
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2011, Article ID 257101, 12 pages
doi:10.1155/2011/257101

Research Article

A Reliable and Efficient MAC Protocol for Underwater Acoustic
Sensor Networks

Junjie Xiong, Michael R. Lyu, and Kam-Wing Ng

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

Correspondence should be addressed to Junjie Xiong, jjxiong@cse.cuhk.edu.hk

Received 14 February 2011; Revised 10 May 2011; Accepted 12 July 2011

Copyright © 2011 Junjie Xiong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Underwater acoustic sensor networks (UWASNs) are playing a key role in ocean applications. Unfortunately, the efficiency of
UWASNs is inferior to that of the terrestrial sensor networks (TWSNs). The main reasons are as follows: (1) UWASNs suffer
long propagation delay; (2) UWASNs are limited by the narrow bandwidth. Many MAC protocols are proposed to improve the
efficiency of UWASNs. However, their improvement is not enough. Moreover, few of them consider the reliability of UWASNs
even though the packet loss can fail the applications. Actually, a few of the protocols employ the traditional acknowledgment
(ACK) mechanism, but they suffer the throughput degradation a lot. In this paper, first, we propose a protocol called RAS, a
priority scheduling approach for multihop topologies. RAS is more efficient in throughput and delay performance. Then, we
propose a reliable RAS called RRAS that obtains a tradeoff between the reliability and the efficiency. RRAS designs an ACK and
retransmission mechanism, that is, different from the traditional one so that it can maintain a comparable throughput when
improving the reliability. Extensive evaluations are conducted to verify that RAS is efficient and RRAS is a tradeoff on reliability
and efficiency.

1. Introduction

As a crucial ingredient of cyber physical systems, wireless
sensor networks (WSNs) facilitate the interactions between
human beings and the physical world through sensing,
monitoring, and controlling. Being a type of wireless sensor
networks, underwater acoustic sensor networks (UWASNs)
[1] draw a lot of interest in ocean applications, such as ocean
pollution monitoring, ocean animal surveillance, oceano-
graphic data collection, assisted navigation, and offshore
exploration, UWASN is composed of underwater sensors
that engage sound to transmit information collected in the
ocean. The reason to utilize sound is that radio frequency
(RF) signals used by terrestrial sensor networks (TWSNs)
can merely transmit a few meters in the water [2].

While UWASNs and TWSNs are similar, there still exist
many differences that make UWASNs less efficient than
TWSNs [1–3]. First and most importantly, the propagation
delay of UWASNs is far larger than that of TWSNs. Acoustic
signals propagate at about 1500 m/s underwater, while RF
signals travel at the speed of light in the air. To transmit a data
packet over 1500 meters, it takes 1 s underwater and 5 μs in
the air. Due to the high propagation delay of acoustic signals,
the network performance of UWASNs cannot be achieved

as highly as that of TWSNs. Second, the sound bandwidth
is much narrower than RF bandwidth (e.g., 10 kbps Versus
10 Mbps). Consequently, we should utilize the bandwidth in
UWASNs more efficiently. Third, the acoustic sensor is more
expensive than the terrestrial sensor, and thus, the sensor
deployment in the water is more sparse. The average distance
among acoustic sensors is usually several hundred meters.

Many existing methods aim at collision avoidance and
improving the efficiency of UWASNs, but they are not
reliable. APCAP [2] utilizes the maximum propagation delay
to avoid collisions and MAC level pipelining to increase
efficiency. To avoid the poor throughput caused by using
maximum propagation delay, Peleato and Stojanovic apply
a shorter delay to avoid collision when the communicating
nodes are close to each other [4]. In addition, two ALOHA-
based MAC protocols [5] improve the efficiency by reducing
the RTS/CTS handshaking and avoiding collisions with the
information from the overheard packets. Although all these
MAC protocols help improve the efficiency of UWASNs,
none of them consider acknowledgments (ACKs) or retrans-
missions. Since the packet loss may fail the applications, it
is very important to maintain a certain level of reliability
with ACK and retransmission mechanisms. For example,
when a fire breaks out, such event report packets should



2 International Journal of Distributed Sensor Networks

arrive at the BS in time. Since they may be lost due to
the volatile environment, they should definitely be equipped
with retransmission scheme.

On the other hand, existing methods that include ACK
mechanisms are not as efficient as the previous techniques
with no ACK mechanisms. For example, slotted FAMA
[6], UW-FLASHR [7], and the reservation MAC protocol
proposed in [8] realize the traditional ACK technique, but
they focus on collision avoidance rather than on ACK and
the retransmission effects.

Due to the volatile wireless environment, packet loss is
very common in UWASNs [1, 9]. Unlike packet collision
that can be reduced or manipulated at a very large extent,
this kind of packet loss is out of human control. As a
result, we should implement ACK mechanism and the
corresponding retransmissions so as to improve the network
and application reliability. Considering the innate inferior
performance and low bandwidth of UWASNs, we should also
avoid deteriorating the efficiency too much by enabling ACK
and retransmissions. In this paper, to improve the network
efficiency, we first design a protocol called RAS (routing and
application-based scheduling protocol), based on which we
propose a reliable RAS called RRAS to achieve a tradeoff
between the reliability and the efficiency.

RAS enables parallel transmissions and utilizing the
information from both the routing and application layer
it is an efficient priority scheduling at the MAC layer of
the base station (BS) [10]. However, it does not require
the global positions of all nodes, because it calculates the
rough propagation delays between every node pair in the
network through the initial synchronization packet exchange
that is proposed by Tracy and Roy [8]. Different from
RAS whose period is composed of working portion and
sleeping portion, RRAS divides the sleeping portion into a
NACK-retransmission portion and the sleeping portion. The
NACK-retransmission mechanism of RRAS can improve the
network reliability.

We summarize our contributions as follows:

(1) We design an efficient priority scheduling protocol
called RAS at the MAC layer of BS.

(2) We propose RRAS to improve the network reliability.

(3) Extensive evaluations are conducted to show that
RAS is efficient, and RRAS achieves higher reliability
than RAS while achieving comparable throughput
performance.

