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Abstract

The particle swarm optimization algorithm was showed to converge rapidly during the initial stages of a global search,
but around global optimum, the search process will become very slow. On the contrary, the gradient descending method
can achieve faster convergent speed around global optimum, and at the same time, the convergent accuracy can be higher.
So in this paper, a hybrid algorithm combining particle swarm optimization (PSO) algorithm with back-propagation (BP)
algorithm, also referred to as PSO–BP algorithm, is proposed to train the weights of feedforward neural network (FNN),
the hybrid algorithm can make use of not only strong global searching ability of the PSOA, but also strong local searching
ability of the BP algorithm. In this paper, a novel selection strategy of the inertial weight is introduced to the PSO algo-
rithm. In the proposed PSO–BP algorithm, we adopt a heuristic way to give a transition from particle swarm search to
gradient descending search. In this paper, we also give three kind of encoding strategy of particles, and give the different
problem area in which every encoding strategy is used. The experimental results show that the proposed hybrid PSO–BP
algorithm is better than the Adaptive Particle swarm optimization algorithm (APSOA) and BP algorithm in convergent
speed and convergent accuracy.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, feedforward neural networks (FNN), in particular, two layered FNNs [12] have been widely
used to classify nonlinearly separable patterns [31,26,22] and approximate arbitrary continuous functions
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[20,25]. Currently, there have been many algorithms used to train the FNN, such as back-propagation
algorithm (BPA), genetic algorithm (GA) [5,6], simulating annealing algorithm (SAA) [13,14], particle swarm
optimization algorithm (PSO) [16,18], and so on.

The particle swarm optimization (PSO) is an evolutionary computation technique developed by Eberhart
and Kennedy in 1995 [1,2], inspired by social behavior of bird flocking. And we can also say it to be a kind of
algorithm based on social psychology. Similar to the genetic algorithm (GA), the PSO algorithm is an opti-
mization tool based on population, and the system is initialized with a population of random solutions and
can search for optima by the updating of generations. In 1998, Shi and Eberhart firstly introduced the inertia
weights w into the previous PSO algorithm [3,17]. Through adjusting w, the performances of the PSO algo-
rithm can be improved significantly. Researchers often use a kind of Adaptive particle swarm optimization
(APSO) algorithm. The adaptive particle swarm optimization can be described as following, in different
searching stages, the inertial weight w is changed adaptively.

Unlike the GA, the PSO algorithm has no complicated evolutionary operators such as crossover and
mutation [21]. In the PSO algorithm, the potential solutions, called as particles, are obtained by ‘‘flowing’’
through the problem space by following the current optimum particles. Generally speaking, the PSO
algorithm has a strong ability to find the most optimistic result, but it has a disadvantage of easily getting
into a local optimum .After suitably modulating the parameters for the PSO algorithm, the rate of conver-
gence can be speeded up and the ability to find the global optimistic result can be enhanced. The PSO algo-
rithm’s search is based on the orientation by tracing Pb that is each particle’s best position in its history,
and tracing Pg that is all particles’ best position in their history, it can rapidly arrive around the global
optimum. However, because the PSO algorithm has several parameters to be adjusted by empirical
approach, if these parameters are not appropriately set, the search will become very slow near the global
optimum.

Regarding the FNNs training, the mostly used training algorithm is the back-propagation (BP) algo-
rithm, which is a gradient-based method. Hence some inherent problems existing in BP algorithm are also
frequently encountered in the use of this algorithm. Firstly, the BP algorithm will easily get trapped in local
minima especially for those non-linearly separable pattern classification problems or complex function
approximation problem [7], so that back-propagation may lead to failure in finding a global optimal solu-
tion. Second, the convergent speed of the BP algorithm is too slow even if the learning goal, a given termi-
nation error, can be achieved. The important problem to be stressed is that the convergent behavior of the
BP algorithm depends very much on the choices of initial values of the network connection weights as well
as the parameters in the algorithm such as the learning rate and the momentum. To improve the perfor-
mance of the original BP algorithm, researchers have concentrated on the following two factors: (1) selection
of better energy function [8,9]; (2) selection of dynamic learning rate and momentum [10,11]. However, these
improvements haven’t removed the disadvantages of the BP algorithm getting trapped into local optima in
essence. In particular, with FNN’s structure becoming more complex, its convergent speed will be even
slower. But if the search for the BP algorithm starts from near the optimum, and if the learning rate is
adjusted small enough, how will the searching results be? The experiments in the sequel will give further
analyses.

