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Web Service Personalized Quality of Service
Prediction via Reputation-Based

Matrix Factorization
Jianlong Xu, Zibin Zheng, Member, IEEE, and Michael R. Lyu, Fellow, IEEE

Abstract—With the fast development of Web services in service-
oriented systems, the requirement of efficient Quality of Service
(QoS) evaluation methods becomes strong. However, many QoS
values are unknown in reality. Therefore, it is necessary to pre-
dict the unknown QoS values of Web services based on the ob-
tainable QoS values. Generally, the QoS values of similar users are
employed to make predictions for the current user. However, the
QoS values may be contributed from unreliable users, leading to
inaccuracy of the prediction results. To address this problem, we
present a highly credible approach, called reputation-based Ma-
trix Factorization (RMF), for predicting the unknown Web ser-
vice QoS values. RMF first calculates the reputation of each user
based on their contributed QoS values to quantify the credibility of
users, and then takes the users' reputation into consideration for
achieving more accurate QoS prediction. Reputation-based ma-
trix factorization is applicable to the prediction of QoS data in the
presence of unreliable user-provided QoS values. Extensive exper-
iments are conducted with real-world Web service QoS data sets,
and the experimental results show that our proposed approach out-
performs other existing approaches.
Index Terms—Matrix factorization, Quality of Service predic-

tion, reputation, Web services.

ACRONYMS AND ABBREVIATIONS

QoS Quality of Service
CF collaborative filtering
MF matrix factorization
RMF reputation-based matrix factorization
NIMF neighborhood integrated matrix factorization
HMF hierarchical matrix factorization
EMF extended matrix factorization
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PMF probabilistic matrix factorization
GDA gradient decent algorithm
MAE mean absolute error
RMSE root mean squared error
IMean item mean
UMean user mean
PCC person correlation coefficient
UPCC user-based CF method using PCC
IPCC item-based CF method using PCC
UIPCC integrate UPCC and IPCC

NOTATIONS

a decay constant
the deviation
number of iterations in GDA
number of iterations in Algorithm 1
number of latent factors
number of users
number of Web services
the user's QoS value for service
the predicted value of
the th user's reputation
in the th iteration

the average QoS value for service
in the th iteration

the set of users which invokes service
the number of users who invoke service
an indictor function
the set of services invoked by user
the number of services invoked by user
the set of users' reputation

RMaxI the max iteration of calculating the reputation
user-service matrix
the approximate matrix of

QMaxI the max iteration in GDA
Web services
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users
, small positive decimals

summation of the product of and
summation of the absolute value of
the learning rate
the optimization function of MF
user and service latent feature matrices
the Frobenius norm

I. INTRODUCTION

I Nmodern society, complex software systems are becoming
highly distributed, component-based, and service-oriented.

These service-oriented systems are composed of a large number
of software components discoverable at run-time, and run on
a multitude of unknown, heterogeneous hardware and network
platforms [1]. The distributed software components are usually
implemented asWeb services. AWeb service is a software com-
ponent designed to support interoperable machine-to-machine
interaction over a network [2], which is becoming a major tech-
nique for building service-oriented systems [3], [4].
To make sure the service-oriented system remains reliable,

efficient, and effective, service quality assurance techniques are
needed [5], [6]. Quality of Service (QoS) is one of the most im-
portant aspects of software quality. In modern service-oriented
systems, QoS includes a number of properties, such as response
time, throughput, failure probability, availability, price, popu-
larity, and so on [7]. In recent years, with the development of
Internet technology, the QoS of service-oriented systems has
become an important research topic to build high quality sys-
tems, and it has attracted great amounts of attention from both
academia and industry [8]–[10]. In this paper, we focus on the
QoS prediction of Web services as a new angle to attack the tra-
ditional issue of software quality assurance.
The prediction of QoS is an important means to build high

quality service-oriented systems, as the predicted result can be
employed by other service modeling and designing efforts to
select more reliable service providers and better service pro-
visioning mechanisms (for better networks, for example) for
quality of service guarantees. In practice, values of the user-ob-
served QoS properties (e.g., response time, throughput, failure
probability) can vary widely for different users, influenced by
unpredictable Internet connections, and heterogeneous user en-
vironments [11]. Because the QoS performance ofWeb services
observed from the users' perspective is usually different from
that declared by the service providers, personalizedWeb service
QoS value prediction is becoming essential for designers of ser-
vice-oriented systems to support service selection [12], service
composition [13], fault-tolerant Web services [14], [15], and so
on. In this paper, we focus on user side analysis (which empha-
sizes real-time user-observed QoS data) instead of server side
analysis (which emphasizes the traditional testing and reliability
data of servers).
Collaborative filtering (CF) is a widely used technique for