In the remainder of this paper, Section 2 describes
related work. As the basis of our new protocol RRAS, the
RAS protocol is introduced in Section 3. RRAS protocol is
designed in Section 4, and its performance is evaluated in
Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Recently, there are extensive research efforts focusing on
improving the performance of UWASNs, which are surveyed
as follows.

Slotted FAMA [6] is a handshaking-based protocol
designed to avoid collisions caused by the hidden terminal
problem in UWASNs. It synchronizes all nodes and makes
all the transmissions start at the beginning of a slot. The
slot length is the sum of the maximum propagation delay
and the transmission time of a CTS (clear to send) packet.
While it can efficiently avoid collision caused by the long
propagation of UWASNs and also enable ACK mechanism,
it does not utilize the long propagation delay to improve the
throughput and delay performance. Our RAS can achieve
higher efficiency with a compact schedule that allows high-
level parallelization.

The reservation MAC protocol proposed in [8] avoids
collisions and improves the bandwidth utilization by
employing two channels: a control channel for RTS/CTS
handshake and a data channel for data transmission. It
increases the network throughput by dividing a larger group
of collision sources into smaller ones. While it realizes
traditional ACK technique, it does not investigate the
retransmission effects. In addition, it is based on a single-hop
topology, and the gateway is in charge of the control packet
and data packet coordination. Hence, this MAC protocol
does not suit the multihop situation, whose complexity
requires a different analysis. In contrast, both RAS and RRAS
can be applied in either one-hop or multihop topologies.

APCAP identifies that the traditional CSMA leads to
poor performance in UWASNs due to the long propagation
delay [2]. Therefore, it utilizes the maximum propagation
delay to avoid collisions. To avoid the poor throughput
caused by such method, Peleato and Stojanovic reduce
the delay used to avoid collision [4]. In addition, APCAP
employs MAC level pipelining to increase efficiency. Another
MAC protocol UW-FLASHR [7] also implements MAC level
pipelining. The difference is that APCAP is based on an
adaptive and distributed RTS/CTS handshake while UW-
FLASHR employs both TDMA mechanism and RTS/CTS
handshaking. APCAP do not consider acknowledgements
(ACKs) for the data packets while UW-FLASHR enables
traditional ACK mechanisms.

Regarding the RTS/CTS handshaking transmission mod-
el as inefficient in UWASNs, Chirdchoo et al. propose two
ALOHA-based MAC protocols [5]. This MAC protocol also
requires the knowledge of propagation delays between every
node pair in the network. Then, it uses the information
from the overheard packets to avoid collisions. Its simple and
clever mechanisms improve the efficiency, but it does not
consider ACK mechanisms, either.

Since packet loss is very common in wireless sensor
networks [1, 9], our RRAS can greatly improve the network
and application reliability.

3. RAS Protocol

The main purpose of RAS is to design an efficient schedule
for all the sensor nodes on when to send and receive DATA
packets. First, we introduce the RAS process. Then, we focus
on the schedule calculation.



International Journal of Distributed Sensor Networks 3

3.1. Overview of RAS Protocol. The typical application we
discuss is the ocean bottom surveillance application, in which
all nodes generate the same amount of data and send them
to the BS periodically with cycle Tc. RAS’s practicability is
guaranteed by the applications features: (2) the maximum
one-way propagation delay of UWASNs is very long, for
example, 1000 ms, and thus the synchronization accuracy
requirement is low; (3) the networks are sparsely (because
of high-cost sensors) and statically deployed.

Before schedule calculation, RAS needs synchronization
in the networks. Although there exist many synchronization
methods [11, 12], for the sake of simplicity and low cost,
RAS only requires coarse synchronization through the initial
packet exchange or the information piggybacked in the
received packets as The authers in [7, 8] do. Meanwhile, it
can calculate the rough propagation delays between nodes
by checking time stamps during the synchronization process
[8].

With synchronization, the nodes can work and sleep
periodically [13]. In Figure 1, the RAS cycle Tc is divided
into two portions. One portion is the sleeping period, the
other is the working period Tw which is divided into many
time slots Ts. One time slot is composed of Td, the time
duration for transmitting data, and Tg , the guard time for
avoiding collisions introduced by imprecise synchronization
and propagation time calculation. The actual value of Tg is
determined by the real deployment environment. If there
is a data burst due to abnormal events, nodes can transmit
them in the following sleeping period by notifying the related
nodes in advance. In this way, data burst does not require the
schedule update. In the following, we focus on analyzing the
working schedule in one cycle.

It is practical to employ static routing, because the
networks are static. In addition, the monitoring applications
only require data transmissions from the sensor nodes to
the BS. Then, the BS calculates the number of data to be
transmitted and received at each node. Finally, the BS can
calculate for all the sensor nodes the working schedule on
when to send and receive data, and broadcast the schedule to
all the sensor nodes to follow for a long time. The steps are
shown in Algorithm 1.

These processes cost little efforts, because they do not
require frequent updates. Therefore, the major goal is how
to make the working period of the whole network as short
as possible so as to save the energy and improve the network
efficiency, that is, how to design an efficient schedule for a
cycle.

3.2. Scheduling Principles. The transceiver cannot receive
when it is transmitting, and collision will occur at a node
when it receives more than one packet [14]. (This corruption
is called interference. Interference packets at a node are
divided into two types: the first type is for packets that
are not destined for the node but are within the node’s
communication range RR. The other type is for packets that
are beyond the node’s communication range but are within
the interference range RI . Usually, the relation [15] between
RR and RI is: 2 × RR ≤ RI ≤ 3 × RR.) In order to avoid
collision, we define the following scheduling principles.

(1) A DR duration must not overlap any DT duration.

(2) A DR duration must not overlap any IR duration.

(3) A DR duration must not overlap any other DR
duration.

(4) A DT duration and IR duration(s) can overlap.

Since there is no data from the BS to sensor nodes, we
can design a compact schedule by only allocating time for
data from sensor nodes to the BS. Thus, the next principle is
as follow:

(5) No DR from ith hop node to (i + 1)th hop node.

The goal of data transactions is to guarantee successful
receptions, and we arrive at the last principle.

(6) A node considers DR duration as the scheduling basis
rather than DT or IR duration.

With DR as the scheduling basis, we do not have to
consider whether IR will overlap other IRs and DTs. In
addition, we can increase the throughput and reduce delay by
making nodes transmit or receive instead of idling whenever
no DR is overlapped.

