploy the NIM technique for the NDK retrieval task, we
need to determine some parameter settings. In general, the total number of mesh vertices determines
the computational complexity and the deformation accuracy of the NIM method. Empirically, we adopt
a 14 × 16 mesh for all of our experiments. In contrast to the nonrigid surface detection in Zhu and Lyu
[2007] and Zhu et al. [2009], we employ a relatively small regularization coefficient λr in order to allow
large deformations, which is set to 5 × 10−5 in our experiments. The order ν of the robust estimator is
set to 4. The initial support is 100 and the decay rate is 0.5. We find the optimization of each NIM task
requires around 9 iterations to achieve convergence.

5.5.2 Evaluation on the Choices of Two Thresholds. For the proposed NIM approach, there are two
threshold parameters that can affect the resulting accuracy and efficiency performance. These are:
(1) the minimal number of inlier matches for reporting positive NDKs, denoted by τp, and (2) the
number of top ranked examples to be matched by NIM, denoted by τk.

The first threshold parameter τp determines the threshold for predicting positive results. Normally,
the smaller the value of τp, the higher the recall (the hit rate). At the same time, the precision is
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Fig. 13. Comparison of the proposed semi-supervised ranking method using S3VM algorithm with other appearance based
methods on the TRECVID2003 dataset.

Fig. 14. Cumulative accuracy of NDK retrieval using NIM method on the TRECVID2003 dataset. (a) A wide range of values
can be chosen to determine the threshold τp. Image pairs of less than 30 inlier matches are viewed as nonduplicate in our
experiments. (b) The overall accuracy grows with the number of top returned examples. We choose 50 as a trade-off between
accuracy and computational cost.

likely to drop with decreasing τp. Hence, it is important to determine an optimal threshold parameter.
Although we do not have a theoretical approach to this, choosing a good τp value empirically does not
seem too difficult. To justify this, we evaluate the performance by varying the τp values. Figure 14
shows the surface of cumulative accuracies with the top 30 returned results on the TRECVID2003
dataset when τp varies from 10 to 50 (where τk is fixed to 50). From the results, we can see that good
results can be obtained when setting the threshold τp between 25 and 40.

The second threshold parameter τk determines how many examples returned by the S3VM ranking
will be engaged for the NIM matching. Hence, it affects both the accuracy and efficiency performance.
In general, the larger the value of τk is, the more the computational cost incurrs. However, τk value
that is too small is likely to degrade the retrieval performance. Hence, choosing a proper τk value is
important to balance the tradeoff between accuracy and efficiency performance. To see how τk affects
the performance, Figure 14(b) shows the surface of cumulative accuracies with the top 30 returned
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Fig. 15. Comparison of cumulative accuracy of NDK retrieval results on the TRECVID2003 dataset (600 images) and the
TRECVID2004 dataset (7006 images), respectively.

results obtained by varying τk from 1 to 50 (with τp fixed to 30). From the results, we can see that
the cumulative accuracy increases when τk increases and tends to converge when τk approaches 50.
Therefore, in the rest of our experiments, we simply fix τk to 40 to achieve good efficiency. We will
evaluate the efficiency performance in a subsequent part of this article.

5.5.3 Comparisons of NDK Retrieval Performance. To examine the performance of the proposed
NIM technique for retrieving NDKs, we compare our method with several state-of-the-art methods,
including the OOS-SIFT method [Wu et al. 2007c], the OOS-PCA-SIFT method [Zhao et al. 2007], and
the Visual Keywords (VK) methods [Zhao et al. 2007]. Beside the qualitative comparison in Section 4.4,
we also evaluate the NDK retrieval performance of the method based on the projective geometry as-
sumption using homography.

