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a b s t r a c t

Semi-supervised learning (SSL) is a typical learning paradigms training a model from both labeled and
unlabeled data. The traditional SSLmodels usually assume unlabeled data are relevant to the labeled data,
i.e., following the same distributions of the targeted labeled data. In this paper, we address a different, yet
formidable scenario in semi-supervised classification, where the unlabeled data may contain irrelevant
data to the labeled data. To tackle this problem, we develop a maximum margin model, named tri-class
support vector machine (3C-SVM), to utilize the available training data, while seeking a hyperplane for
separating the targeted data well. Our 3C-SVM exhibits several characteristics and advantages. First, it
does not need any prior knowledge and explicit assumption on the data relatedness. On the contrary, it
can relieve the effect of irrelevant unlabeled data based on the logistic principle and maximum entropy
principle. That is, 3C-SVM approaches an ideal classifier. This classifier relies heavily on labeled data
and is confident on the relevant data lying far away from the decision hyperplane, while maximally
ignoring the irrelevant data, which are hardly distinguished. Second, theoretical analysis is provided
to prove that in what condition, the irrelevant data can help to seek the hyperplane. Third, 3C-SVM is
a generalized model that unifies several popular maximum margin models, including standard SVMs,
Semi-supervised SVMs (S3VMs), and SVMs learned from the universum (U-SVMs) as its special cases.
More importantly, we deploy a concave–convex produce to solve the proposed 3C-SVM, transforming
the original mixed integer programming, to a semi-definite programming relaxation, and finally to a
sequence of quadratic programming subproblems, which yields the same worst case time complexity as
that of S3VMs. Finally, we demonstrate the effectiveness and efficiency of our proposed 3C-SVM through
systematical experimental comparisons.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Supervised learning is an effective tool to learn from a set of la-
beled data in solving classification and regression problems, which
widely occurred in various application domains such as hand-
writing recognition (Schölkopf & Smola, 2002) and bioinformatics
(Hastie, Tibshirani, & Friedman, 2009; Vapnik, 1999; Yang, King, &
Lyu, 2011). However, supervised learning methods usually need a
sufficiently large number of labeled samples in the training pro-
cedure to learn good decision functions. Essentially, labeling data
is an expensive and time consuming task due to the request of
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experts’ knowledge. To tackle the problem of insufficient amount
of labeled training samples, researchers have proposed various
methods in the literature. They include

• Active learning: A learning paradigm requires users’ (or some
other information source) interaction to provide the responses
of new data points (Schohn & Cohn, 2000; Settles, 2010).

• Transfer learning: These methods focus on applying the
knowledge learned from related, but different tasks to solve the
target task (Pan & Yang, 2010; Yang, King, & Lyu, 2010; Yang,
Lyu, & King, 2013). They usually require sufficient labeled data
to learn accurate knowledge.

• Semi-supervised learning (SSL) or Transductive learning: These
techniques aim at learning an inductive rule or try to accurately
determine the label of the data from a small amount of labeled
data with the help of a large amount of unlabeled data (Zhou &
Li, 2010; Zhu & Goldberg, 2009).
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(a) MNIST. (b) SL vs. SSL. (c) SSL vs. 3C-SVM.

Fig. 1. The left figure illustrates the task of classifying digits ‘‘5’’ and ‘‘8’’ with mixed unlabeled digits: block digits are labeled data on the target binary classification task,
while black digits are mixed unlabeled digits, including other irrelevant digits from ‘‘0’’ to ‘‘9’’. Our proposed 3C-SVM utilizes the ‘‘irrelevant’’ data (⋆’s) to seek a more
meaningful decision function, while the S3VM is misled by the irrelevant data.
In the above learning paradigms, active learning requires
users’ additional interaction and transfer learning techniques need
sufficient labeled data to learn necessary knowledge. On the
contrary, SSL needs the least training samples. Therefore, we
consider semi-supervised learning paradigm in this paper.

Recently, various SSL methods have been proposed in the liter-
ature; see Chapelle, Schölkopf, and Zien (2006) and Zhu and Gold-
berg (2009) and references therein. However, previously proposed
SSLmethodsmainly assume unlabeled data are ‘‘clean’’. Obviously,
in real-world applications, without carefully preprocessing, unla-
beled data are easily incorporated with other irrelevant data. That
is, the unlabeled data may follow different distributions of the tar-
get labeled data. For example, when crawling unlabeledweb pages
to classify two categories, say ‘‘finance’’ and ‘‘sports’’, it is easy to
collect some irrelevant web pages and include them as unlabeled
data. The same scenario occurs in classifying handwritten digits,
see Fig. 1(a) as an example of classifying the digits ‘‘5’’ and ‘‘8’’ with
irrelevant data. Hence, the unlabeled data may consist of relevant
and irrelevant data. Learning from the labeled data and the mixed
unlabeled datamay hurt the training of classificationmodels. Fig. 1
gives a motivating example on S3VM can learn a good classifier
when the unlabeled data is clean, while beingmisledwhen the un-
labeled data is mixed.

To tackle this difficult scenario, we propose a novel maximum
margin semi-supervised model, named tri-class support vector
machine (3C-SVM) to utilize all available data. We highlight the
main contributions of this paper as follows:

1. First, we propose a novel 3C-SVMmodel to solve a very difficult
scenario in semi-supervised learning with mixed unlabeled
data. One main characteristic of 3C-SVM is that it generalizes
several popular maximum margin models, including standard
SVMs, Semi-supervised SVMs (S3VMs), and SVMs learned
from universum data (U-SVMs). This paper summarizes our
previously proposed two solutions in Huang, Xu, King, and Lyu
(2008) and Yang, Zhu, King, and Lyu (2011).

2. Second, we not only provide the intuition of the model formu-
lation, but also perform theoretical analysis on 3C-SVM, which
shows why the irrelevant data can help the model. Based on
logistic principle and the maximum entropy principle, we can
rely more on the labeled and relevant data, while automatically
ignoring the irrelevant data.

3. Third, we observe that the original formulation of 3C-SVM is
a mixed integer programming problem. We derive the semi-
definite programming relaxation when considering it as trans-
ductive learning. Furthermore and more importantly, we view
the formulation as semi-supervised learning and deploy the
concave–convex procedure (CCCP) (Yuille & Rangarajan, 2003)
to efficiently seek the inductive rule. This yields solving a fi-
nite number of quadratic programming (QP) subproblems and
achieves the same worst case time complexity as that of S3VMs
(Collobert, Sinz, Weston, & Bottou, 2006). The speedup is very
competitive in terms of efficiency in many semi-supervised
learning models.