3.3. Scheduling of RAS Protocol. To accomplish the goal of an
efficient schedule, RAS implements MAC level pipelining by
interlacing multiple data transmissions in a schedule as long
as no collision is triggered. During the interlacing process,
RAS assigns the slots to nodes with heavier traffic first that
is, nodes with heavier traffic are given higher priority in data
transmission and reception, and thus other nodes can only
transmit or receive in the time slots that are not taken up by
the heavier-traffic nodes. In this way, the traffic load can be
better balanced, and the efficiency can be improved as well.

We call the schedule length calculated with RAS as L1.
In RAS, the scheduling element corresponds to one data
transaction in which the data transmission and reception
will last for several time slots. The scheduling element is
composed of one DT duration, one DR duration, and several
IR durations.

According to scheduling principle (6), we will schedule
all the elements generated in a cycle equals by scheduling
all the data receptions in a cycle. Let Si = {m :
node m is i hops from the BS, m ∈ S}. Assuming a node’s
distance from the BS is proportional to its hop distance to
the BS, the following is the priority scheduling steps of RAS
algorithm.

Step 1: Schedule the BS’s DR from 1-hop nodes.

Step 2: Schedule the DR tier by tier: from inner tier to outer
tier, that is, from DR of nodes in Si to DR of nodes in Si+1,
i ∈ {1, 2, 3, . . . ,H − 1}, H is the maximum hop distance to
the BS.

Step 3: For each node m ∈ Si that is going to receive data
packets from its children Cmj ∈ Si+1, j = 1, 2, . . . ,Km,
arrange its DR from its children alternatively. For example,



4 International Journal of Distributed Sensor Networks

Ts Ts

Td Tg

Time slot Time slot Sleeping Period

DATA transmission period: Tw

Whole period: Tc

Figure 1: RAS cycle.

(1) Coarse synchronization through the initial packet exchange
(2) Calculate the rough propagation delay between nodes through the previous packet exchange
(3) Calculate static routing
(4) Calculate the number of data to be transmitted and received at each node
(5) CalcSchedule() /∗Algorithm 3∗/
(6) The BS broadcasts the routing table and the schedule to all its children with high power

Algorithm 1: RAS protocol at the BS (it runs at the initialization phase).

node 1 has two childrenA and B. In a cycle, each of them send
3 packets PAi,PBi to node 1, and i ∈ 1, 2, 3. Then, one possi-
ble DR sequence at node 1 is: PA1,PB1,PA2,PB2,PA3, andPB3.

The reason to schedule the BS’s DR first is that the
topmost goal is for the BS to receive all the data generated
by all other nodes in a cycle. The reason to prioritize
the inner tier nodes over the outer tier nodes is that the
inner-tier nodes are affording much heavier traffic. It is
unfair for them to share the same bandwidth with other
light-traffic nodes. In addition, the packets forwarded by
the inner tier nodes are forwarded more hops than those
forwarded by the outer tier nodes. Colliding or dropping
those packets would cost more efforts to retransmit. Finally,
to alternate the receptions among the children provides load
balancing of the nodes. If fairness is not considered for a
parent’s children, a few children might drop packets due to
congestion, whereas other children’s queues are far from full.
Therefore, when we alternate the children’s transmissions,
we improve the fairness. The three steps are shown in
Algorithm 2. How RAS works at the sensor nodes is shown in
Algorithm 3.

3.4. Analysis of the RAS Scheduling Algorithm. The time used
to calculate the schedule of RAS is less than 1 sec in our
personal computer, because RAS is a heuristic method with
complexity O(N) in which N is the node number.

Since the upper bound for the RAS schedule length (L1)
can be infinitely long, we only discuss L2, the lower bound for
the schedule length. Assuming each node generates P packets
in a cycle, then the BS has to receive N × P packets in total
from 1-hop nodes in a N-node network. To receive packets,
it has to wait for at least the propagation time Tp of one
packet. Therefore, the shortest time for receiving all theN×P
packets is N × P × Ts + Tp. We call this time L2 as the lower
bound, which cannot be achieved in large-scale networks due
to interferences.

4. RRAS Protocol

Since packet loss is very common in UWASNs [1, 9], RAS
is not reliable. By enlarging the guard time, we can avoid
collisions caused by imprecise synchronization. Hence, in
our case, we focus on the packet loss caused by the volatile
wireless environment. Because RAS does not considering the
ACK and retransmission problem, we propose a reliable RAS
called RRAS. RRAS employs the RAS scheduling to transmit
all the data efficiently. For the data packets lost during
the scheduling, RRAS utilizes the NACK-retransmission
mechanism to improve the overall system reliability.

4.1. Overview of NACK-Retransmission Mechanism. In the
scheduling of RAS, each node n knows nc, the number of
packets that should be received from each of its child node
c, and n0, the number of packets generated by itself. The
total packets that should be sent to its parent are n0 +

∑
c nc.

In RRAS protocol, if in a cycle, a node does not receive
the expected packets, it would keep the packet loss in mind
and perform retransmission in the following retransmission
period.

Retransmission period is part of an RRAS cycle as shown
in Figure 2. RRAS cycle is designed from RAS cycle: the
data transmission period of RAS is kept, while the sleeping
period of RAS is divided into the retransmission period
and a shorter sleeping period. In this way, the data lost
in data transmission period Tw can be retransmitted in
retransmission period Tr . Obviously, RRAS protocol keeps
the nodes working for a longer period than RAS for the
sake of reliable transmission. However, since the unavoidable
packet loss might fail the applications, it is worthy of the
extra time Tr to keep all the nodes waiting for possible data
retransmission requirement.

The packet loss caused by the volatile wireless envi-
ronment is random, thus we do not know which packets



International Journal of Distributed Sensor Networks 5

(1) Parent = BS; hop = 1. //schedule the BS’s DR from 1-hop nodes
(2) while hop ≤maxhop. do
(3) while Parent has children. do
(4) while Parent has data to receive from its children. do
(5) if Parent is idle in the Time Slot Slot. then
(6) With global information, Parent searches its entire children to alternatively find

a child whose transmission results in its reception at the Slot.
(7) if Parent finds a suitable child. then
(8) schedule the child’s transmission and the related reception and interference.
(9) break searching.
(10) end if
(11) end if
(12) Parent fetches the next Slot for reception.
(13) end while
(14) fetch the next Parent to schedule reception.
(15) end while
(16) hop = hop + 1. //schedule the DR tier by tier
(17) end while

Algorithm 2: CalcSchedule() function at the BS.