Web service QoS prediction [16]–[18], which can be divided
into memory-based CF, model-based CF, and other hybrid CF
methods. Matrix factorization (MF) is a typical model-based

approach in CF, which has been employed for QoS value pre-
diction by academia and industry in recent years [19], [20]. In
MF technology, the QoS values of Web services observed by
different users can be represented as a user-service matrix. In
the matrix, rows represent users, columns represent services,
and each entry represents the QoS value of a service observed
by a user. The main idea of MF-based QoS value prediction ap-
proaches is to train amodel according to the availableQoSvalues
in the user-itemmatrix (i.e., historical QoS values contributed by
different users) to predict missing QoS values in the user-item
matrix [21]. Therefore, the reliability of user-contributed QoS
values will highly influence the prediction accuracy of MF
approaches. Unreliable users can cause negative impact on the
prediction accuracy by providing unreliable QoS values.
Indeed, unreliable users have been found in many QoS pre-

diction systems [22]. In these systems, some users may submit
random or constant QoS values, while others (e.g., service
providers) may give good QoS values for their own services,
and bad QoS values for their competitors' services [23]. For ex-
ample, suppose that, in a QoS prediction system, Service A and
Service B provide the same functionality, and have very similar
user-observed QoS performance by a user. In this condition,
if this user submits a very high value to Service A, and a very
low value to Service B, we can consider that the submitted QoS
values are inconsistent. From the model's point of view, these
two values are contradictory, and cannot be trusted. It is likely
that this user is atypical, and provides unreliable QoS values. In
previous studies of MF-based prediction approaches [20], [21],
all users are treated equally, and their contributed values are
assumed to be reliable. As a result, if unreliable users exist, the
prediction accuracy is greatly affected by the unreliable QoS
values.
It becomes an urgent task to explore a credible personal-

ized prediction approach for efficient estimation of missing QoS
values of Web services for different service users. To address
this critical challenge, we present a reputation-based matrix fac-
torization (RMF) for predicting the unknown Web service QoS
values, which is different from traditional MF approaches. We
incorporate the users' reputation into the Web service QoS pre-
diction framework, and design a new algorithm to calculate the
reputations of all users. Then MF-based predictions are con-
ducted for missing QoS values by employing QoS values con-
tributed by users and user reputations.
The contributions of this paper are summarized as follows.

First, an algorithm is proposed to calculate the user reputation,
and users are divided into different grades by their reputation.
Second, we develop a highly credible approach for predicting
unknown Web service QoS values, which combines user rep-
utations and MF-based prediction methods, allowing the un-
known QoS values to be predicted accurately. Finally, we con-
duct large-scale real-world experiments to study the prediction
accuracy of our method compared with other state-of-the-art
approaches.
The rest of this paper is organized as follows. Section II re-

views the related work. Section III illustrates our QoS predic-
tion framework. Section IV proposes a reputation-aware pre-
diction algorithm. Section V presents experimental results, and
Section VI concludes the paper.
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II. RELATED WORK

Web service QoS has been widely studied in service com-
position [24], and service selection [25]. Most of the previous
research investigations assume that the service QoS values are
obtained from third-party organizations or service providers
easily. However, it is difficult to do so in reality. The QoS
values may be unreliable, being influenced by the dynamic
network environment. Moreover, some QoS properties (e.g.,
response time, failure rate, etc.) may vary over time among
different users. And the QoS values we need may be unknown.
Therefore, many researchers [18], [26], [27] have investigated
how to predict the unknown QoS values.
There are mainly two types of approaches to predict QoS