4. Finally, we demonstrate the effectiveness and efficiency of
3C-SVM through a series of empirical evaluation on both syn-
thetic and real-world datasets. Sensitivity analysis is also pro-
vided to exhibit the characteristics of 3C-SVM.
The rest of the paper is organized as follows. Section 2 reviews

several typical related work, which motivates the proposed
3C-SVM. Section 3 presents the formulation of 3C-SVM and its
properties. Section 4 details the solving procedure of 3C-SVM
algorithm. Section 5 reports the experimental comparisons and
results. Finally, Section 6 concludes the whole paper.

2. Related work

In the following, we review related methods that learn a binary
classifier from both labeled and unlabeled data, or labeled targeted
data with other auxiliary data.

Semi-supervised learning (SSL) is a learning paradigm that
learns from both labeled and unlabeled data (Chapelle et al., 2006;
Zhu & Goldberg, 2009). Typical SSL methods include generative
methods for SSL (Lawrence & Jordan, 2005; Nigam, McCallum,
Thrun, &Mitchell, 2000), graph-based SSLmethods (Belkin, Niyogi,
& Sindhwani, 2006; Huang, Song, Gupta, & Wu, 2014; Iosifidis,
Tefas, & Pitas, 2014; Melacci & Belkin, 2011), maximum margin
classifiers (Chapelle et al., 2006; Collobert et al., 2006; Joachims,
1999), etc. Usually, these models work when the number of label
data is small and the number of unlabeled data is sufficiently
large. Typically, the given unlabeled data are assumed following
the same distribution as the labeled data (Chapelle et al., 2006;
Dehdarbehbahani, Shakery, & Faili, 2014; Zhao, Zhang, Chow, & Li,
2014; Zhu & Goldberg, 2009). Hence, they utilize the unlabeled
data to find the data distribution so as to improve the model
performance. However, when unlabeled data are mixed with
irrelevant data, where the data follow distributions different that
of the target task, they usually do harm to the SSL models (Singh,
Nowak, & Zhu, 2008). A motivating example is shown in Fig. 2(b)
and an illustration is shown as the dash line in Fig. 2.

U-SVM (Weston, Collobert, Sinz, Bottou, & Vapnik, 2006) is
a special learning paradigm that learns from both labeled data
and universum data. The universum data is a third kind of data
yielding the most contradiction through the final hyperplane and
obviously, the distribution of the universum data is different from
neither the positive class nor the negative class in the target task.
Since the universum data play the role of seeking the subspace
for the decision function (Sinz, Chapelle, Agarwal, & Schölkopf,
2008), they can help to improve the model performance when the
data are carefully chosen. However, the label of these data has
to be explicitly specified in the training procedure. In real-world
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(a) Data. (b) Classifiers illustration.

Fig. 2. Illustration of data and different classifiers on R2 . Data denoted by+’s and �’s are positive and negative data, respectively. Data denoted by ·’s come from the targeted
binary classification task and those denoted by ⋆’s are irrelevant data, whose labels are unknown before the training. Fig. 2(b) shows that the 3C-SVM (the thin solid line)
achieves the best result, which is closest to the Bayesian optimal classifier (the thick solid line), among all maximummargin based classifiers and automatically distinguishes
the irrelevant unlabeled data (black dots with red circles) well. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Table 1
Key notations used in this paper.

Notations Description

w, K Bold small and capital letters denote vectors and matrices, respectively.
X, R Letters in calligraphic or blackboard bold fonts denote sets.
L = {(xi, yi)}Li=1 The set of labeled data consists of L labeled samples, where xi ∈ X ⊆ Rd , and the label is triple, yi ∈ {−1, 0, 1}.
L = L±1 ∪ L0 L±1 consists of the positive and negative data with labels being +1 or −1, while data in L0 follows distributions different from those in L±1 .
U = {xj}L+U

j=L+1 The set of unlabeled data consists of U samples, where xj ∈ Rd .
U = U±1 ∪ U0 Data in U±1 follows the same distribution of L±1 . Data in U0 follows the same distribution of L0 . However, their labels are unknown in the

training period.
fϑ(x) = w⊤φ(x) + b A hyperplane parameterized by ϑ = (w, b), where φ : Rd

→ Rf , is a feature mapping function often implicitly defined by a Mercer kernel.
kL, kLU Simplified expressions: kL , k + L and kLU , k + L + U .
1̃dk , and ε̃dk Simplified expressions: 1̃dk , 1 − D(1 − dk) and ε̃dk , −ε − Ddk .
0U,L A U × L matrix with all elements being 0.
IU A U × U identity matrix.
x−i , y−i The index −i indicates it shifting i advance from the 0-index.

3R,C
Λij = φ(xi)⊤φ(xj): R and C indicate the corresponding row and column ranges of data indices, respectively. R = 2U denotes the row index
ranges from L + 1 to L + 2U .
R = |L0| + L + 2U denotes the row index ranges from −|L0| to L + 2U except 0.
applications, without prior knowledge, we cannot guarantee that
the unlabeled data are ‘‘clean’’, or belong to the universum set. In
this case, the data may be mixed with the universum data and the
relevant data, where the relevant data may hurt the U-SVMs; see
the dash–dot line learned from mixed universum data in Fig. 2(b)
as an example.

Some other models also consider the case of mixed auxiliary
data, which is partially similar to the scenario we take into account
in this paper. For example, Zhang, Wang, Wang, and Zhang (2008)
proposed a graph-based semi-supervised learning model to learn
from both labeled and unlabeled data. In the model, the unlabeled
data are assumed following the same distribution of the targeted
binary classification task,which is the same as previously proposed
SSL models. A different assumption is that universum data are
included in the labeled data and they need to explicitly indicate
the label of the universum data. Li and Zhou (2010) proposed the
safe semi-supervised support vector machine method to alleviate
the effect of the noise in the unlabeled data. However, this method
does not consider the case of mixture unlabeled data and needs to
postprocess the results through two separate steps.

In short, previously proposed methods cannot address well the
scenario of learning from mixed unlabeled data, which consists of
relevant and irrelevant data. However, without good preparation,
the unlabeled data are easily mixed with irrelevant data. Hence,
we target at this formidable task to learn an inductive rule or a
hyperplane with the help of mixed unlabeled data.
3. Tri-class support vector machine (3C-SVM)

In this section, we first present the notations and the problem
definition in this paper. Next, we formulate the problem and
propose the tri-class support vector machine, namely 3C-SVM.
After that, we present the important properties of 3C-SVM.