(1) Node x receives routing information and a schedule from the BS.
(2) Synchronization.
(3) while 1 do
(4) if node x is in sleeping period. then
(5) sleep until working period starts.
(6) end if
(7) if abnormal events happen. then
(8) request x’s parent to wait for data in sleeping period.
(9) end if
(10) if receive data from x’s children. then
(11) receive the data as scheduled.
(12) end if
(13) if x has data to send. then
(14) send the data in working period as scheduled.
(15) end if
(16) end while

Algorithm 3: RAS protocol at the other nodes (it runs at each sensor node after the initialization).

will be lost in the data transmission period Tw, and we
cannot schedule the retransmission as we schedule the
periodical data transmission. As a result, we employ a NACK-
retransmission mechanism, that is, the NACK packet asks for
the lost packets, and the retransmission packets reply NACK
with the required packets. The detailed explanation follows.

During retransmission period Tr , the node n that has
not received the expected packets would send a control
packet (NACK) to its child node c whose packets to n are
lost during transmission. The NACK contains the packet
sequence numbers that n has received from c. On receiving
the NACK, c would know which packets to retransmit.
If node n failed to receive packets from multiple child
nodes, it would send an NACK to the very child nodes one
by one. If the retransmissions succeed, no more retry is
needed. Otherwise, node n could initiate the corresponding
retransmission by sending another NACK.

4.2. Retransmission Mechanism. The more times that node
n retry the transmissions, the higher the reliability is.
Although such retransmission is aimed at improving the data
transmission reliability, it does not promise 100% success
which would cost a lot of extra resources. Hence, in our case,
we only focus on one-time retry rather on the frequently used
three-time retry [13]. If we want to retry a second time, we
can simply add another retransmission period to retransmit
the data packets lost during the first retransmission period.

After receiving NACK, node c would retransmit the lost
data packets in a batch or in a burst to node n. Since the
control frame exchanges deteriorate the UWASN efficiency
greatly, batch data transmission improves the retransmis-
sion throughput and delay performance by reducing the
exchanges.

As for the collision avoidance, in order not to degrade the
efficiency, we do not use the maximum propagation delay



6 International Journal of Distributed Sensor Networks

Ts Ts

Td Tg

Time slot Time slot Sleeping Period
Retransmission

period

DATA transmission period: Tw Tr

Whole period: Tc

Figure 2: RRAS cycle.

to avoid collisions as [2, 6] do. In addition, carrier sense
and RTS/CTS handshaking are efficient in a network where
the propagation delay is negligible, but they are inefficient
in UWASNs [16]. As a result, we adopt a simple ALOHA
mechanism [5, 17]. According to [10], the propagation time
is usually larger than the data duration time (100 ms) as long
as the distance between the nodes is larger than 150 m. In
this situation, even if the two nodes send packets to each
other simultaneously, no collision happens. Furthermore, if
node A and node B start to send a packet to C at the same
time, as long as the difference between A–C distance and B–
C distance is larger than 150 m, there will be no collision at
node C. For these reasons, we employ simple ALOHA that
is, a node could transmit a packet when it is not receiving or
transmitting. Although this mechanism does not guarantee
collision-free situations, it is more efficient. In case collision
happens, further actions can be taken: retransmit the collided
packets again or ignore it and accept the current reliability
level. In our work, we study the effects of ALOHA through
experiments and prove its influence on the efficiency and
reliability.

We define the states of a node after the data transmission
period as (α,β). The α state is determined by the node itself,
while the β state is determined by its parents

α =
⎧
⎨

⎩

Y, packets from its child nodes are lost,

N, packets from it child nodes are not lost,

β =
⎧
⎨

⎩

Y, packets to its parent nodes are lost,

N, packets to its parent nodes are not lost.

(1)

A node might be in 4 situations: (N,N), (N,Y), (Y,N), and
(Y,Y). If it it in state (N,N) with no packet loss, it is free from
sending or receiving packets. If it is in state (N,Y), it does not
know that its data transmissions to its parents are lost until it
receives the NACKs from its parents. In this case, it will only
retransmit the data packets designated in the NACKs.

If it is in state (Y,N), it knows that data transmissions
from its child nodes are lost. It is also aware that since it
fails to forward the lost packets to its parent nodes, its parent
nodes will require them through NACK. It should first ask
its child nodes for the lost packets by sending NACKs to
them. Next, after collecting the lost packets from its child
nodes, it should forward them to its parent nodes. Since it
does not know the beta state, it does not know whether its

parent nodes will ask for lost packets generated by its child
nodes or packets generated by itself. As a result, even if it has
finished collecting the lost packets from its child nodes, it still
should wait to retransmit until receiving the NACKs from its
parents.

The actions in state (Y,Y) is similar to those in state (Y,N).
The only difference is that the node should send the lost
packets from both its child nodes and from itself to its parent
nodes. In summary, the retransmission will be triggered only
after receiving the NACK requirements.

4.3. Retransmission Time. In addition, the length of Tr and
extra energy consumption E for reliable transmission is
closely related to the packet loss rate R. The overall energy
consumption is dominated by the transmit power Et, as
compared to receive power Er and idle power Ei [18, 19]. If
R is low, then E is low. For example, if R is 0, that is, there is
no packet loss during Tw, then no retransmission is needed,
and all the nodes are idling during Tr with low extra power
consumption. If the packet loss rate is very high during Tw,
then the retransmission period Tr should be long enough to
finish all retransmissions, and the extra power would be a
lot. In other words, high packet loss means that the wireless
environment is very severe, and retransmission is required
no matter what kind of mechanisms are employed for data
transmissions.

Given packet loss rate R, to ensure that the time duration
is long enough for retransmitting the lost packets, the length
of Tr for a given network topology is calculated as follows.

To make sure that Tr can accommodate all retransmis-
sion situations, we analyze the worst case. Consider the nodes
in the longest route to the BS, from the leaf node a to the BS,
and the maximum hop distance is H .