values for Web services. One is neighborhood-based (also
named memory-based) collaborative filtering (CF) approaches,
which utilize the historical invocation information of similar
neighbors to make prediction. The neighborhood-based ap-
proaches are easy to understand and implement. However, they
suffer from bad prediction accuracy when the data density is
very low. Moreover, due to the similarity calculation, the time
complexity of these approaches is all quadratic to the data size.
Hence, they are not suitable to be used on very large datasets.
Thus, more efficient models need to be explored, which intend
to overcome the shortcomings listed above.
The other type of approach is model-based approaches. Ma-

trix factorization (MF) is one of the most well-known model-
based CF approaches, which is to exploit the latent factors that
can determine QoS both from the user and the service aspects.
As a typical model-based approach in collaborative filtering,
matrix factorization models are accurate and scalable in many
applications [28]–[30]. When employing MF to make QoS-pre-
dictions, a low-rank estimate to the original target matrix is
desired. Zheng et al. [28] built a neighborhood integrated MF
model named NIMF, which systematically fuses the neighbor-
hood-based and model-based collaborative filtering approaches
to achieve higher prediction accuracy. Lo et al. [29] proposed an
extended matrix factorization (EMF) framework with relational
regularization to make missing QoS value predictions, which
aims to avoid the expensive and costlyWeb service invocations.
To achieve higher QoS prediction accuracy, many researchers
focus on integrating MF with additional information (e.g., ge-
ographical location, time, etc.). Zhang et al. [30] proposed a
Web service QoS prediction framework called WSPred to pro-
vide time-aware personalized QoS value prediction for different
service users, employing the tensor factorization technique to
fit a factor model to the user-service-time tensor. The factor-
ized user-specific, service-specific, and time-specific matrices
are utilized to make comprehensive missing value prediction.
Gantner et al. [31] used the mapping concept to construct an
attribute-aware matrix factorization model for item recommen-
dation from implicit and positive-only feedback. The factors of
an MF model trained by standard techniques can be applied to
the new-user and the new-item problems. He et al. [32] design a
location-based hierarchical matrix factorization (HMF) method
to perform personalized QoS prediction. The HMF model is
trained in a hierarchical way by using the global QoS matrix,
as well as several location-based local QoS matrices generated

from user service clusters. Then the missing QoS values can be
predicted by compactly combining the results from local matrix
factorization and globalmatrix factorization. Although these ap-
proaches improve the prediction accuracy compared to the basic
approaches, none of them take data credibility into considera-
tion. In this paper, we employ users' reputation to improve the
prediction accuracy over the traditional matrix factorization ap-
proach.
Reputation has been widely employed to measure the relia-

bility of users in QoS prediction systems. The reputation score
can be taken as a measurement of reliability for a user. Various
reputation models for QoS prediction systems have been pro-
posed. Tang et al. [33] proposed a hybrid trust-aware service
recommendation method for a service-oriented environment
with social networks via combining global trust and local trust
evaluation. Qiu et al. [23] proposed a reputation-aware QoS
value prediction approach based on CF, which first calculates
the reputation of each user based on their contributed values,
and then takes advantage of reputation-based ranking to ex-
clude the values contributed by unreliable users. Finally, a
neighborhood-based CF QoS prediction approach is used to
predict the missing QoS values by employing information from
reliable users and services. In this approach, the unreliable
users are identified by calculating the reputation, and setting the
threshold value. However, it is difficult to set up the threshold
value, which may exclude the reliable users. In addition, the
computational complexity of neighborhood-based methods
employed in this paper is high. Based on the previous research
investigations, we propose a new approach for Web service
personalized QoS value prediction based on users' reputations
and matrix factorization altogether.

III. THE PREDICTION FRAMEWORK

Previous studies of Web service QoS prediction frameworks
such as EMF [29] and HMF [32] ignored the reliability of ser-
vice users, and made prediction based on the collected QoS
values from users directly. In fact, the QoS values may be unre-
liable, as they are provided by unreliable users. Therefore, the
accuracy of prediction results is greatly affected by these unreli-
able QoS values. To address this critical challenge, we propose
a highly credible reputation-based QoS prediction framework,
as illustrated in Fig. 1.
As shown in the figure, users first submit their observed QoS

values on the used Web services to our prediction server. Then,
the QoS of the unused Web services can be predicted based on
the submitted QoS values. The detailed steps are as follows.
1) Users invoke some remote Web services, and collect the

user-observed QoS values of these services.
2) Users submit the collected QoS values to the QoS predic-

tion server.
3) The server firstly collects the user-contributed QoS values,

and fulfills the task of reputation computing based on the
users' historic data, then evaluates the users based on the
calculated user reputation, and finally makes personalized
QoS prediction and return prediction results to the target
user.