3.1. Notations and problem definition

To make the notations consistent in the whole paper, we first
present some important notations and describe their meaning in
Table 1. Now, given labeled data L and unlabeled data U defined
in Table 1, where the number of unlabeled data ismuch larger than
that of the labeled target data, i.e., |L±1| ≪ U , our goal is to seek
a hyperplane that classifies the ±1 data well with the help of all
available data. The decision hyperplane is defined as follows:

fϑ(x) = w⊤φ(x) + b. (1)

To attain this goal, we formulate the objective via the following
maximummargin criterion:

min
ϑ

λ

2
∥w∥

2
+


xi∈L

riℓL(fϑ(xi), yi) +


xi∈U

riℓU(fϑ(xi)), (2)

where minimizing ∥w∥
2 is equivalent to maximizing the margin

width, which can also control the capacity of the function space
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(a) Hinge loss. (b) Symmetric hinge loss. (c) ε-insensitive loss. (d) Min loss.

Fig. 3. Illustration of different loss functions, including hinge loss, symmetrical hinge loss, ε-insensitive loss, and our proposed min loss.
(a) Sigmoid function. (b) Errors.

Fig. 4. Illustration of a sigmoid function and the error measure by the min loss. In Fig. 4(b), points with circles are support vectors.
(Vapnik, 1999). The constant λ > 0 trades off the regularization
term and the empirical risks. ℓL(·, ·) defines the empirical risk
of the labeled data and ℓU(·) measures the empirical risk of the
unlabeled data. ri > 0, i = 1, . . . , L + U , is the corresponding
balance penalty ratio.

For different problems, we have to choose different loss func-
tions to measure the empirical risk on the data. Typical loss func-
tions include:

• Hinge loss: H1(u) = max{0, 1− u}. This loss function has been
used to measure the empirical risk of labeled data in standard
SVMs (Vapnik, 1999); see Fig. 3(a) as an illustration.

• Symmetric hinge loss: H̃s(u) = H1(|u|). This loss function has
been applied to measure the empirical risk on unlabeled data
for S3VMs (Collobert et al., 2006); see Fig. 3(b) as an illustration.

• ε-insensitive loss: Iε(u) = max{0, |u| − ε}. This loss function
has been adopted to measure the empirical risk in Support
Vector Regression (Vapnik, 1999) and the Universum data in
U-SVMs (Weston et al., 2006); see Fig. 3(c) as an illustration.

In Eq. (2), a difficult issue is how to measure the empirical risk
on the unlabeled data, i.e., how to calculate the third term in Eq. (2).
This is because without good preparation, the unlabeled data are
possible to be mixed with data relevant or irrelevant to the target
task. Without prior knowledge, it is very tough to differentiate
them into the relevant and the irrelevant data.

Here, our intuition on tackling the unlabeled data is based on
the following two principles:

1. Logistic principle: Data points lying farther away from the
decision hyperplane are more likely to be classified as data
from±1-class. However, when data points lie near the decision
hyperplane, they are difficult to be classified correctly. Hence,
ideally, data from ±1-class should lie on or outside of the
margin gap; while other the irrelevant data are close to the
decision hyperplane.
2. Maximumentropy principle: An ideal classifier should believe
in all labeled data, while relying on relevant data andmaximally
ignoring the irrelevant data. Since the labeled data are few
and collected by experts’ effort, we should take serious
consideration on them. Relying on more confident data and
ignoring uncertain data can achieve maximum entropy.

Hence, the above two principles imply that irrelevant data should
lie around the sought decision hyperplane. In order to achieve the
above principles, we design amin loss function tomeasure the risk
on the mixed unlabeled data. This loss function determines and
measures the error of an unlabeled data point by the min value of
the symmetric hinge loss and the ε-insensitive loss (see Fig. 3(d) as
the definition and Fig. 4(b) as an illustration):

ℓmin(x) = min {H1(|fϑ(xi)|), Iε(|fϑ(xi)|)} . (3)

Hence, for an unlabeled data point, when its error is determined by
the ε-insensitive loss, it is deemed as irrelevant data; otherwise,
when its error is decided by the symmetric hinge loss, we can set
it as relevant data.

With this loss function, we develop a novel maximum margin
classifier, named tri-class support vector machine (3C-SVM), as
follows:

min
ϑ

λ

2
∥w∥

2
+


xi∈L±1

riH1(yifϑ(xi)) +


xi∈L0

riIε(fϑ(xi))

+


xi∈U

ri min {H1(|fϑ(xi)|), Iε(|fϑ(xi)|)} . (4)

In the above, the first two terms correspond to the formulation
of a standard SVM (Vapnik, 1999). The third term measures the
empirical risk of L0 data, the same as that in U-SVMs (Weston
et al., 2006). The last term measures the loss of unlabeled data.
Hence, when the decision function is learned, we can determine
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Table 2
Relation between different models and the usage of training data.

the class label of a data point x by the following criterion:

c(x) =


+1 if fϑ(x) >

1 + ε

2
−1 if fϑ(x) < −

1 + ε

2
0 otherwise.

(5)

The above criterion separates the data into three classes, where the
0-class data corresponds to the irrelevant data.

3.2. Properties of 3C-SVMs

In the following, we present two favorite properties of our
3C-SVM. The first one is the generalization property. The second
one is an insightful theorem on why the irrelevant data help the
model.

First, as summarized in Table 2, our 3C-SVM framework
generalizes several popular maximummargin models:

1. 3C-SVM includes a standard SVM formulation (Vapnik, 1999) as
its special case. By setting ri to zero in the third and fourth terms
of Eq. (4) and only labeled data are given in the training set, we
can reduce the formulation to a standard SVM problem.

2. An S3VM formulation (Chapelle et al., 2006) is a special case of
the 3C-SVM. This can be achieved by setting ri to zero in the
third term and using only symmetrical hinge loss to measure
the empirical risk of unlabeled data in the fourth term in Eq. (4).
When only labeled data and relevant unlabeled data are given,
we can use this formulation.

3. The 3C-SVM also includes a U-SVM (Weston et al., 2006). It
can easily be obtained by setting ri to zero in the fourth term
of Eq. (4). This formulation works when only labeled data and
universum data are given.

Since our 3C-SVM enforces irrelevant data to fall close to the
decision function, it appears that the model may not be suitable
when data do not follow such scenarios. However, this problem
can be resolved by selecting a suitable subspace through the
kernel trick (Chen, Yang, King, & Lyu, 2015; Hu, Yang, King, Lyu,
& So, 2015; Schölkopf & Smola, 2002; Yang, Xu, Ye, King, & Lyu,
2011). The following theoremprovides an insightful resultwhy the
irrelevant data can help and how they help.

Theorem 1. A 3C-SVM with ri = ∞ for unlabeled data and ε = 0
is equivalent to separating the unlabeled data into two sets, U±∞

and U0, where data in U± fall on or outside of the margin gap and
data in U0 lie in the decision hyperplane, and corresponding to one
of the following two cases: (1) When |U0| ≥ 2, and it corresponds
to training a general S3VM on the training data projected onto the
orthogonal complement of the span {φ(xi) − φ(xj), xi, xj ∈ U0};
or (2)When |U0| = 0, or 1, it corresponds to training a general S3VM,
which guarantees at most one unlabeled data falling on the decision
hyperplane, while keeping all other unlabeled data falling on or out of
the margin gap.