For the TRECVID2003 dataset, it is relatively small and widely used as a benchmark testbed for
NDK retrieval in literature. Figure 15(a) shows the experimental results of the cumulative accuracy of
the top 30 returned keyframes on the TRECVID2003 dataset. From the experimental results, we can
draw several observations. First of all, the proposed S3VM method with global features outperforms
the OOS-PCA-SIFT method [Zhao et al. 2007] and the VK method [Wu et al. 2007c], which use local fea-
tures. This again validates the effectiveness of the proposed semi-supervised ranking technique with
S3VM. Second, the proposed NIM algorithm with local features improves the S3VM ranking results at
a large margin. In particular, NIM achieves more than 8% improvement on the rank one accuracy over
S3VM. Thus, among all compared methods, the proposed NIM method achieves the best performance,
outperforming the state-of-the-art OOS-SIFT method [Wu et al. 2007c]. Also, NIM is more effective
than the rigid matching method. Finally, the proposed NIM method achieves 85.3% top one retrieval
result. This outperforms the most recent Spatially Aligned Pyramid Matching method [Xu et al. 2008]
which reported 80.7% top one retrieval accuracy, by around 5.7%.

Turning next to the TRECVID2004 dataset, due to its large size, we have a difficulty of comparing
our method with other existing methods, such as the OOS-SIFT and OOS-PCA-SIFT methods, which
are computationally very intensive. Therefore, we only compare our method with some conventional
approaches. Figure 15(b) shows the experimental results on the TRECVID2004 dataset. Similar to the
previous dataset, NIM achieves the best performance among all the compared methods on this dataset.
For other compared methods, S3VM performs significantly better than both supervised SVM and NN
methods. We can find that both NIM and rigid matching method improve the S3VM ranking results.
In particular, NIM outperforms the method based on rigid projective geometry assumption.
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Fig. 16. Comparison of the proposed approach with the previous method on the TRECVID2003 dataset (600 images) and the
TRECVID2004 dataset (7006 images), respectively.

It is also interesting to compare the proposed methods with our recent work in Zhu et al. [2008b]. We
plot the NDK retrieval performance evaluation results on both TRECVID2003 dataset and TRECVID-
2004 dataset in Figure 16. From the results, we first observe that the propose methods all outperform
their corresponding algorithms in Zhu et al. [2008b] on both datasets. More specifically, the NN ranking
method in this paper performs significantly better than the method without GIST feature. Specifically,
there is around 10% improvement over the NN ranking in Zhu et al. [2008b]. Based on the improved
NN ranking method, both S3VM and NIM achieve better results, with around 5% improvement over
the previous methods on TRECVID2004 dataset.

Finally, to give more insights on the proposed technique, we are interested in checking when our
method may fail. To this purpose, we here briefly analyze the cases and attempt to find some possi-
ble reasons. Figure 17 shows some failure cases, where all of the top one retrieved examples by the
proposed method are not the true duplicates. We can roughly categorize the failure cases into three
groups. The main reason for the first group is that the query image is too blur or smooth to extract
the discriminative feature points by the local feature detector. In particular, some transition video ef-
fects will lead to the blur keyframes, as shown in the first row. Note that keyframe extractors usually
report the transition as keyframe. As for the second group, NIM method fails because that the spatial
variations between NDK are too large to be modeled as nonrigid mapping, especially for the object
movements in different directions. The second row shows an example. For the last group, the false re-
sults are mainly due to the visual similarities across NDK; for example crowds often share very similar
global and local features. As shown in the third row, the first two examples are visually very similar
to the query image, but they are not labeled as the true duplicates according to the ground truth. We
also have some qualitative analysis of these failure cases on both TRECVID2003 and TRECVID2004
dataset. According to the above definition, we find the proportions of the failure cases in each category
are 38%, 34%, and 28% on TRECVID2004 dataset and 26%, 35%, and 39% on TRECVID2004 dataset,
respectively. This indicates that the proportion of failure cases in each category is similar, and visually
similar, NDK leads to more false positives on a large dataset.