4) Users employ the corresponding prediction results to select
optimal Web services to invoke.
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Fig. 1. Reputation-based QoS prediction framework.

IV. REPUTATION-BASED MATRIX FACTORIZATION

In this section, we first describe the mechanism of the
basic MF model in Section IV-A. Then Section IV-B and
Section IV-C present our RMF model in detail.

A. QoS Prediction With Basic Matrix Factorization

Generally, to predict missing QoS values, a factor model has
to be fitted to the user-item matrix, and then use this factor
model to make further predictions. Matrix factorization is a typ-
ical latent factor analysis model, which can factorize the high
dimensional invocation matrix into two low dimensional fea-
ture matrices that are in the same feature space. In the two fea-
ture matrices, each column represents the user or service latent
feature vector, which needs to be learned based on the known
QoS records in the user-item matrix. With the help of statis-
tical learning theory, all feature vectors are constructed sepa-
rately. Once the stopping criterion is met, these feature spaces
can recover all missing values in the original user-item matrix.
The key step in the MF model is to build an objective function,
under which two separate feature spaces can be reconstructed
for higher prediction accuracy.
Given a set of users , and a set of

Web services , the user-item matrix (each
item is a Web service) is an matrix . Each entry in this
matrix ( , ) represents the value of a certain
user-side QoS property (e.g., response time) of Web service
observed by service user . If user did not invoke Web service
before, then .
Let , and represent user, and service

latent feature matrices, respectively, where is the number of
latent factors. The number of factors is called the dimension-
ality [27]. Usually, is far less than and . Low-dimensional
matrices and are unknown, and need to be estimated. In this
factor model, a user's Web service QoS values correspond to a
linear combination of the factor vectors, with user-specific co-
efficients. Furthermore, each column of performs as a factor
vector for a user, and each column of is a linear predictor for
a Web service. We can predict the entries in the corresponding
column of the user-item matrix based on the factors in and
Then, the invocationmatrix can be factorized as the product

of and approximately in the following equation.

(1)

where is the approximate
matrix of , in which is the predicted value of . To reduce
the total approximate errors, the difference between each pair of

and is to be minimized as

(2)

where , and are the th, and th column of , and re-
spectively. is an indictor function, which indicates whether
the QoS value on service observed by user in the matrix is
missing. When is 1, that means is known, and 0 oth-
erwise. To get rid of the over-fitting issue during the learning
process, it is suggested to add two regularization terms to (2)
[27], and the optimization problem is modeled as

(3)

where denotes the Frobenius norm, and , are both
small positive decimals. Equation (3) is the objective function
of the basic MF model, which minimizes the sum-of-squared-
errors objective function with quadratic regularization terms.
To get a local minimum of the objective function in (3), the
gradient decent algorithm (GDA), an iterative algorithm, can be
employed to reconstruct feature space , and by the following
equations.

(4)

where is positive, and chosen as the learning rate. With the
help of statistical learning theory, all feature vectors are con-
structed separately. Once the stopping criterion is met, these fea-
ture spaces can recover all missing values in the original matrix.
The key step of predicting QoS using theMFmodel is to build

up an objective function, and factorize the invocation matrix
into two feature matrices. In (3), the sum-of-squared-errors is
related to the term , which is affected by the relia-
bility of the users' QoS values. Therefore, we have to take the
users' reputation into consideration. In the following, we will
calculate the user reputation, and then integrate it into the MF
model.