Proof. If we set ri = ∞ for U data, then the min term, or the
fourth term in Eq. (4)will vanish. By considering ε = 0, the optimal
solutions ofw and bwill satisfy one of the following conditions:

|w⊤φ(xj) + b| ≥ 1, or (6)

w⊤φ(xj) + b = 0. (7)
The above two conditions indicate that the unlabeled data
consist of two sets of data, U± and U0. That is, those unlabeled
data satisfying the condition of (6). Geometrically, they fall on or
outside of themargin gap, are relevant data, denoted byU±; while
those unlabeled data satisfying the condition of (7). Geometrically,
they fall on the decision hyperplane, are irrelevant data, denoted
by U0 .

It is noted that the condition of (7) can determine the subspace
of the decision function when the number of data in U0 is greater
than one. Hence, when |U0| ≥ 2, we can select any two points
xi and xj from U0. Subtracting the decision function values of
these two points, we have w⊤(φ(xi) − φ(xj)) = 0. Hence, we
conclude that w is orthogonal to the span {φ(xi) − φ(xj), xi, xj ∈

U0}. To see this, we define PU⊥
0

as an orthogonal project on the
orthogonal complement of the mapped set U0. Hence, we have
P⊤

U⊥
0

= PU⊥
0
. Further, we know the optimal w satisfies w = PU⊥

0
w

and w⊤φ(xi) = w⊤P⊤

U⊥
0
φ(xi) = w⊤PU⊥

0
φ(xi). This implies that

the optimization problem in Eq. (4) is the same as an S3VM on
all labeled data and data from U±1 transformed by PU⊥

0
φ(xi). This

completes the proof of first case.
Second, if |U0| = 0, or 1, it leads to the result of case (2)

in the above theorem. Here, a general S3VM means that it is a
generalization of the S3VM and the U-SVM. �

The optimal 3C-SVM is to find the most suitable subspace to
maximize the margin, while minimizing the overall empirical risk.
Theorem 1 clearly shows that the irrelevant data can help 3C-SVM
to find the subspace.

4. Solution and computation

In the following, we focus on how to solve 3C-SVM efficiently.
A very difficult issue is how to tackle the min term.

4.1. Elimination of min terms

To remove the min term, we follow the idea of L1-norm S3VM
(Bennett & Demiriz, 1998) and introduce decision variables, dk ∈

{0, 1}, k = 1, . . . ,U , to separate the min term. That is, we obtain

ℓmin(x) = Q1 + Q2,

Q1 := H1(|fϑ(xi)| + D(1 − dk)),
Q2 := Iε(|fϑ(xi)| − Ddk),

where D > 0 is a suitable constant making Q1 = 0 when dk = 0
and Q2 = 0 when dk = 1. That means, when dk = 0, the error is
calculated from Q2 and the unlabeled data are deemed as 0-class
and its error is measured by the ε-insensitive loss function; when
dk = 1, the error is incurred by Q1 and the unlabeled data are
classified as one of the ±1-class, where its error is measured by
the symmetrical hinge loss function.

Therefore, a mixed integer programming (MIP) problem can be
obtained as follows:

min
ϑ,d

λ

2
∥w∥

2
+


xi∈L±1

riH1(yifϑ(xi)) +


xi∈L0

riIε(fϑ(xi))

+


xk+L∈U

rk+LH1(|fϑ(xi)| + D(1 − dk))

+


xk+L∈U

rk+LIε(|fϑ(xi)| − Ddk). (8)

Remark 1. In the literature, various software packages, e.g., CPLEX,
have been built to solve standard MIP problems. One solution
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to solve the MIP problem in Eq. (8) is to adopt these packages.
However, the computational complexity is very high for solving
MIP problems. It is even hard to handle an optimization problem
with over 50 0/1 integer variables.

Remark 2. One straightforward relaxation is to relax the decision
variables from {0, 1} to the range of [0, 1]. We know that the usage
of the decision variables is to make the min loss function count
by Q1 or by Q2. Hence, with a suitable constant D, relaxing the
decision variableswill not affect the performance significantly. Our
sensitivity analysis in Fig. 7 verifies this claim.

4.2. Semi-definite programming transformation

One way to solve the minimization problem in Eq. (8) is to
deem it as a transductive learning problem, which focuses on
determining the label of the unlabeled data. As the labels in our
3C-SVM can be −1, 0, +1, this also introduces another difficult
mixed integer programming problem. One typical solution is the
SDP relaxation (Valizadegan & Jin, 2006). Following the standard
SDP relaxation, we can derive the following theorem:

Theorem 2. The optimization of (8) can be relaxed and transformed
into the following semi-definite programming problem:

min
M,d,ν,δ,t

t (9)

s.t.

P a + ν − B⊤δ

(a + ν − B⊤δ)⊤ t − 2δ⊤C


≽ 0,

0 ≤ dj ≤ 1, j = 1, . . . ,U,

rank(M) = 1, M1:L,1:L = y1:Ly⊤

1:L,
0N ≤ diag(M) ≤ 1N ,

where a matrix A ≽ 0 means that A is a semi-definite matrix, P is
defined as

P =

K ◦ M diag(y)K1:N,L:N −diag(y)K1:N,L:N

K⊤

1:N,L:Ndiag(y) KL+1:N,L+1:N −KL+1:N,L+1:N

−K⊤

1:N,L:Ndiag(y) −KL+1:N,L+1:N KL+1:N,L+1:N

 ,

B =


IN×N , 0N×2U
0U×N , QU×2U


, QU×2U = [IU×U , IU×U ], C = r/λ ∈ RL+2U ,

a = [1L; 1U − D(1 − d); −Dd; −Dd], and N = L + U.

The detailed derivation can be referred to Huang et al. (2008). The
following are some remarks:

• The rank-one matrix M is an approximation of (yy⊤), where
we force the corresponding values for the labeled indices are
known, i.e., M1:L,1:L = y1:Ly⊤

1:L. Moreover, due to the rank-one
assumption, the diagonal matrix diag(y) can be represented by
the elements ofM. That is, diag(y) = diag(M11,M12, . . . ,M1N).

• We can follow the optimization methods in SSL (Valizadegan
& Jin, 2006; Xu, Jin, Zhu, King, & Lyu, 2007) to further remove
the rank-one constraint and obtain the above minimization
problem as an exact SDP problem.