Genetic algorithm (GA) has been also used in training FNNs recently, but in training process, this algo-
rithm needs encoding operator and decoding operator. Usually there are three kinds of complicated evolu-
tionary operators with this algorithm, i.e., selection, crossover and mutation, it was found in experiments
that when the structure of FNNs is simple, its training results may be better than the ones using the BP
algorithm to train, when the structure of FNNs becomes complex and there are large training samples,
the GA’s convergent speed will become very slow, so that the convergent accuracy may be influenced by
the slow convergent speed.

In this paper, we combined the adaptive particle swarm optimization (APSO) algorithm with the BP algo-
rithm to form a hybrid learning algorithm for training FNNs. This hybrid uses the APSO algorithm to do
global search in the beginning of stage, and then uses the BP algorithm to do local search around the global
optimum Pg. In particular, this hybrid algorithm will be used to train the FNN weights for function approx-
imation and classification problems, respectively compared with the APSO algorithm and the BP algorithm in
convergent speed and generalization performance.
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This paper is organized as follows. Section 2 presents a briefly introduction to adaptive particle swarm opti-
mization, and the selection strategy for inertia weights w. The proposed new hybrid PSO–BP algorithm is
introduced in Section 3, where three kinds of encoding strategies will be presented for the PSO algorithm.
Simulation results are provided in Section 4 to demonstrate the effectiveness and potential of the new proposed
hybrid algorithm. Finally, several conclusions are included in Section 5.
2. Adaptive particle swarm optimization

Particle swarm optimization (PSO) is a kind of algorithm to search for the best solution by simulating the
movement and flocking of birds. The algorithm works by initializing a flock of birds randomly over the
searching space, where every bird is called as a ‘‘particle’’. These ‘‘particles’’ fly with a certain velocity and
find the global best position after some iteration. At each iteration, each particle can adjust its velocity vector,
based on its momentum and the influence of its best position (Pb) as well as the best position of its neighbors
(Pg), and then compute a new position that the ‘‘particle’’ is to fly to. Supposing the dimension for a searching
space is D, the total number of particles is n, the position of the ith particle can be expressed as vector Xi =
(xi1,xi2, . . .,xiD); the best position of the ith particle being searching until now is denoted as Pib = (pi1,
pi2, . . .,piD), and the best position of the total particle swarm being searching until now is denoted as vector
Pg = (pg1,pg2, . . .,pgD);the velocity of the ith particle is represented as vector Vi = (vi1,vi2, . . .,viD). Then the
original PSOA [1,2] is described as:
vidðt þ 1Þ ¼ vidðtÞ þ c1 � randðÞ � ½pidðtÞ � xidðtÞ� þ c2 � randðÞ � ½pgdðtÞ � xidðtÞ�; ð1aÞ
xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ 1 6 i 6 n 1 6 d 6 D; ð1bÞ
where c1, c2 are the acceleration constants with positive values; rand() is a random number between 0 and 1; w

is the inertia weight. In addition to the parameters c1, and c2 parameters, the implementation of the original
algorithm also requires placing a limit on the velocity (vmax). After adjusting the parameters w and vmax, the
PSO can achieve the best search ability.