B. Computation of User Reputation

Let the reputation of users be represented as
. When a user is reliable, the

reputation value is 1. We employ the L1-AVG algorithm [23],
[34] to calculate the reputation of a user, which takes an itera-
tive approach to refine the users' reputation. The reputation
of user is calculated as

(5)



32 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 1, MARCH 2016

where indicates the th iteration, and is the th users repu-
tation in the th iteration (the weight of different users). The
computing method of (5) can be explained that a user's reputa-
tion depends on the gap between QoS values observed by this
user and the average of QoS values observed by other users. If a
user provides Web service QoS values which are quite different
from the statistical mean of other users' QoS values, then the
user is likely to be unreliable. Before calculating , the th it-
eration average QoS value for service must be calculated.

can be calculated by accumulating the product of and ,
and then dividing by , which denotes the number of users
who have invoked service . In (7), is a decay constant in (0,1).
It is used as a dumping factor, and to ensure that is in (0,1).
To reflect the deviation between and , the absolute value
of is made. In the set of services invoked by user (de-
noted as ), the accumulation of the absolute value is divided
by the number of services which have been invoked by user
(denoted as ).
In (5), is determined by , and the weighted average of

other users' evaluation on the same service. The calculation of
user reputation is iterative. In initialization, , and ,
which indicates that each user is taken as reliable. The method-
ology of the computation of reputation score is in Algorithm 1.

Algorithm 1 Users' Reputation Computation Algorithm

Input: training matrix , decay constant , , , RMaxI,
threshold;

Output: users' reputation ;

1: initialize , , , ;

2: while do

3: for ( ; ; )

4: ; ;

5: for ( ; ; )

6: if

7: ;

8: ;

9: end if

10: end for

11: ;

12: end for

13: for ( ; ; )

14: ; ;

15: for ( ; ; )

16: if

17: ;

18: ;

19: end if

20: end for

21: ;

22: end for

23: if absolute threshold

24: then break;

25: end while

In Algorithm 1, we first initialize the parameters. Then, the
average QoS value for service , and the reputation of the
user are calculated according to (5). We set two variables
named , and , which denote the summations of
the product of and , and the absolute value of of
in (5), respectively.
Their initial values are set to zero. RMaxI is the max iteration

in the process of calculating the reputation. While the number
of iterations is more than max iterations, or the absolute of

is less than a threshold value (a minimum) which can
determine the computational accuracy, the algorithm will break
and output the users' reputation.
This method has several advantages: 1) it is convergent to a

unique fixed vector, 2) it is robust to unreliable users, 3) it is
easy to be implemented in practice, and 4) it is scalable to large
data sets. In addition, it is quite robust, and has good time and
space complexity [34]. With the users' reputation information,
we can now design our reputation-based matrix factorization
(RMF) model for QoS value prediction.

C. Reputation-Based Matrix Factorization Algorithm

When factorizing a QoS value, many researchers did not con-
sider the user reputation (in other words, treated all users' repu-
tations as the same). In our approach, the users' reputations are
possibly unequal in the prediction process. Assume the user-
item matrix is an matrix , which is predicted by two
low-rank matrices , and whose sizes are , and ,
respectively. For matrix or , columns represent how much
corresponding latent features will affect QoS values on the user
side or the service side. , and can be calculated by (6), and
the missing QoS values are made by (1).

(6)

Equation (6) is the objective function of the RMFmodel. Dif-
ferent from (3), (6) takes an extra parameter , which can act
as a weight to impact the accuracy of the prediction.
To illustrate the usefulness of applying the weighting param-

eter , we analyze the deviation between (3) and (6) as

(7)
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From (6) and (7), we can observe the following.
1) The user's reputation depends on the user's condition in (6),

while all users' reputations are equal to 1 in (3). In fact,
different users may have different reputations. Therefore,
our model is more reasonable.

2) If is large (close to 1), the value of
will be strengthened in (6), and

the value of will be in close proximity to zero in (7).
This result means that the QoS values observed by users
with high reputation are given more attention, and the
predicted results based on high reputation users will be
more accurate.

3) If is small (close to 0), the value of
will be weakened. This result

means that the QoS values observed by users with low
reputations are given less attention, and the predicted
results based on unreliable users will lead to large
deviations.

To get a minimum of the objective function in (6), we apply
the gradient descent algorithm to iteratively recover user and
service latent space on both and . The gradients can be
computed by

(8)

The RMF-based QoS prediction construction procedure is
summarized in Algorithm 2.