• This SDP problem in Eq. (9) can be solved in polynomial time by
somepackages, e.g., Sedumi (Sturm, 1999). The time complexity
of the above SDP problem is bounded byO((L+U2)2(L+U)2.5),
which yields the same time complexity as that of the relaxed
transductive SVM by SDP implementation (Bie & Cristianini,
2003).

4.3. Concave–convex procedure (CCCP)

Considering 3C-SVM as transductive learning and solving it by
SDP relaxation is still very time consuming. In the following, we
will view 3C-SVM as semi-supervised learning and deploy the
concave–convex procedure to seek the corresponding inductive
rule in a more efficient way.

Absolute operator elimination. Another difficult issue on
minimizing Eq. (8) is that it contains the absolute operators in
the symmetrical hinge loss function and the ε-insensitive loss
function. We first observe that the loss function in Q1 is a shifted
symmetrical hinge loss function and can be abstracted as follows:

Q1 : H1(|u| + a) = max{0, 1 − |u| − a} = H1−a(|u|). (10)

To remove the above absolute operator, we adopt the ramp
loss (Collobert et al., 2006; Wang, Shen, & Pan, 2009) to get the
following approximation:

H1(|u| + a) ≈ H1−a(u) − Hκ(u) + H1−a(−u) − Hκ(−u). (11)

In the above, Hs(u) = max{0, s − u}. Hence, we can calculate
H1−a(u) = max{0, 1 − a − u} and Hκ(u) = max{0, κ − u}. This
transformation yields the computation ofQ1 to a summation of two
symmetrical losses.

The loss function in Q2 is a shifted ε-insensitive loss function
and can be transformed to another symmetrical loss directly as
follows:

Q2 : Iε(|u| − a) = H−ε−a(−u) + H−ε−a(u). (12)

Since the losses calculated by Eqs. (11) and (12) are both
symmetrical, we can introduce new paired-data for the unlabeled
data as in Collobert et al. (2006) to simplify the calculation. The
new paired-data are defined as follows:

xkL = xk+L, ykL = 1, (13)
xkLU = xk+L, ykLU = −1, k = 1, . . . ,U . (14)

Similarly, if there is labeled data coming from 0-class, we have
to use ε-insensitive loss function to calculate their risks. We
introduce new paired data for these data as follows:

x−i = xi, yi = −1, i = 1, . . . , |L0|, (15)
xi = xi, yi = 1, i = 1, . . . , |L0|. (16)

It is noted that for simplicity, we have overloaded the notations a
little and extended them to negative indices, where the index −i
indicates the index shifting advance from the 0-index. When there
is no L0 data, i.e., |L0| = 0, we do not introduce new paired data.

CCCP. Since we introduce the parameter κ for the loss in Q1, we
redefine the problem in Eq. (8) asQ κ(ϑ, d) and separate it into two
terms, a convex term and a concave term. That is

Q (ϑ, d) , Q κ(ϑ, d) = Qvex(ϑ, d) + Q κ
cav(ϑ), (17)

where

Qvex(ϑ, d) =
λ

2
∥w∥

2
+


xi∈L±1

riH1(yifϑ(xi)) +


xi∈L0

riIε(fϑ(xi))

+

U
k=1

rk+LH1−D(1−dk)(yk+Lfϑ(xk+L))

+

U
k=1

rk+LH1−D(1−dk)(yk+LU fϑ(xk+LU))

+

U
k=1

rk+LH−ε−Ddk(yk+Lfϑ(xk+L))

+

U
k=1

rk+LH−ε−Ddk(yk+LU fϑ(xk+LU)),

and

Q κ
cav(ϑ) = −

L+2U
j=L+1

rjHκ(yjfϑ(xj)).
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It is easily verified that Qvex is a convex function and Q κ
cav is

a concave function. Hence, the optimization of Q κ(ϑ, d) is the
difference of convex functions. The concave–convex procedure
(CCCP) (Yuille & Rangarajan, 2003) is an efficient tool to solve this
kind of problems and has been applied in large scale transductive
SVMs (Collobert et al., 2006) and SVMs on datawithmissing values
(Smola, Vishwanathan, & Hofmann, 2005).

The idea of CCCP is to use the first order Taylor expansion to
approximate the concave term and to solve a sequence of problems
until it converges. In Eq. (17), the concave term is Q κ

cav. Since there
is only the variable ϑ in Q κ

cav, we only need to apply the first order
Taylor expansion of Q κ

cav on ϑt . Hence, we can seek the optimal
variables by solving a sequence of the following optimization
problems:

min
ϑ,d


Qvex(ϑ, d) +

∂Q κ
cav(ϑ

t)

∂ϑ
· ϑ


. (18)

The above optimization is a mixed integer optimization problem
since d is an integer vector. Here, we adopt a standard routine
to solve the integer programming problem (Wolsey, 1998): by
(1) relaxing the integer variable to a real variable, then solving
the whole optimization together; (2) rounding the corresponding
variable to get its integer solution.

For 3C-SVM in Eq. (18), we relax the decision variable dk from
{0, 1} to [0, 1] and solve the optimization problem in Eq. (18)
first. We then determine the value of dk by its definition, the error
incurred is less when the data are assigned to the associated class,
as follows:

dk =


1 if ξk ≤ ξ ∗

k
0 otherwise, (19)

where ξk = H1(|fϑ(xkL)|) and ξ ∗

k = Iε(|fϑ(xkL)|), k = 1, . . . ,U .
To simplify the first order approximation of the concave term

in Eq. (18), we define

µk+s = yk+s

∂Q κ
cav(ϑ)

∂ fϑ(xk+s)
=


rk+s if yk+sfϑ(xk+s) < κ
0 otherwise, (20)

for those unlabeled samples xk+s with dk = 1,where k = 1, . . . ,U ,
and s is L or L + U . Hence, the first order Taylor expansion of the
concave term is then expressed as

∂Q κ
cav(ϑ

t)

∂ϑ
· ϑ =

L+2U
j=L+1

µjyjfϑ(xj).

The following theorem summarizes the final result of solving
the relaxed optimization in Eq. (18):

Theorem 3. The dual problem of the relaxed optimization problem in
Eq. (18) is a Quadratic Programming (QP) problem as follows:

max
α,α∗

−
1
2λ

[α; α∗
]
⊤�[α; α∗

] + ϱ⊤
[α; α∗

] (21)

s.t. 0 ≤ α, α∗
≤ r,

Ae

α; α∗


= µ⊤Y•2U ,

A[α; α∗
] ≤ 0,

where the Lagrangian multipliers [α; α∗
] consist of an |L0|+L+4U-

dimensional vector. The matrix � on the quadratic term is defined as
� =


3I,I 3I,IU
3IU,I 3IU,IU


, and the coefficient for the linear term is

ϱ =
1
λ


3I,IU
3IU,IU


µ +

 −ε12|L0|

1L−|L0|

(1 − D)12U
−ε12U

 .
Here, the index I represents the indexes of all data from −|L0| to
L + 2U and IU represents all indexes for unlabeled data from L+ 1 to
L+2U.Ae = [Y; Y•2U ] andA =


0U,L, −IU , −IU , IU , IU


,Y is a vector

consisting of the labels of all training data including the expanding
auxiliary labels, and Y•2U denotes the last 2U-element in Y.