The adaptive particle swarm optimization (APSO) algorithm is based on the original PSO algorithm, firstly
proposed by Shi and Eberhart in 1998 [3]. The APSO can be described as follows:
vidðt þ 1Þ ¼ w � vidðtÞ þ c1 � randðÞ � ½pidðtÞ � xidðtÞ� þ c2 � randðÞ � ½pgdðtÞ � xidðtÞ�; ð2aÞ
xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ 1 6 i 6 n 1 6 d 6 D; ð2bÞ
where w is a new inertial weight. This algorithm by adjusting the parameter w can make w reduce gradually as
the generation increases. In the searching process of the PSO algorithm, the searching space will reduce grad-
ually as the generation increases. So the APSO algorithm is more effective, because the searching space reduces
step by step nonlinearly, so the searching step length for the parameter w here also reduces correspondingly.
Similar to GA, after each generation, the best particle of particles in last generation will replace the worst par-
ticle of particles in current generation, thus better result can be achieved.

In the literature [3,4,19], several selection strategies of inertial weight w have been given. Generally, in the
beginning stages of algorithm, the inertial weight w should be reduced rapidly, when around optimum, the
inertial weight w should be reduced slowly. So in this paper, we adopted the following selection strategy:
w ¼
w0 � ðw1=max gen1Þ � generation; 1 6 generation 6 max gen1

ðw0 � w1Þ � eðmax gen1�generationÞ=k; max gen1 6 generation 6 max gen2;

�
ð3Þ
where w0 is the initial inertial weight, w1 is the inertial weight of linear section ending, maxgen2 is the total
searching generations, maxgen1 is the used generations that inertial weight is reduced linearly, generation,
is a variable whose range is [1,maxgen2]. Through adjusting k, we can achieve different ending values of iner-
tial weight. Fig. 1 illustrates the reduction scheme for the inertial weight. In particular, the value of maxgen2 is
selected according to empirical knowledge [3].
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Fig. 1. The reduction scheme for value of the inertia weight w.
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3. Hybrid PSO–BP algorithm and feedforward neural network training

3.1. Hybrid PSO–BP algorithm

The PSO–BP is an optimization algorithm combining the PSO with the BP. Similar to the GA, the PSO
algorithm is a global algorithm, which has a strong ability to find global optimistic result, this PSO algorithm,
however, has a disadvantage that the search around global optimum is very slow. The BP algorithm, on the
contrary, has a strong ability to find local optimistic result, but its ability to find the global optimistic result is
weak. By combining the PSO with the BP, a new algorithm referred to as PSO–BP hybrid algorithm is for-
mulated in this paper. The fundamental idea for this hybrid algorithm is that at the beginning stage of search-
ing for the optimum, the PSO is employed to accelerate the training speed. When the fitness function value has
not changed for some generations, or value changed is smaller than a predefined number, the searching pro-
cess is switched to gradient descending searching according to this heuristic knowledge.

Similar to the APSO algorithm, the PSO–BP algorithm’s searching process is also started from initializing a
group of random particles. First, all the particles are updated according to the Eqs. (2a) and (2b), until a new
generation set of particles are generated, and then those new particles are used to search the global best posi-
tion in the solution space. Finally the BP algorithm is used to search around the global optimum. In this way,
this hybrid algorithm may find an optimum more quickly.

The procedure for this PSO–BP algorithm can be summarized as follows:

Step 1: Initialize the positions and velocities of a group of particles randomly in the range of [0, 1].
Step 2: Evaluate each initialized particle’s fitness value, and Pb is set as the positions of the current particles,

while Pg is set as the best position of the initialized particles.
Step 3: If the maximal iterative generations are arrived, go to Step 8, else, go to Step 4.

Step 4: The best particle of the current particles is stored. The positions and velocities of all the particles are
updated according to Eqs. (1) and (2), then a group of new particles are generated, If a new particle
flies beyond the boundary [Xmin,Xmax], the new position will be set as Xmin or Xmax; if a new velocity
is beyond the boundary [Vmin,Vmax], the new velocity will be set as Vmin or Vmax.

Step 5: Evaluate each new particle’s fitness value, and the worst particle is replaced by the stored best par-
ticle. If the ith particle’s new position is better than Pib, Pib is set as the new position of the ith par-
ticle. If the best position of all new particles is better than Pg, then Pg is updated.