Algorithm 2 RMF-based QoS prediction construction

Input: training matrix ;

Output: , ;

1: initialize and with small random numbers; ;

2: calculate users' reputation from algorithm 1;

3: update ;

4: update ;

5: while do

6: for ( ; ; )

7: ;

8: end for

9: for ( ; ; )

10: ;

11: end for

12: end while

In Algorithm 2, we use the gradient descent algorithm to solve
the optimization problem in (6). First, we initialize the matrices
and with small random values. Then, the gradient descent

algorithm iteratively updates the matrices and . QMaxI is
the max iteration in the process of the gradient descent algo-
rithm. The variable is the iteration number in the gradient de-
scent algorithm. The parameter is the iteration step which is
used to control the speed of iteration. and are
given in (8).
The process stops when the minimum of the objective func-

tion given in (6) is reached. When is less than the max itera-
tion, the algorithm will continue. The algorithm finally outputs
the predicted and , and the approximate matrix of can be
obtained by (1).

V. EXPERIMENT

In this section, we conduct experiments to validate our
RMF approaches, and compare the results with those from
other methods. Our experiments are intended to 1) verify the
rationality of our proposed theorems and corollaries, 2) discuss
how the model parameters affect the prediction accuracy, and
3) compare our RMF approaches with other state-of-the-art
methods.

A. Dataset Description
In this paper, the real-world dataset released by Zheng et al.

[35] is used in our experiments. This dataset includes a 339 by
5825 matrix containing 339 service users, and 5825 real Web
services. 1,974,675 response-time and throughput records are
collected. The range of the response time property is 0 to 20
seconds (s), while the range of the throughput is 0 to 1000 kbps.
In our experiments, we use the response time dataset, and add
20 unreliable service users to the dataset. The QoS values of the
unreliable users are pseudo-randomly generated.

B. Metrics
In this paper, the mean absolute error (MAE) and root mean

squared error (RMSE) are utilized to measure the difference
between the predicted values and observed values. MAE, and
RMSE are respectively defined as

(9)

(10)

where denotes the known QoS value of service observed
by service user , is the predicted QoS value, and is the
number of predicted values. MAE gives equal weights to all the
individual differences. But when large errors are particularly un-
desirable, RMSE is more useful, because it gives high weights
to large errors [28].

C. Performance Comparison
To prove the effectiveness of our reputation-based matrix fac-

torization method, we ran extensive experiments on state-of-
the-art QoS prediction methods, and compared our method with
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them. Several representative approaches are selected to compare
with our models, including the following.
1) UMean (user mean)—In this method, a QoS value is pre-

dicted by calculating the mean of all the known QoS values
of a user.

2) IMean (item mean)—In this method, a QoS value is pre-
dicted by calculating the mean of all the known QoS values
of services (items) observed by different users.

3) UPCC—In this approach, a QoS value is predicted by
utilizing the similarity between each two users using the
Pearson Correlation Coefficient (PCC), and the historical
invocation records of similar users [36].

4) IPCC—This approach is similar to UPCC, but instead of
making use of similar users, it pays attention to similar
services. Missing QoS values are estimated by utilizing the
QoS values of similar services [37].

5) UIPCC—This approach integrates UPCC and IPCC into
a unified model by aggregating their predicted results to-
gether, which takes advantage of both similar users and
similar services [38].

6) PMF—In this method, two low-rank matrices are used to
predict missing values in the user-service matrix [39].

In our experiments, matrix density is defined as the density
of the training dataset. In this experiment, each QoS prediction
method is run on 6 different matrices, whose densities are 5%,
10%, 15%, 20%, 25%, and 30% respectively. For example, a
matrix density of 15% means that 15% of the entries in the ma-
trix are used for predicting missing QoS values, while the re-
maining 85% are ones waiting to be predicted. We set the per-
centage of unreliable users =2.79% (10 unreliable users in all
359 users) for all methods. Additionally, for RMF and PMF,
and are both set to 25, dimensionality is set to 10, and the
number of iterations is set to 20. Refer to [18], and [32]; the
decay constant in (5) is set to 0.1. In the following experi-
ments, we use the same experimental settings.
Table I shows the MAE and RMSE results of different

methods with different densities from 5% to 30%. To compare
to the existing approach in [23] which considers users' repu-
tations, we have combined the reputation factors into UIPCC
(named UIPCC+R in Table I). The experimental results show
several important results.
1) Our RMF approach can achieve smaller MAE and RMSE

values than other methods for response-times with dif-
ferent matrix densities, which indicates further higher ac-
curacy than existing approaches, and verifies the effective-
ness of our approach.
Concretely, compared with UIPCC+R, RMF achieves
4.93% improvement in MAE, and 1.30% improvement
in RMSE. Compared with the PMF model, the RMF
achieves 4.89%, and 1.28% improvement in MAE, and
RMSE, respectively.