If a DATA transmission from node a to its parent b is lost,
then all the nodes in the route need to retransmit the lost data
to the BS. A node will retransmit only on receiving the NACK
requirement, then a retransmission between a pair of nodes
would take at most 2∗(Tp+Ts), in which Tp is the maximum
propagation delay and Ts is the time slot. The longest time
taken for retransmitting the DATA to the BS is consequently

2∗H ∗
(
Tp + Ts

)
. (2)

The ALOHA retransmission mechanism only restricts
the order between the NACK and its corresponding retrans-
mission that is, it allows parallel transmission among NACKs



International Journal of Distributed Sensor Networks 7

from different nodes. As a result, the time used is much less
that is,

(
Tp + Ts

)
+H ∗

(
Tp + Ts

)
. (3)

The first term (Tp + Ts) is used to transmit the NACKs, and
the second term H ∗ (Tp + Ts) is used to transmit the lost
DATA to the BS.

We then consider the case that more than one packet are
lost in such a route. The worst situation is that all the packets
are lost on the way from a to b. The batch DATA transmission
mode reduces the NACK-retransmission handshake, and
keeps the handshake round to be 1 among a node pair. Hence
the longest time taken for retransmitting all the DATA to the
BS is

(
Tp + Ts

)
+H ∗

(
Tp + Lp ∗ Ts

)
, (4)

in which Lp is the total number of DATA packets lost,

Lp = Ap ∗ R, (5)

given Ap, the number of all the packets to be transmitted in
a cycle.

Next, consider the case that more than one route, ro
routes, experience data loss. The worst situation is that all
the routes are H hops from the BS, and there is no overlap
between any of the routes until they converge at the BS.
In this situation, the batch DATA transmission mechanism
cannot be applied to reduce the time. Then, we get the length
of Tr , that is, long enough for most retransmission situations
as:

Tr = ro ∗
(
Tp + Ts

)
+ ro ∗H ∗

(
Tp + Lp ∗ Ts

)
. (6)

When the rough distances between nodes and the routing
are known, H and maximum ro are determined, then Tr
can be calculated. However, this value is too large for a real
deployment and hence wastes retransmission time. In fact,
not all data losses happen on the way from the farthest nodes
to their parents. In addition, the interference between the
routes may be very light, and the transmissions in each route
can happen simultaneously without affecting each other.
Furthermore, the propagation time to transmit 1 DATA
packet for 1 hop is less than the maximum propagation delay
Tp. As a result, the actual retransmission time needed is far
less than that indicated in (6), and it should be adjusted
accordingly. As our later experiments prove, simulation can
help us select a better value for Tr .

5. Performance Evaluation

The protocol performance is simulated using the parameters
shown in Table 1. We use the ns2 setdest tool to generate
networks with size ranging from 9 nodes to 64 nodes [20].
For example, the 64-node network covers a 5 km by 5 km
area, and it is connected without holes. The maximum one-
way propagation time is 1000 ms calculated from the 1500 m
transmission range and sound speed.

Table 1: Parameters for data transmissions.

Parameter Value

Data rate 10 kbps

DATA packet size 100 bytes

DATA packet duration 80 ms

Sound speed 1500 m/s

Transmission range (communication range) 1500 m

Interference range 3500 m

Guard time 20 ms

Wireless model TwoRayGround

10987654321

Number of packets each node generated in a cycle

0

0.2

0.4

0.6

0.8

1

L
2
/L

1

9-node network
16-node network
25-node network

36-node network
49-node network
64-node network

Figure 3: Schedule ratio.

The efficiency performance of RAS is compared with
UW-FLASHR [7]. The efficiency and reliability performance
of RRAS is compared to RAS and the traditional CSMA/CA
used in TWSNs. UW-FLASHR uses control frame handshak-
ing to reserve parallel transmissions. RAS does not employ
ACK mechanism, and the traditional CSMA/CA does not
adjust the collision avoidance method for UWASNs.

5.1. Schedule Length. Since RRAS uses the schedule of RAS,
this section is about RRAS and RAS schedule length. We
calculate the lower bound schedule length L2 and the RAS
schedule length L1 when the number of packets generated
by each node in a cycle varies from 1 to 10. Figure 3 shows
the value variations of L2/L1. The ratio of L2 to L1 for each
network almost stabilizes at a constant value. Since L2 = N ×
P × Ts + Tp, then L2 also increases linearly with the network
size N . This means that RAS is scalable in calculating the
schedule no matter the traffic rate is low or high. Moreover,
the ratio of small size networks is higher. The reason is that
the hop distances of small-scale networks are 1-hop or 2-
hop, and they suffer less from the interferences caused by
neighboring nodes. When there are few interferences, the
schedule length is reduced.



8 International Journal of Distributed Sensor Networks

3002401608020

Guard time (s)

0

10

20

30

40

50

Sc
h

ed
u

le
le

n
gt

h
(s

)

Min
Avg
Max

Figure 4: Schedule length.

Basically, the larger the guard time, the longer the
schedule length. Longer guard time allows more impre-
cise synchronization while reduces the network efficiency.
Figure 4 shows the relation between the guard time and the
schedule length for ten 64-node networks. In accordance
with our expectation, the schedule length increases linearly
with the guard time ranging from 25% of the data duration
time (80 ms) to 300% of the data duration time. Therefore, if
we deploy a network with high clock drift, we should set the
guard time to a longer value. Otherwise, we can use a smaller
guard time.

5.2. Throughput of RAS. Due to RAS’s high scalability in
schedule length demonstrated in the previous subsection, we
use the schedule calculated for the case when only one packet
is generated in a cycle since this subsection.

To compare RAS with UW-FLASHR [7], an existing
MAC protocol designed for high channel utilization, we
employ their throughput definition. Throughput is defined
by measuring the total number of the intended data packets
received by the BS by the total number of data packets
generated by all the nodes in a period. Obviously, if the
traffic generated at each node is so heavy that it exceeds
the maximum capacity of the network, then the throughput
would drop and even approaching to 0. Conversely, if the
traffic is light, then it is likely that all the data generated will
be received by the BS; therefore, the throughput is 1 when
there is no traffic.