Step 6: Reduce the inertia weights w according to the selection strategy described in Section 3.
Step 7: If the current Pg is unchanged for ten generations, then go to Step 8; else, go to Step 3.
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Step 8: Use the BP algorithm to search around Pg for some epochs, if the search result is better than Pg, out-
put the current search result; or else, output Pg. This is only the first kind of condition, we can also
use the following steps to replace the above Steps 6–8, then get the second kind of condition.

Step 6: Use the BP algorithm to search around Pg for some generations, if search result is better than Pg, Pg

is set for the current search result; or else, comparing it with the worst particle of current particles, if
it is better than the best particle, using it to replace the worst particle, or else, go to Step 7.

Step 7: Reducing the inertia weights w according to the strategy in Section 3.
Step 8: Output the global optimum Pg.

The parameter w, in the above PSO–BP algorithm also reduces gradually as the iterative generation
increases, just like the APSO algorithm. The selection strategy for the inertial weight w is the same as the
one described in Section 2, i.e., firstly reduce w linearly then reduce it nonlinearly. But the parameter maxgen1
generally is adjusted to an appropriate value by many repeated experiments, then an adaptive gradient
descending method is used to search around the global optimum Pg.

The BP algorithm based on gradient descending was firstly proposed by Werbos [32] in his Ph.D. thesis in
1974, in 1986, Rumelhart et al. further formulated the standard back-propagation algorithm (BPA) for multi-
layered perceptrons [28]. This algorithm has a parameter called learning rate that controls the convergence of
the algorithm to an optimal local solution. Rumelhart et al. did not show how to get a good value for this
parameter. In practical applications, users usually employed theoretical, empirical or heuristic methods to
set a good value for this learning rate. Kuan and Hornic [29] investigated the convergence for a constant learn-
ing rate condition. Baldi [30] gave an overview about main learning algorithm based on gradient method, but
the convergent rate was not studied. In the literatures [10,11,15,27], several adaptive back-propagation algo-
rithms were proposed, respectively. In this paper, we adopted the following strategy for learning rate:
g ¼ k � e�g0�epoch; ð4Þ

where g is learning rate, k, g0 are constants, epoch is a variable that represents iterative times, through adjust-
ing k and g0, we can control the reducing speed of learning rate.

3.2. The PSO–BP algorithm for feedforward neural network training

3.2.1. The two-layered feedforward neural network

We will use three kinds of algorithm to evolve the weights of the feedforward neural network with two lay-
ered structures. Supposed that the input layer has n nodes; the hidden layer has H hidden nodes; output layer
has O output nodes. Fig. 2 shows the structure of a two layered feedforward neural network. According to the
figure, a corresponding fitness function was given.

Assuming that the hidden transfer function is sigmoid function, and the output transfer function is a linear
activation function. From Fig. 2, it can be seen that the output of the jth hidden node is:
Input units Hidden units Output units

1s

1x

nx

1y

Oy

Hs

Fig. 2. A two-layered feedforward neural network structure.
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f ðsjÞ ¼ 1 1þ exp �
Xn

i¼1

wij � xi � hj

 ! ! !
;

,
j ¼ 1; 2; . . . ;H ; ð5Þ
where n is the number of the input node, wij is the connection weight from the ith node of input layer to the jth
node of hidden layer, hi is the threshold of the jth hidden layer unit; xi is the ith input. sj is the weight input
sum in hidden, and sj ¼

Pn
i¼1wij � xi � hj. The output of the kth output layer is:
yk ¼
XH

j¼1

wkj � f ðsjÞ � hk k ¼ 1; 2; . . . ;O; ð6Þ
where wkj is the connection weight from the jth hidden node to the kth output node, hk is the threshold of the
kth output unit.

The learning error E can be calculated by the following formulation:
E ¼
Xq

k¼1

Ek=ðq � OÞ where Ek ¼
XO

i¼1

ðyk
i � Ck

i Þ
2
; ð7Þ
where q is the number of total training samples, yk
i � Ck

i is the error of the actual output and desired output of
the ith output unit when the kth training sample is used for training. We defined the fitness function of the ith
training sample as follows:
fitnessðX iÞ ¼ EðX iÞ ð8Þ

When the PSO algorithm is used in evolving weights of feedforward neural network, every particle represent a
set of weights, there are three encoding strategy for every particle, the following section give detailed
description.