2) Compared with UPCC, IPCC, UIPCC, and UIPCC+R,
RMF achieve better prediction accuracy. That result oc-
curs because RMF employs all the available information
in the user-item matrix for making predictions, while the
neighbor-based approaches only employ the information
of similar neighbors (users or items) for making predic-
tions.

3) Compared with PMF, RMF provides better prediction ac-
curacy under different matrix density settings. That result
occurs because RMF adds the users' reputation to the pre-
diction model, and can reduce the impact of unreliable
users, while PMF only employs the raw user-item matrix,
and the accuracy of prediction is affected by unreliable
users.

4) When the matrix density is small (e.g., 5%, 10%, etc.), rel-
ative to other methods, the effect of RMF prediction ac-
curacy is not obvious (e.g., PMF can improve accuracy by
0.2% from PMF inMAEwhen thematrix densityMD=5%,
etc). While compared to UIPCC+R, the effect of RMF pre-
diction accuracy is very obvious (e.g., PMF can improve
accuracy by 10.2% from UIPCC+R in MAE when the ma-
trix density MD ). When the matrix density is large
(e.g., 25%, 30%), the effect of RMF prediction accuracy
is more obvious (e.g., PMF can improve the accuracy by
2.73% from PMF in MAE when MD ). While com-
pared to UIPCC+R, the effect of RMF prediction accuracy
becomes less obvious (e.g., RMF can improve accuracy by
1.24% from UIPCC+R in MAE when MD ). This
observation result indicates that, by considering user rep-
utation, our PMF approach can achieve better prediction
accuracy.

In the following experiments, we will investigate the impact
of parameters on our models' performance, including and

, the percentage of unreliable users, and the matrix density.

D. Impact of and

The parameters and control the proportion of the two
regularization terms which are used to avoid over-fitting in (3)
in the final predicted value. In this experiment, we assume

. If and are too large or too small, the prediction ac-
curacy will be unsatisfactory. To understand the impact of
and , we perform experiments on the response time values;
and we set the dimensionality to 10, and the percentage of un-
reliable users to 2.79%.
Fig. 2 shows that the impacts of parameters and are

on the prediction results. We make several observations.
1) When the matrix density is 5%, MAE first decreases, and

reaches the minimal value when the values of and
are at about 20, while RMSE increases monotonously.

2) When the matrix density is from 10% to 20%, MAE and
RMSE first decrease, and reach an optimal value when
and are at about 20 to 30.

3) When the matrix density is more than 25%, MAE and
RMSE first decrease, and then go to a steady value; the
optimal values are reached when and are more than
35. Therefore, the optimal values of and can be set
according to the matrix density.

E. Impact of the Percentage of Unreliable Users

To study the impact of the percentage of unreliable users on
the prediction accuracy, we set the number of unreliable users
to 5, 10, 15, 20, and 80, so the percentage of unreliable users
is 1.39%, 2.79%, 4.18%, 5.57%, and 19.1%, respectively. For
other parameters, we vary the matrix density from 5% to 30%,
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TABLE I
ACCURACY COMPARISON ON RESPONSE TIME (A SMALLER RMSE VALUE MEANS BETTER PERFORMANCE)

Fig. 2. Impact of and . (a) MAE; (b) RMSE.

Fig. 3. Impact of the percentage of unreliable users. (a) MAE; (b)RMSE.

and the value of . The experimental results are
illustrated in Fig. 3.
Fig. 3 shows that the prediction accuracy of RMF always

keeps the best MAE and RMSE regardless of the change of the
percentage of unreliable users in each matrix density. We can
observe several results.
1) With thematrix density becoming denser,MAE andRMSE

both become less. For different percentages of unreliable
users, the denser matrix can provide more information,
which is beneficial to improve the prediction accuracy.