The above theorem can be derived based on the standard
Lagrangian multiplier method, where Eq. (21) corresponds to the
dual form of the optimization on Eq. (18). Detailed derivative is
given in the Appendix.

After solving the QP problem in Eq. (21), we obtainw as a linear
combination of the dual variables, α and α∗,

w =
1
λ


L+2U

i=−|L0|,i≠0

αiyiφ(xi) +

L+2U
i=L+1

(α∗

i − µi)yiφ(xi)


, (22)

and the variable b corresponds to the dual variable of the equality
constraint. It is noted that those labeled data xi’s with non-zero αi
values and unlabeled data xj’s with non-zero (αj +α∗

j −µj) values
are support vectors. An illustration is shown in Fig. 4(b). These
support vectors play the role of controlling the decision function.

Algorithm 1 is guaranteed to be converged in a finite number of
steps. The following theorem claims this statement:

Theorem 4. The Algorithm 1 converges in a finite number of
iterations.

Proof. First, we prove that the objective Q κ decreases in each
iteration. From the CCCP, we have

Qvex(ϑ
t+1, d) + ∂Q κ

cav(ϑ
t) · ϑt+1

≤ Qvex(ϑ
t , d) + ∂Q κ

cav(ϑ
t) · ϑt (23)

Q κ
cav(ϑ

t+1) ≤ Q κ
cav(ϑ

t) + ∂Q κ
cav(ϑ

t) · (ϑt+1
− ϑt), (24)

where ∂Q κ
cav defines the partial derivative of Q κ

cav with respect to
ϑ. Hence, summing (23) and (24) together, we get Q κ(ϑt+1, d) ≤

Q κ(ϑt , d) for the same d.
After rounding, the objective value Q κ is Q κ(ϑt+1, dt+1). It may

be greater than Q κ(ϑt , dt). In order to avoid this case, we restore
dt+1 to dt and seek ϑt+1 again by minimizing Q κ with fixed d. This
additional step guarantees to decrease the objective of Q κ at each
step.

Second, the variable µ can only take a finite number of
distinct values. The algorithm converges in several steps since Q κ

decreases in each iteration and the inequality (24) is strict unless
µ remains unchanged. �

Remark 3. Although the optimization of 3C-SVM is non-convex,
which yields the local optimal problem, we have alleviated it by
appropriate initialization and rounding recovery. Our empirical
test shows that our 3C-SVM works well on this initialization and
at each iteration, whereQ κ(ϑt , dt) actually decreases in each step;
see the convergence results in Fig. 5.

Complexity analysis. Practically, the number of QP sequences
in Algorithm 1 is a constant, usually less than 10; see Fig. 5 for
a trial result. Hence, training a 3C-SVM is equivalent to solving a
constant number of QP problems with |L0| + L + 4U variables.
Therefore, the 3C-SVM algorithm yields a worst case complexity
of O((|L0| + L + 4U)3) (Goldfarb & Liu, 1991; Schölkopf & Smola,
2002). Possible tricksmay be applied to speed up the 3C-SVM algo-
rithm in a quadratic scale (Collobert et al., 2006; Schölkopf& Smola,
2002). Furthermore, by exploring the sparsity structure among the
dual variables, we can reduce the number of variables to the num-
ber of non-zero variables. This can reduce the computation cost of
3C-SVM largely.
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Fig. 5. The left part shows the concave–convex procedure for 3C-SVMs. The right part shows the convergence of algorithms (objective values/test errors vs. # of iterations)
during the CCCP iterations of training 3C-SVM on two toy datasets (single trial).
4.4. Balance constraint

Usually, balance constraint is required in semi-supervised sup-
port vector machine (Joachims, 1999). Although our formulation
of 3C-SVM in Eq. (4) does not include the balance constraint on the
unlabeled data, in the following section, we show that balance con-
straint can be easily incorporated in our formulation.

The balance constraint is based on the following two observa-
tions: First, data from U±1 require a balance constraint (Vapnik &
Kotz, 2006). Second, data from U0 do not require a balance con-
straint since U0 data approach to the decision hyperplane. That
is, their function values are close to zero. Hence, summarizing the
function values of all unlabeled data, we can obtain the same bal-
ance constraint as (Collobert et al., 2006),

1
U

L+U
t=L+1

fϑ(xt) ≈
1
L

L
i=1

yi. (25)

The balance constraint is a linear constraint. One dual variable
can be introduced to the optimization problem of Eq. (18), which
can easily be transformed into the kernel form of Eq. (21) as in
Collobert et al. (2006).

It is noted that the summation of yi will alter the effect of the
balance constraint in Eq. (25). In practical, we find that the balance
constraint is insensitive to the model performance since the U0
data may have played the role of controlling the optimal subspace
of the decision function partially. To attain a better performance,
one possible solution is to introduce a constant η and to transform
the balance constraint as 1

U

L+U
t=L+1 fϑ(xt) = η, which is related to

the portion of the number of the unlabeled data assigning to the
positive class (Chapelle et al., 2006). However, this will introduce
a hyperparameter, which increases the difficulty of parameters
tuning.

5. Experiments

In this section, we conduct empirical evaluation to show the
performance of our proposed 3C-SVM algorithm on both synthetic
and real-world datasets. Our 3C-SVMalgorithm1 is implemented in
Matlab 7.3 and the QP problem is solved by a general optimization
toolbox, MOSEK.2 The codes are run on a PC with Intel Quad CPU
Q9650@3.00 GHz and 8.00G RAM.

5.1. Synthetic datasets

We first test how 3C-SVM performs comparing with its three
specific cases: SVM (Vapnik, 1999), S3VM (Collobert et al., 2006),
and U-SVM (Weston et al., 2006). To control the setting, we
evaluate on two synthetic datasets, which are generated similar to
the setup in Sinz et al. (2008).

Data generation. The synthetic datasets consist of
50-dimensional data from ±1-class and two different kinds of U0
data. The ±1-class is the same for both synthetic datasets, follow-
ing the generation scheme in Sinz et al. (2008), where the means
are c±

i = ±0.3 for i = 1, . . . , 50 and variance values are σ 2
1,2 =

0.08 and σ 2
3,...,50 = 10. This setting generates two Gaussians with

the Bayes risk being approximately 5%. Two kinds of U0 data are
generated as follows:

• TheU0 data of the first synthetic data contain a zeromeanwith
σ 2
1,2 = 0.1 and σ 2

3,...,50 = 10. It is noted that U0 data contain
larger variances on the first two dimensions of the data than
those of the ±1-class data, but the optimal Bayesian decision
hyperplane passes through the origin, the center of theU0 data.