3.2.2. Encoding strategy

3.2.2.1. Vector encoding strategy. In this encoding strategy, every particle is encoded for a vector. For feedfor-
ward neural network (FNN) involved, each particle represents all weights of a FNN’s structure. For example,
for the FNN with the structure of 2–5–1, the corresponding encoding style for each particle can be represented
as:
particleðiÞ ¼ ½w31w32w41w42w51w52w61w62w71w72w83w84w85w86w87�; ð9aÞ
particles matrix ¼ ½particleð1Þ; particleð2Þ; . . . ; particleðMÞ�; ð9bÞ
where M is the number of the total particles, i = 1, . . .,M.
However, when calculating the output of the FNN, we need to decode each particle into weights matrix,

thus the decoding process becomes a little complicated. Nevertheless, this kind of encoding strategy is often
used in function optimization field.

3.2.2.2. Matrix encoding strategy. In this encoding strategy, every particle is encoded for a matrix. We also
take the FNN with the structure of 3–4–2 for an example, the encoding strategy can be written as:
particlesð:; :; iÞ ¼ ½W 1;W 0
2� ð10aÞ

W 1 ¼

w41 w42 w43

w51 w52 w53

w61 w62 w63

w71 w72 w73

2
6664

3
7775; W 0

2 ¼

w84 w94

w85 w95

w86 w96

w87 w97

2
6664

3
7775; ð10bÞ
where W1 is the hidden layer weight matrix, while W2 is the output layer weight matrix, and W 0
2 is the trans-

pose of W2.
In practical application, we can use a three dimensional matrix particles5·3·M to store all particle matrices,

where M is the number of all particles, i = 1, . . .,M.
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With this encoding strategy for FNN, decoding is easy to execute. The point that should be stress is that in
the training process of the FNN, this kind of encoding strategy is often adopted.

3.2.2.3. Binary encoding strategy. In 1997, Kenney and Eberhart proposed the binary particle swarm method
[23,24], in which, similar to chromosome in genetic algorithm (GA), every particle is encoded for string bits
including the values of zero and one value. In training the FNN, every particle represents a series of weights.
When the structure become more complex, the length of every binary encoding particle is much longer, so that
the encoding and decoding process becomes very complicated. So this kind of encoding strategy is not often
adopted in training the FNN.
4. Experimental result and discussion

In the following experiments, by using three examples we compared the performances of BP algorithm,
APSO algorithm and PSO–BP algorithm in evolving the weights of the FNN. Supposed that every weight
in the network was initially set in the range of [�50, 50], and all thresholds in the network were 0 s. Supposed
that every initial particle was a set of weights generated at random in the range of [0, 1]. Let the initial inertial
weight w be 1.8, the acceleration constants, both c1 and c2 be 2.0, r1 and r2 be two random numbers in the
range of [0, 1], respectively. The maximum velocity assumed as 10 and the minimum velocity as �10. The ini-
tial velocities of the initial particles were generated randomly in the range of [0,1]. After each iteration, if the
calculated velocity was larger or smaller than the maximum velocity or the minimum velocity, it would be reset
to 10 or �10. The population size is 200.

4.1. Example 1. Three bits parity problem

In this problem, there are three input units and one output result, so we adopt the FNN with the structure
of 3–S1–1, where S1 is the number of hidden nodes, in the following experiment, we shall compare the per-
formance of S1 = 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 20, 30, respectively. For the BP algorithm, we adopted adaptive
learning rate as described in Section 3, the maximal iteration number is assumed as 10000. For the APSO
algorithm, the maximal generation is assumed as 500. For the PSO–BP algorithm, assumed that we used
the algorithm under the first kind condition. At first, the maximal generation of particles’ search is assumed
as 100, then the gradient method is used to search for 2000 iteration.