2) When MD is smaller than 5%, the MAE or RMAE is more
affected by the percentage of unreliable users (e.g., when
MD is 5%, the MAE is 0.5389, 0.5436, and 0.5726, cor-
responding to the number of unreliable users of 5, 20, and
80, respectively).

When the matrix is dense (e.g., MD is more than 10%), the
RMSE values are similar for different percentages of unreli-
able users. For example, when MD is 15%, RMSE values of
5, 20, and 80 unreliable users are 1.2737, 1.2722, and 1.2815,

respectively. These RMSE values are similar to each other, be-
cause the impact of unreliable users is greatly reduced by our
proposed approach. When MD is more than 10%, the changes
of MAE and RMSE are minimal with the same matrix density,
and different percentages of unreliable users (e.g., when MD is
15%, the RMSE is 1.2737, 1.2722, and 1.2815 corresponding
to the number of unreliable users is 5, 20, and 80, respectively).
The greater the matrix density, the smaller is the impact of the
percentage of unreliable users. Therefore, the percentage of un-
reliable users has very small influence on the prediction when
the range of the percentage of unreliable users is from 1.39%
to 19.1%, because the unreliable users have low reputation in
our RMF model, and the influence on the prediction results is
reduced.

F. Impact of Matrix Density

Matrix density is the percentage of unremoved entries in the
user-service matrix, which indicates how much available infor-
mation we have to help us make predictions. To study the impact
of matrix density, we vary the density of the matrix from 5% to
30% with a step value of 5%. We set the dimensionality to 10,
select the number of unreliable users to be 5 and 20, and set

, respectively. Fig. 4 illustrates the experimental
results.
Fig. 4 shows that, with the increase of Matrix density, both

MAE and RMSE decline rapidly at first. When the matrix den-
sity becomes larger, the speed of decrease slows down.
That means more accurate prediction results can be achieved

by obtaining more QoS values.

G. Impact of Dimensionality

In our method, dimensionality denotes the number of latent
features used to factorize the user-service matrix, which finally
contributes to predicting the QoS value. Too small or large of a
value will affect the prediction accuracy and efficiency. To study
the impact of dimensionality, we tune the values of dimension-
ality from 1 to 40. For other parameters, we select the number of
unreliable users to be 10, and set , respectively.
Fig. 5 illustrates the experimental results.
Fig. 5 shows the impact of dimensionality on MAE, and

RMSE, on our model, respectively. We can observe that both
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Fig. 4. Impact of matrix density. (a) MAE; (b) RMSE.

Fig. 5. Impact of dimensionality. (a) MAE; (b) RMSE.

MAE and RMSE are high at first, and decrease rapidly when
the dimensionality is less than 10. When the dimensionality
is larger than 10, both MAE and RMSE are low, and tend to
be stable. To acquire good prediction results, we can raise the
dimensionality. However, a larger dimensionality value will
require longer computation time. In addition, if the dimension-
ality is set to a very high value, it will cause an overfitting
problem, which will affect the prediction negatively [28].

VI. CONCLUSION
Users' reputation has great impact on the prediction of Web

service QoS values. In this paper, we present an effective QoS
prediction approach, namely RMF, for predicting unknownWeb
service QoS Values. We first calculate the reputation of each
user based on their contributed QoS values. Then the user rep-
utation is integrated into a matrix factorization (MF) predic-
tion approach to get more accurate predictions. Extensive ex-
periments are conducted on a real-world dataset, and the exper-
imental results show that our proposed approach outperforms
other existing approaches.
In the future, to continuously improve our prediction perfor-

mance, we can try to optimize the reputation calculating method
by employing intelligence algorithms to improve the calcula-
tion accuracy and rationality. Some feasible methods are listed
as follows.
1) Exploiting statistical properties to measure users' consis-

tency, and to identify unreliable users.
2) Taking the online condition into consideration, we may in-

vestigate reputation estimation methods (e.g. collaborative
filtering method) to keep track of users' reputation, and de-
tect spammers or unreliable users. We will also improve
the RMF method to be suitable for an on-line algorithm.

3) Moreover, in terms of matrix factorization itself, we will
attempt to composite other related information into our
model to improve the prediction outcome, such as loca-
tion, or time.
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