• In the second synthetic dataset, the variance values are the
sameas the±1-class data, but themean is t

2 ·(c
+
−c−) (t = 0.5),

shifted a little bit from the origin, i.e., a little bias from the
Bayesian optimal classifier.

As reported in Table 3, we test the number of labeled data from
{20, 50, 200, 500} and vary the proportion of the mixed unlabeled
data by (τU, (1− τ)U), where τU data are randomly chosen from

1 Our 3C-SVM toolbox can be downloaded in https://www.dropbox.com/s/
9u8emz00a70b3ga/demo_3CSVM.rar?dl=0.
2 http://www.mosek.com.

https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
https://www.dropbox.com/s/9u8emz00a70b3ga/demo_3CSVM.rar?dl=0
http://www.mosek.com
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Fig. 6. The performance of four algorithms on toy datasets with different combinations of mixed unlabeled data. 3C-SVMs consistently achieve the best results over all other
models. Results marked by circles indicate 3C-SVMs outperform the corresponding models with 95% significant level on paired t-test.
Table 3
Data description.

Dataset d L U U0

Synthetic 50 20, 50 500 Two designed cases200, 500

USPS 256 10 {102, 103
} Except ‘‘5’’ and ‘‘8’’

MNIST 784 10 {102, 103
} Except ‘‘5’’ and ‘‘8’’

±1-class and (1 − τ)U data are randomly chosen from U0 data.
τ is tested in {0.1, 0.5, 0.9}. We then evaluate the performance of
the model on a separated test data with 500 data samples.

Comparison. Since the optimal decision hyperplane is linear for
both synthetic datasets, we employ the linear kernel in fitting the
data, and tune the hyperparameters of all the compared models
on separated validation sets. The detailed tuning procedure is as
follows:

• For SVM, we tune the soft-margin hyperparameter C ∈

10[−1:1:3].
• For S3VM, we apply the grid search to tune the soft-

margin hyperparameter C for labeled data and the trade-off
hyperparameterCU for unlabeled data,whereC ∈ 10[−1:1:3] and
CU ∈ 10[−1:1:2]. The approximate parameter κ for the ramp loss
is searched in {0.01, 0.1, 0.2, 0.5}.

• For U-SVM, C and CU are tuned by the grid search in the same
range of S3VM, while the parameter ε for the ε-insensitive loss
function is tuned in {0.01, 0.1, 0.2, 0.5, 0.8, 1}.

• For 3C-SVM, the corresponding hyperparameters include the
regularized parameter λ, the trade-off parameter r for labeled
and unlabeled data, and the parameters for the relaxedmin loss
function, D, ε, and κ . Practically, as λ = 1/C , we set ri = 1 for
the labeled data and rj = CU/C for the unlabeled data. Hence,
we first fix D to 2, ε to 0.01, and κ to 0.01. We then tune C and
CU by the grid search, where the search range of CU is the same
as S3VM and the search range is three successive values of the
optimal C found in SVM. For example, if C = 10 is the best
regularization parameter for SVM, we tune C from {1, 10, 100}.
After finding the best C and CU , we tune D, ε, and κ one by one,
where D is tested in {1, 2, 5, 10}, ε is tested in the same range
of U-SVM, and κ is tested in the same range in S3VM.

After obtaining the best hyperparameters for the corresponding
compared models, we perform 10-fold cross validation on the
generated datasets. Fig. 6 reports the average performance on
the two synthetic datasets and three different settings for
the unlabeled data. From the results, we have the following
observations:

• 3C-SVM consistently attains the best results among four
compared models. More importantly, 3C-SVM achieves 64
significantly better results among all 72 compared cases.

• For U-SVM, the performance decreases as the number of U0
data decreases. This indicates that theU0 data actually can help
to seek the optimal decision hyperplane. However, when the
number of labeled data is large, U-SVM cannot even beat SVM.
This indicates that the ‘‘unclean’’ universum data really hurt the
performance of U-SVM.

• For S3VM, the performance is much worse than that of U-SVM
and 3C-SVM. It is even worse than SVM when the number of
labeled data is small, e.g., L = 100. These results clearly show
that without properly selecting the unlabeled data, S3VM is
easily polluted by the ‘‘unclean’’ unlabeled data.

5.2. Real-world handwritten digit datasets

We conduct empirical evaluation on two popular benchmark
handwritten digit datasets, the USPS dataset and the MNIST
dataset, which have been frequently employed in evaluating the
performance of semi-supervised classifiers (Collobert et al., 2006;
Schölkopf & Smola, 2002). Here, the objective is to get a more
complete comparison of our proposed 3C-SVM with the three
related maximum margin based models and two more state-
of-the-art semi-supervised classifiers: Laplacian Support Vector
Machines (LapSVMs) (Belkin et al., 2006; Melacci & Belkin,
2011) and Semi-supervised Extreme LearningMachines (SS-ELMs)
(Huang et al., 2014; Iosifidis et al., 2014).

Data description. As described in Table 3, each image in USPS
was normalized and centered with the size of 16 × 16, which
forms 256-dimensional data. This dataset contains 9298 grayscale
handwritten digit images, 7291 of which are used as the training
set, while the remaining 2007 are used as the test set. The MNIST
dataset consists of a training set of 60,000 digits and a test set
of 10,000 digits. The digits are grayscale handwritten images
normalized and centered in 28× 28, which form 784-dimensional
data.We have normalized each pixel value in an image to the range
of −1 and 1.

Similar to the setup in Sinz et al. (2008) andWeston et al. (2006),
we employ digits ‘‘5’’ and ‘‘8’’ to construct the ±1-class data, but
differently, we utilize all other digits as 0-class. In the evaluation,
we test the number of labeled data in 10 and the number of
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Fig. 7. Effect of hyperparameters for 3C-SVM on the validation sets of two handwritten digit datasets, see text for more details.
unlabeled data is 100 and 1000, respectively, while the proportion
of the mixed unlabeled data is set as (τU, (1 − τ)U), where τU
data are randomly chosen fromdigits ‘‘5’’ and ‘‘8’’ and (1−τ)U data
are randomly chosen fromother digits. τ is tested in {0.1, 0.5, 0.9}.
The performance of themodels is evaluated on the test set of digits
‘‘5’’ and ‘‘8’’.