About three bits parity problem, the feedforward neural network is designed to recognize the number of
‘‘1’’ in the input vector composing of three bits parity problem. When the input vector has odd number of
‘‘1’’, the output is ‘‘1’’; when the input vector has even number of ‘‘1’’, the output is ‘‘0’’.

We compared the two performances indices of mean square error (MSE) and CPU Time used in training.
When the MSE is less than 0.001, or when the maximal iterative times is arrived, the current algorithm train-
ing ends. Running every algorithm successively for five times under the same hidden unit number, then taking
the average result among five results to take part in comparisons. The results are shown in Table 1.

From Table 1, we can see that the PSO–BP algorithm is apparently better than the PSO algorithm and the
BP algorithm. When achieving the same MSE, the PSO–BP algorithm spends less CPU than the PSO algo-
rithm and the BP algorithm. In this example, the performances of the PSO algorithm and the BP algorithm
are very close. For these three algorithms, with the hidden unit increasing, the calculating time firstly decreases
then increases.

In experiment, we keep on an eye on the phenomenon that when the best Pg of all the particles in searching
history has not changed for ten generations, the PSO–BP algorithm will transfer to use.

In the PSO algorithm, we trace the global optimum Pg, so we see its MSE is stepwise, its real MSE is just
like presentation in Table 1.

When the best result Pg of all the particles in searching history has not changed for ten generations, the
PSO–BP algorithm transfers to use the gradient descending method to search around the Pg, by a heuristic
way to transit from the particle swarm search to gradient descending search, the searching efficiency of the
algorithm was improved greatly. The experimental results also showed this point.



Table 1
The comparison of the performances of the PSO–BPA, the PSOA and the BPA for three bits parity problem

Hidden number The PSO–BPA The PSOA The BPA

S1 MSE Time (s) MSE Time (s) MSE Time (s)

4 9.9894e�004 3.084000 9.3174e�004 9.003000 9.9956e�004 9.946000
5 9.9924e�004 3.205000 8.7849e�004 8.392000 9.9914e�004 8.282000
6 9.8920e�004 3.395000 9.7871e�004 8.672000 9.9590e�004 9.674000
7 9.9547e�004 2.703000 9.7578e�004 8.573000 9.9702e�004 9.794000
8 9.8970e�004 3.785000 8.6146e�004 8.242000 9.9998e�004 8.622000
9 9.9609e�004 3.064000 9.4730e�004 8.952000 9.9946e�004 7.882000
10 9.9905e�004 3.755000 7.5435e�004 8.483000 9.9678e�004 7.491000
11 9.9850e�004 3.926000 9.5960e�004 7.391000 9.9779e�004 7.852000
13 9.8661e�004 3.175000 9.5993e�004 8.933000 9.9799e�004 8.533000
15 9.9262e�004 3.515000 8.2313e�004 9.624000 9.9801e�004 8.923000
20 9.8239e�004 4.246000 9.8359e�004 11.20600 9.9877e�004 9.784000
30 9.7767e�004 6.620000 9.2008e�004 12.32890 9.9273e�004 11.18700
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4.2. Example 2. Function approximate problem

In this example, we trained an FNN with the structure of 1–S1–1 to approximate the function
f = sin(2x)e�x. The used training algorithms are still the PSOBP algorithm, the PSO algorithm and the BP
algorithm. Assuming that S1 = 3, 4, 5, 6, 7, x is obtained from the range of [0,p], and the training set was
obtained at an identical sampling interval of 0.03 from [0,p]; while the test set was obtained at an identical
sampling interval of 0.1 from 0.02 to p.