Although we simulated networks of different sizes, for the
sake of conciseness, Figure 5 only compares the throughput
of RAS and UW-FLASHR in 36-node networks and 64-node
networks. As the traffic rate increases, the throughput of all
the networks drops from 1. In addition, 36-node networks
are able to afford a much heavier traffic rate than the 64-node
networks, because networks with a larger size suffer higher
total traffic. Moreover, we notice that the throughput for

0.150.120.090.060.030

Traffic rate of each node (kbps)

0

0.2

0.4

0.6

0.8

1

1.2

T
hr

ou
gh

pu
t

RAS (36 nodes)
UW-FLASHR (36 nodes)

RAS (64 nodes)
UW-FLASHR (64 nodes)

Figure 5: Throughput.

36- and 64-node networks with UW-FLASHR dramatically
drops from 1 when the traffic rate is not 0. This is because
UW-FLASHR performs the slot requirement among the
neighbors, and the hidden terminal problem leads to some
slot establishment which might cause collisions. On the other
hand, RAS performs scheduling based on all nodes’ position
information, thus no collision happens. Finally, for UW-
FLASHR, the heaviest traffic rate these networks could afford
is much less than that of RAS. This is because RAS generates a
much compacter schedule than UW-FLASHR. RAS arranges
the exact time needed by the transmission and reception of
each node, while UW-FLASHR reserves the time slots for
transmission randomly.

5.3. Average End-To-End Delay of RAS. The end-to-end delay
is the period from the time a packet is generated by a node
until the time it is received by the BS. Figure 6 shows that
the average end-to-end delay increases when the traffic rate
increases. Specifically, when the traffic rate is heavy enough
to cause congestion in the networks, there are sudden jumps
of delay as observed in the figure. By observing the sudden
jumps in delay, we find that RAS networks can afford about
4 times higher traffic load than UW-FLASHR networks
without collision. Because the scale of 36-node networks is
smaller than 64-node networks, their end-to-end delay is also
shorter. In addition, when heavily congested, the delay of
RAS networks and UW-FLASHR networks stops increasing
with traffic rate. The reason is that both RAS and UW-
FLASHR are based on TDMA to reserve the channel rather
than on CSMA/CA to compete the channel, thus the delay
reaches an upper bound. However, the delay upper bound of
RAS networks is higher than that of UW-FLASHR networks,
this is due to the fact that: the priority scheduling makes the
queue utilization of RAS networks higher than that of UW-
FLASHR networks (this will be explained in the following
subsection). In UW-FLASHR networks, the queue utilization
is very low. Most packets from faraway nodes cannot arrive at
the BS before being dropped by the heavy-loaded forwarding



International Journal of Distributed Sensor Networks 9

0.150.120.090.060.030

Traffic rate of each node (kbps)

0

100

200

300

400

500

600

A
ve

ra
ge

en
d-

to
-e

n
d

de
la

y
(s

)

RAS (36 nodes)
UW-FLASHR (36 nodes)

RAS (64 nodes)
UW-FLASHR (64 nodes)

Figure 6: End-to-end delay.

nodes. In other words, most of packets that arrive at the BS
are generated by nearby nodes, thus the delay upper bound
is lower. In contrast, this phenomenon is alleviated by the
priority scheduling in RAS networks.

5.4. Average Maximum Queue Length per Node of RAS. In
this subsection, we demonstrate the advantage of RAS in
fairness by showing that its queue utilization is fairer than
that UW-FLASHR. The queue size of each node is set to
50 in the simulations. If a queue is filled with 50 packets,
then further packet arrival will cause one packet to be
dropped.

The sudden jump in the queue length is caused by
congestion. For example, for the 64-node RAS network,
after the traffic rate reaches 0.06 kpbs, the network starts to
congest, and the congested packets are put into the queue.
If the traffic rate continue to be 0.06 kpbs or higher, more
packets will be enqueued until the queue is filled. Since our
simulation runs a long time enough at each traffic rate, the
queue is full almost all the time when the traffic rate is higher
than 0.06 kpbs.

UW-FLASHR does not take the application direction
into consideration, nor does it arrange longer time for nodes
with heavier traffic. As a result, nodes with heavier traffic
(i.e., nodes that are nearer to the BS) would easily accumulate
a long queue of packets and suffer queue overflow very soon
while nodes with lighter traffic maintain an empty queue.
The queue utilization of the nodes in UW-FLASHR is unfair
and low. Actually, nodes with heavier traffic experience
a larger packet arrival rate, and they need more time to
handle the packets. RAS gives higher priority to nodes with
heavier traffic by allocating more data transmission time to
them, thus their packet leaving rate is also higher. Likewise,
nodes with lighter traffic are allotted less time. As a result,
the queues of all the nodes are balanced, and the queue
utilization is fairer.

Due to similar phenomenon of 36-node networks and
64-node networks, we mainly discuss the case for 64-node
networks in Figure 7. When the traffic rate is between 0 kbps

0.150.120.090.060.030

Traffic rate of each node (kbps)

0

10

20

30

40

50

60

A
ve

ra
ge

m
ax

qu
eu

e
le

n
gt

h
pe

r
n

od
e

RAS (36 nodes)
UW-FLASHR (36 nodes)

RAS (64 nodes)
UW-FLASHR (64 nodes)

Figure 7: Queue length.

and 0.06 kbps, the queue length of RAS networks is shorter
than that of UW-FLASHR networks. Due to RAS’s capability
of affording higher traffic rate, most of the nodes in RAS
networks do not have to queue under those traffic rates.
Whereas the nodes in UW-FLASHR networks are queueing
more and more packets when traffic gets heavy. In addition,
RAS networks undergo a jump in queue length when the
traffic rate increases from 0.06 kbps to 0.07 kbps. This is
because the queue utilization of RAS networks is fairer and
higher than UW-FLASHR networks. At traffic rate 0.06 kbps,
most of the nodes in RAS networks start to congest. If
the traffic rate continues to be 0.06 kpbs or higher, as time
goes by, more packets will be enqueued until the queues
are full. Our simulation runs a long time enough at each
traffic rate, the queue is full almost all the time when the
traffic rate is higher than 0.06 kpbs. In contrast, in UW-
FLASHR networks, the queues of the few nodes that are
next to the BS are congested at a very low traffic rate, while
the queues of faraway nodes are empty. Other nodes get
congested gradually with the increasing traffic rate, thus the
queue length does not surge.