5.6 Evaluation of Computational Cost

Finally, we empirically study the efficiency performance of the proposed NIM and S3VM methods. In
our experiment, both the local features and global appearance features are extracted offline.
Table I and Table II summarize the overall computational time for comparing all pairs of keyframes
on both datasets. From these results, it can be observed that NIM is more efficient than the OOS-SIFT
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Fig. 17. Failure examples in showing when the presented method may fail.

Table I. Comparison of Overall Time Cost of 300 Queries on the
TRECVID2003 Dataset

NIM S3VM NN OOS [Wu et al. 2007] VK [Wu et al. 2007]

12.7min 3sec 1sec 6.5hour 1.5min

Table II. Comparison of Overall Time Cost of 1,953 Queries on the
TRECVID2004 Dataset

NIM S3VM NN OOS [Wu et al. 2007] VK [Wu et al. 2007]

83.5min 8.1min 30sec N/A N/A

method [Wu et al. 2007] and less efficient than the VK method, which simply computes the similarity
of visual words. Note that the VK approach usually requires much preprocessing time for extracting
the visual keywords offline. Additionally, we clearly see that the methods using global features are
significantly more efficient than the ones using local feature matching. This again demonstrates the
effectiveness and importance of the proposed multilevel ranking scheme for improving efficiency. Fi-
nally, we also plot the computational cost and retrieval accuracy with respect to the number of top
ranked examples (τk) to be compared by NIM in Figure 18. The results show that the larger the value
of τk, the higher the computational cost and the better the matching accuracy. In particular, we found
that the cumulative accuracy tends to converge to the best result when τk approaches to 50. In the
real-world applications, one can choose an appropriate τk to balance the tradeoff between accuracy
and efficiency. For example, when τk equals 10, each query for NIM takes about 1 second and achieves
rather high cumulative accuracy, at about 93%.

6. CONCLUSIONS AND FUTURE WORK

In this article, a novel method is presented for dealing with the Near-Duplicate Keyframe (NDK) re-
trieval, which comprises an effective multilevel ranking scheme and a novel nonrigid image matching
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Fig. 18. Computational efficiency and retrieval performance on the TRECVID2003 dataset. The left vertical axis shows mean
cumulative accuracy of the top 30 returned results, and the right vertical axis represents the overall time cost for all 300 queries.

technique. To reduce the overall computational cost, we also proposed an effective multilevel
ranking scheme together with a semi-supervised ranking technique using semi-supervised SVM
(S3VM) to boost the ranking performance with the unlabeled data. Compared with conventional ap-
proaches with either bipartite graph matching or projective geometry, the proposed nonrigid image
matching (NIM) algorithm not only recovers the explicit nonrigid mapping between two NDKs but
also effectively locates the correct correspondences using a robust coarse-to-fine optimization scheme.
Moreover, our method can detect the NDK pairs accurately while recovering the local deformations
between them simultaneously. Furthermore, we also developed a new feature extraction method to
improve the NDK retrieval accuracy. We conducted extensive evaluations on two testbeds extracted
from the TRECVID corpora. The encouraging experimental results demonstrated that our approach is
clearly more effective than traditional methods, especially in dealing with cases involving local defor-
mations and viewpoint changes, which commonly occur in practice.

Despite promising results obtained by the proposed methods, some limitations and future directions
should be mentioned. First of all, the feature representation scheme can be further improved. Our
current approach simply concatenates various features, in which weights of different features are not
fully optimized. Feature selection and feature weighting techniques can be studied to further enhance
the retrieval performance. Second, our work focuses on the NDK retrieval task, whereas it may be
more appropriate to detect NDKs directly from a collection of images in some applications. In con-
trast to the retrieval task, one challenge to the NDK detection task is to determine optimal thresholds
for reporting NDKs. We will explore this in future work. Finally, the efficiency of the proposed multi-
level ranking scheme can be further improved. In particular, the nearest neighbor ranking stage could
be still computationally intensive for very large-scale datasets. In future work, we can improve this
by adopting some effective high-dimensional indexing techniques, such as locality-sensitive hashing
[Andoni and Indyk 2008].
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