For every fixed hidden unit number, we ran the three training algorithms for five times respectively. We set
the maximal training iteration for 7000 times for the ABP algorithm, set the maximal training generation for
500 for the APSO algorithm, in the PSO–BP algorithm, set maximal generation for 200 for global search with
the PSO algorithm, and set maximal iteration for 1500 times for the gradient descending method based on BP
algorithm. Table 2 gives the performance comparisons for the three algorithms. From Table 2, we can see that
the hybrid algorithm consumed less CPU time, but achieved higher accuracy than the ABP algorithm and
APSO algorithm.
Table 2
The comparison of the performances of the PSO–BPA, the PSOA and the BPA for function approximate problem of f = sin(2x)e�x

Hidden unit number The BPA training error Testing error CPU time

S1 The best The worst The average Average error The average

3 6.8432e�004 7.4183e�004 7.0747e�004 6.8969e�004 27.656000s
4 3.3664e�004 8.7374e�004 6.199e�004 6.0843e�004 33.348000s
5 2.4683e�004 7.3552e�004 4.4248e�004 4.3799e�004 38.655000s
6 2.721e�004 3.4994e�004 3.0151e�004 2.9642e�004 44.064000s
7 2.106e�004 6.9003e�004 3.7318e�004 3.5172e�004 49.501000s

The PSOA training error

3 2.1861e�004 5.7089e�004 4.0011e�004 4.1945e�004 18.777000s
4 2.6181e�004 5.5377e�004 4.0266e�004 4.2373e�004 19.749000s
5 1.5801e�004 5.1031e�004 3.76905e�004 3.8876e�004 20.689000s
6 8.642e�005 5.7121e�004 2.7945e�004 2.7607e�004 22.782000s
7 8.5208e�005 4.9845e�004 2.7404e�004 2.7416e�004 25.186000s

The BP–PSOA training error

3 3.2781e�004 7.266e�004 4.8984e�004 4.8327e�004 13.526000
4 5.6104e�005 5.4891e�004 2.7888e�004 2.9297e�004 15.069000
5 7.6982e�005 6.3747e�004 2.9032e�004 2.8262e�004 17.172000
6 6.476e�005 4.2293e�004 2.0032e�004 2.0743e�004 18.925000
7 4.2074e�005 2.7363e�004 1.4333e�004 1.4788e�004 20.167000
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Fig. 3. The training error curves of the training samples and the testing error curves of the testing samples for the function f = sin(2x)e�x

for the three training algorithms. (a), (c), (e) are the training error curves of the ABPA, the APSOA and the PSO–BPA, respectively. (b),
(d), (f) are the testing error curves of the ABPA, the APSOA and the PSO–BPA, respectively.
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In the light of the above Table 2, we selected the hidden unit number that is corresponding to the better
performance, i.e., S1 = 7. For the approximated function f = sin(2x)e�x, assuming that the range of variable
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x is [0.01,p], the corresponding identical sampling interval is 0.05. Assuming that the training sample was gen-
erated from the range of [0.001,x] at the identical sampling interval of 0.03; and the test sample was generated
from the range of [0.002,x] at the identical sampling interval of 0.1. Fig. 3 illustrates the curves of the training
errors and the testing errors for the three training algorithms.

When the value of x is smaller, there are less training samples and testing samples, it can be seen from Fig. 3
that the PSO algorithm has better training error and testing error than the BP algorithm. When the value of x

is larger, there are more training samples and testing samples, it can be seen that the BP algorithm has better
training error and testing error. The PSO–BP algorithm combines the PSO algorithm with the BP algorithm,
in this example, the hybrid algorithm combines the advantages of both the PSO algorithm and the BP algo-
rithm, so from Fig. 3, it can be seen that the PSO–BP algorithm has better training error and testing error.

4.3. Example 3. Iris classification problem

Iris classification problem is used as benchmark data widely in the ANN field, it is a for dimensional pattern
recognition problem with three classes. So we use an FNN with the structure of 4–S1–3 to address this prob-
lem, where S1 = 4, 5, . . ., 16. A training way, referred to as left-one cross validation, is adopted. Supposed the
number of samples is N. For left-one cross validation, N � 1 samples are used to training the FNN, while one
sample is used to test generalization ability. After the next generation, another N � 1 samples are used to train
the FNN, the left one sample is used to give a test. This process is continued to cycle N times until every sam-
ple is made sure to have been tested for its generalization capability.