Furthermore, because small-scale networks are less likely
to suffer congestion, the queue length of 36-node RAS
networks soars at about traffic rate 0.09 kbps rather than at
0.07 kbps. It stabilizes at around 27 rather than at 50 when
the traffic rate is larger than 0.11 kbps. Eventually, it will
stabilize at 50 when the traffic rate is very high. Nevertheless,
0.15 kbps is not a very high traffic rate for 36-node networks,
thus only a majority of the nodes are congested while the
others sustain empty queue. Still the queue length of RAS
networks is much larger than that of UW-FLASHR networks
when congestion happens in RAS networks, which again
indicates that the queue utilization of RAS networks is fairer
and higher.

In summary, greater maximum queue length allows fairer
and higher utilization of the queue. Correspondingly, the
delay upper bound of the RAS networks is higher than the
UW-FLASHR networks because more faraway packets are
capable of arriving at the BS with no overflow in queue.



10 International Journal of Distributed Sensor Networks

0.20.160.120.080.040

Loss rate

0

20

40

60

R
et

ra
n

sm
is

si
on

ti
m

e
of

R
R

A
S

(s
)

RRAS(1)
RRAS(2)
Theoretical RRAS(1)

Figure 8: Retransmission time.

5.5. Retransmission Time of RRAS. In this subsection and
the following subsections, each node generates 1 packet for
the BS periodically. Experiments are performed to determine
the actual length of the retransmission period. Although
we compare UW-FLASHR with RAS, we cannot compare
it with RRAS, because it does not contain retransmission
mechanism. According to (6), the theoretical length of the
retransmission period is conservatively long, attempting to
fit in all possible retransmission communications. Actually,
the retransmission time can be much shorter. In Figure 8,
RRAS(1) and RRAS(2) are the retransmission time when the
retry time is 1 and 2 respectively. Theoretical RRAS(1) is the
retransmission time calculated with (5) when the retry time
is 1.

In Figure 8, with loss rate (loss is caused by the wireless
environment) increasing from 0, the retransmission time
of all the three cases increases from 0. RRAS(2) is about a
double of RRAS(1), because it retransmits the lost packet
one more time. When the loss rate is very low, say 0.04,
RRAS(1) and RRAS(2) are equal, because the DATA packets
that need retransmission are so few that they can be sent
simultaneously. Theoretical RRAS(1) is the longest, because
it is an overestimated value that attempts to accommodate
all possible retransmission cases. As a result, to save the time
spent on retransmission, we can adjust the retransmission
time according to the simulation results and the loss rate in
the deployment.

5.6. Working Time of RRAS and RAS. Working time is the
total time that a node is turned on. During the working
time, the node can be sending, receiving, or idling, but
not sleeping. For RAS, the working time is the schedule
time, and the sensor nodes sleep for the rest of the cycle
time. For RRAS, the working time is the schedule length
plus the retransmission time. For the traditional CSMA/CA
used in TWSNs, the working time is the time used for

0.20.160.120.080.040

Loss rate

0

20

40

60

80

W
or

ki
n

g
ti

m
e

(s
)

RAS
RRAS(1)
RRAS(2)

Theoretical RRAS(1)
CSMA/CA(1)
CSMA/CA(10)

Figure 9: Working time.

transmitting all DATA packets to the BS without exceeding
the required retry times. Besides RAS, RRAS(1), RRAS(2),
and theoretical RRAS(1), Figure 9 also shows the working
time of CSMA/CA(1) and CSMA/CA(10), with 1 and 10 as
the retry limit, respectively.

Because the traditional CSMA/CA employs RTS/CTS
handshaking and does not design the collision avoidance
mechanism suitable for UWASNs, many packets are collided
and its efficiency is very low. The CSMA/CA has to retransmit
the collided DATA packets, and it cannot successfully
retransmit all the collided DATA packets to the BS when the
retry time limit is 10, let alone when the retry time is 1. As
a result, no matter what the loss rate is, the working time
of CSMA/CA is a constant. In other words, the protocol for
UWASNs should first settle down the negative effects caused
by improper collision avoidance methods of the traditional
CSMA/CA, and then recovers the packet loss caused by the
volatile environment. Figure 9 also demonstrates that (1) the
RAS work time is the lower bound of all because it does not
retransmit, and, (2), except for CSMA/CA, the working time
increases with the increase of retry time and loss rate.

5.7. Success Rate of RRAS and RAS. The success rate is
defined as the DATA packets received by the BS divided by
the total DATA packets for the BS. Because the RAS does
not perform ACK or retransmission mechanism, its DATA
success rate is reduced by the loss rate. RRAS can achieve
a higher success rate. Figure 10 verifies that compared with
RAS, RRAS attains a higher success rate, especially when the
loss rate is high. In addition, success rate of RRAS(2) is higher
than that of RRAS(1), because RRAS(2) retries one more
time. However, according to Figure 8 and Figure 9, one more
retransmission of RRAS(2) results longer retransmission
and working time. Finally, as discussed previously, the
efficiency of CSMA/CA is very low, including the success
rate.



International Journal of Distributed Sensor Networks 11

0.20.160.120.080.040

Loss rate

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

ra
te

(s
)

RAS
RRAS(1)
RRAS(2)

CSMA/CA(1)
CSMA/CA(10)

Figure 10: DATA transmission success rate.

5.8. Throughput of RRAS and RAS. According to [1], the
throughput is defined as a function of the sensor node
working time and the total DATA packets received by the BS:

throughput = total DATA packets received by the BS∗ Td
working time

.

(7)

In consistency with the poor success rate, the traditional
CSMA/CA efficiency is also very low in Figure 11. As
discussed in subsection retransmission time, the throughput
of the traditional CSMA/CA is determined by its poor
collision avoidance method rather than by the packet loss
rate caused by the environment hence, it is flat. According
to Figure 11, the throughput of RAS is the highest, but the
throughput performance of RRAS is not greatly reduced,
especially when the loss rate is not very high. Since the
success rate of RRAS is much higher than RAS according to
Figure 10, we can observe that RRAS obtains a good tradeoff
between the reliability and the throughput.

6. Conclusions

In this paper, we propose an efficient MAC protocol called
RAS to improve the efficiency in UWASNs. Then RRAS, the
reliable RAS, is implemented to achieve a tradeoff between
the reliability and efficiency performance in UWASNs. RAS
employs priority scheduling with coarse synchronization and
information of the rough propagation delays between each
node pair. With these condition and parallel transmissions,
RAS can calculate a compact schedule at the BS when static
routing is applied and the DATA direction is only from
the sensor nodes to the BS. To improve the throughput,
RRAS employs the RAS scheduling to transmit the majority
of the DATA generated in a cycle to the BS. Then, it
designs a NACK-retransmission mechanism to retransmit
the DATA packets lost during the previous DATA transmis-
sions. Because this new NACK-retransmission mechanism is

0.20.160.120.080.040

Loss rate

0

0.2

0.4

0.6

0.8

1

T
hr

ou
gh

pu
t

RAS
RRAS(1)
RRAS(2)

CSMA/CA(1)
CSMA/CA(10)

Figure 11: Throughput.

based on the RAS scheduling that allows each node to know
the packets it should receive during a cycle, it can trigger the
NACK requirement after a node identifies its lost packets.
Both the NACK and retransmission packet transmissions are
distributed. They are based on ALOHA so as to reduce the
control frame handshaking and improve throughput. The
simulation results demonstrate that RAS is not only efficient,
but also obtains good fairness performance. RRAS not only
effectively improves the reliability through retransmission,
but also attains a comparable throughput. In the future, we
are interested in researching the performance of the current
MAC protocols when the loss rate is higher than 20% and
design a reliable protocol for such situation.

Acknowledgments

The work described in this paper was supported by a grant
from the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project no. CUHK4154/10E)
and sponsored in part by the National Basic Research
Program of China (973) under Grant no. 2011CB302600.

References

[1] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acous-
tic sensor networks: research challenges,” Ad Hoc Networks,
vol. 3, no. 3, pp. 257–279, 2005.

[2] X. Guo, M. R. Frater, and M. J. Ryan, “An adaptive
propagation-delay-tolerant MAC protocol for underwater
acoustic sensor networks,” in Proceedings of the Oceans, pp. 1–
5, June 2007.

[3] J. Partan, J. Kurose, and B. N. Levine, “A survey of practical
issues in underwater networks,” in Proceedings of the 1st ACM
International Workshop on Underwater Networks (WUWNet
’06), pp. 17–24, September 2006.

[4] B. Peleato and M. Stojanovic, “A MAC protocol for ad-hoc
underwater acoustic sensor networks,” in Proceedings of the
1st ACM International Workshop on Underwater Networks
(WUWNet ’06), pp. 113–115, September 2006.



12 International Journal of Distributed Sensor Networks

[5] N. Chirdchoo, W. S. Soh, and K. C. Chua, “Aloha-based MAC
protocols with collision avoidance for underwater acoustic
networks,” in Proceedings of the 26th IEEE International
Conference on Computer Communications (INFOCOM ’07),
pp. 2271–2275, June 2007.

[6] M. Molins and M. Stojanovic, “Slotted FAMA: a MAC
protocol for underwater acoustic networks,” in Proceedings of
the Oceans Conference, May 2006.

[7] J. Yackoski and C. C. Shen, “Achieving high channel utilization
in a time-based acoustic MAC protocol,” in Proceedings of the
3rd ACM International Workshop on Underwater Networks,(
WUWNet ’08), pp. 59–66, September 2008.

[8] L. T. Tracy and S. Roy, “Short paper: a reservation MAC
protocol for ad-hoc underwater acoustic sensor networks,” in
Proceedings of the 3rd International Workshop on Underwater
Networks, (WUWNet ’08), pp. 95–98, September 2008.

[9] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Research
challenges and applications for underwater sensor network-
ing,” in 2006 IEEE Wireless Communications and Networking
Conference, (WCNC ’06), pp. 228–235, April 2006.

[10] J. Xiong, M. R. Lyu, and K. W. Ng, “Mitigate the bottleneck of
underwater acoustic sensor networks via priority scheduling,”
in Proceedings of the 6th International Conference on Mobile Ad-
hoc and Sensor Networks, (MSN ’10), pp. 53–60, 2010.

[11] M. Marti, B. Kusy, G. Simon, and G. K. Ldeczi, “The
flooding time synchronization protocol,” in Proceedings of the
2nd International Conference on Embedded Networked Sensor
Systems, pp. 39–49, November 2004.

[12] A. A. Syed and J. Heidemann, “Time synchronization for
high latency acoustic networks,” in Proceedings of the 25th
IEEE International Conference on Computer Communications
(INFOCOM ’06), April 2006.

[13] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient
MAC protocol for wireless sensor networks,” in Proceedings
of the 21st International Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 3, pp. 1567–
1576, 2002.

[14] IEEE STD 802.11-2007, “Wireless LAN medium access control
and physical layer specifications,” 2007.

[15] J. Deng, B. Liang, and P. K. Varshney, “Tuning the carrier
sensing range of IEEE 802.11 MAC,” in Proceedings of the IEEE
Global Telecommunications Conference (GLOBECOM ’04), pp.
2987–2991, December 2004.

[16] X. Guo, M. R. Frater, and M. J. Ryan, “A propagation-delay-
tolerant collision avoidance protocol for underwater acoustic
sensor networks,” in Proceedings of the MTS/IEEE Oceans,
2006.

[17] J. Ahn and B. Krishnamachari, “Performance of a propagation
delay tolerant ALOHA protocol for underwater wireless
networks,” in Proceedings of the International Conference on
Distributed Computing in Sensor Systems (DCOSS ’08), 2008.

[18] B. Benson, Y. Li, R. Kastner et al., “Design of a low-
cost, underwater acoustic modem for short-range sensor
networks,” in Proceedings of the Oceans, 2010.

[19] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball,
“The WHOI micro-modem: an acoustic communications and
navigation system for multiple platforms,” in Proceedings of the
IEEE Oceans Europe, September 2005.

[20] http://www.isi.edu/nsnam/ns/.