We used the second kind condition of PSO–BP algorithm, supposing that the maximal generation is 5,
while the PSO algorithm was finished, the algorithm was switched to the gradient method to search for 500
times. For the PSO algorithm, the maximal generation is assumed as 500. For the BP algorithm, the maximal
iteration is assumed as 3000 times. Assumed that under fixed hidden nodes S1 = 4, 5, . . ., 16, every procedure
was run successively for five times, the best recognition rate was selected among these five results, then the
mean recognition rate was calculated for these five results.

From Fig. 4, it can be found that the PSO–BP algorithm and the PSO algorithm has similar maximal rec-
ognition rates, the PSO–BP algorithm has better recognition rate than the BP algorithm; but the PSO–BP
algorithm has better mean recognition rate than the BP algorithm and the PSO algorithm. This shows that
the PSO–BP algorithm is more stable, while in training process, the PSO–BP algorithm uses less CPU time
than the BP algorithm and the PSO algorithm.

Apparently, the PSO algorithm has better recognition rate than the BP algorithm, although there are
enough hidden nodes. The best recognition rate for the BP algorithm can achieve 96.67%, while the best rec-
ognition rate of the PSO algorithm can reach around 98% under every fixed hidden node. When the number of
hidden nodes is 15, the best recognition rate can reach 99.33%. The proposed PSO–BP algorithm in this paper
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Fig. 4. The correct recognition rate for IRIS classification problem. (a) The best recognition rate. (b) The average correct recognition rate.
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also has better recognition rate, its best recognition rate can also achieved around 98% under every fixed hid-
den nodes. When the number of hidden nodes is 13, the best recognition rate can achieve 99.33%. So the best
recognition rate for the PSO–BP algorithm is similar to the best recognition rate for the PSO algorithm. The
mean recognition rates of the PSO and the PSO–BP algorithms are better than the BP algorithm apparently,
but the mean recognition rate of the PSO–BP algorithm is better than the PSO algorithm. The reason is that a
local gradient descending method is used to search around global optimum, the searching efficiency is
improved significantly.
5. Conclusion

In this paper, we have proposed a hybrid PSO algorithm, the hybrid algorithm combining the adaptive PSO
algorithm with adaptive back-propagation algorithm, which is to combine the particle swarm optimization
algorithm’s strong ability in global search and the back-propagation algorithm’s strong ability in local search.
We can get better search result using this hybrid algorithm. In this hybrid algorithm, the initial particles are
distributed randomly in the problem space, a global searching is assured around the global optimum. But due
to the PSO algorithm having a poor capability in searching for global optimum, we adopt some heuristic
knowledge to transit from the PSO algorithm searching to the gradient descending based on BP algorithm
searching. In adaptive particle swarm optimization (PSO) algorithm, we introduced a different selection strat-
egy for inertial weight w. In the initial searching stage, we wish that the searching inertial weight could reduce
rapidly, so that the global optima can be achieved rapidly. And then around global optimum, we reduced the
inertial weight more smoothly, so that a higher accuracy can be achieved. We introduced this kind of the selec-
tion strategy of inertial weight w into the PSO–BP algorithm. In the PSO–BP algorithm, to know when the
searching process is transited from the particle swarm search to the gradient descending search, a heuristic
way was introduced. That is when the best fitness value in the history of all particles has not changed for some
generations (i.e., ten generations), the search process would be transferred to the gradient descending search.
When the best fitness has not changed for some generations, all the particles may lose the ability of finding a
better solution, at this time, gradient descending search used can get better results. The heuristic way is used to
avoid wasting too much CPU time for vain search using particle swarm, so the searching efficiency of the
PSO–BP algorithm is improved greatly.

From the conducted experiments, we can get conclusions that for the same goal, the PSO–BP algorithm
spends less CPU time than the PSO algorithm and the BP algorithm, in other words, the PSO–BP algorithm
uses less CPU time to get higher training accuracy than the PSO algorithm and the BP algorithm. From exam-
ple 3, we can also see that the PSO–BP algorithm has more smooth mean recognition rate. This shows that the
PSO–BP algorithm is more stable than the BP algorithm and the PSO algorithm. In future research works, we
shall focus on how to apply this hybrid PSO algorithm to solve more practical problems.
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