Comparison. Since the data are linearly nonseparable in the
original feature space and the RBF kernel is adopted (Schölkopf
& Smola, 2002), we employ it in all models except SS-ELMs. The
RBF kernel function, K(x, y) = exp(−γ ∥x − y∥2) introduces a
new parameter, γ , the width of the RBF kernel. We follow the
same tuning procedure as outlined in the synthetic datasets to tune
the hyperparameters for all models on separate validation sets. By
adopting the RBF kernel, we have to tune the kernel width. The
tuning procedure is as follows:

• For SVM, C and γ are tuned by grid search. Here C is selected
from the same set as that in synthetic datasets. Following
suggestion in Schölkopf and Smola (2002), γ is set to δ ×

1
d ,

where d is the number of data dimension, i.e., 256 for USPS and
784 for MNIST. δ is searched from {

1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1, 2, 4, 8}.

• ForU-SVM,we first fix ε to 0.01 C .We then tune C , CU, and γ by
grid search. The ranges of C and CU are the same as those in the
synthetic datasets. γ is tested the same range as that in SVM.
After that, we further tune ε in {0.01, 0.1, 0.2, 0.5, 0.8, 1}.

• For S3VM, C , CU, and γ are tested in the same range as those in
U-SVM. κ is tested in {0.01, 0.1, 0.2, 0.5}.

• For LapSVM, the corresponding regularized parameters, γA and
γI , are equivalent to the reciprocal of C and CU. Hence we tune
them in the same range of C in SVM and CU in U-SVM. γ is
tested in the same range as that in SVM.

• For SS-ELM, the corresponding regularized parameters are C
and λ that are the same as γA and γI in LapSVM. Since the
random map of the Sigmoid function can obtain a better
performance than the Gaussian function, we adopt the Sigmoid
function in the test. The number of randommaps is set to 2000
as suggested in Huang et al. (2014).

• For 3C-SVM, the tuning hyperparameters include C , CU, γ , D, ε,
and κ . To relieve the hyperparameters tuning,we first setD to 2,
κ to 0.01, ε to 0.01 and the kernel width γ to be the optimal one
found by SVM. We then tune C and CU as the same procedure
in synthetic datasets. After that, we further tune γ , D, ε, and κ

one by one, where the range of γ is five consecutive values of
the best γ found in SVM and the tuning range of D, ε, and κ is
the same as the above for the corresponding parameters. We
present more details in Section 5.3.

Table 4 reports the average (10 runs) accuracies of the six
competing algorithms on the two handwritten digit datasets.
3C-SVM consistently attains better results in nearly all cases.
By examining the details of the results, we have the following
observations:

• For SVM, we observe that by appropriately tuning the
hyperparameters, SVM can also achieve satisfactory results that
are evenbetter than thosemodels polluted by ‘‘unclean’’ labeled
data, e.g., LapSVM when τ = 0.1 for the USPS dataset and
S3VM when U = 1000 for both handwritten datasets.

• For S3VM, it is observed that this algorithm is very sensitive
to the unlabeled data. When the number of unlabeled
data increases from 100 to 1000, its performance decreases
significantly when τ is 0.5 and 0.9. The mixed unlabeled data
really hurt the performance of S3VM.

• For U-SVM, the performance reveals difference characteristics
for these two handwritten datasets. For USPS, the performance
of U-SVM decreases slightly as the number of U0 data
decreases, while the performance decreases significantly and
is even worse than SVM when the number of unlabeled data
increases. For MNIST, the performance of U-SVM is relatively
stable and is better than SVM. The results show that U0 data
can help improve the performance of U-SVM, but the mixed
unlabeled data can also hurt the model performance.

• For LapSVM, the performance increases as the number of
unlabeled data increases for both datasets. It implies that the
graph Laplacian can capture more information when there are
more unlabeled data.

• For SS-ELM, the performance follows a similar pattern to
LapSVM. This may be due to the advantage of graph Laplacian
in capturing the local structure of the data. By appropriately
selecting the random mapping, SS-ELM can attain relative
stable performance for both models with different number of
unlabeled data.
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Table 4
The average (10 runs) accuracies (%) of SVM, S3VM, U-SVM, LapSVM, SS-ELM, and 3C-SVM on the USPS and the MNIST
(‘‘5’’ vs. ‘‘8’’) datasets for different combinations of mixed unlabeled data. The best accuracy is denoted in bold. The
p-values of paired t-test on 3C-SVMs against other algorithms are given in brackets. Significant improvement with 95%
confidence level and the best accuracy are in bold.

Dataset Setting Algorithm τ = 0.1 τ = 0.5 τ = 0.9

USPS

SVM 85.6 ± 5.5 (0.8) 85.6 ± 5.5 (2.4) 85.6 ± 5.5 (0.4)
S3VM 87.6 ± 4.2 (7.1) 87.6 ± 4.2 (8.8) 87.6 ± 4.2 (7.6)

L = 10 U-SVM 89.0 ± 2.9 (34.3) 88.2 ± 3.0 (2.7) 87.4 ± 3.5 (1.7)
U = 100 LapSVM 83.7 ± 6.2 (1.0) 85.1 ± 5.8 (2.2) 85.6 ± 6.1 (1.2)

SS-ELM 87.8 ± 3.4 (5.0) 88.4 ± 3.0 (47.7) 88.1 ± 2.2 (15.6)
3C-SVM 89.3 ± 2.6 88.8 ± 3.0 89.1 ± 3.7

USPS

SVM 85.6 ± 5.5 (2.0) 85.6 ± 5.5 (7.2) 85.6 ± 5.5 (9.0)
S3VM 84.0 ± 10.2 (1.4) 76.8 ± 18.7 (2.8) 76.0 ± 20.2 (4.7)

L = 10 U-SVM 86.1 ± 3.4 (2.1) 83.4 ± 3.3 (0.0) 78.3 ± 4.0 (0.0)
U = 1000 LapSVM 85.3 ± 6.4 (3.6) 85.6 ± 6.1 (4.2) 85.5 ± 6.3 (15.1)

SS-ELM 86.6 ± 3.4 (1.1) 86.9 ± 2.5 (8.6) 86.1 ± 3.4 (74.1)
3C-SVM 88.6 ± 2.8 87.6 ± 3.2 86.4 ± 3.7

MNIST

SVM 68.7 ± 13.5 (1.5) 68.7 ± 13.5 (1.3) 68.7 ± 13.5 (1.0)
S3VM 69.4 ± 11.6 (4.7) 69.1 ± 12.0 (4.5) 68.5 ± 12.5 (1.8)

L = 10 U-SVM 68.8 ± 13.5 (2.0) 68.8 ± 13.5 (2.6) 68.8 ± 13.5 (2.4)
U = 100 LapSVM 63.7 ± 10.7 (0.3) 65.1 ± 11.4 (0.8) 65.9 ± 11.5 (1.6)

SS-ELM 72.2 ± 9.5 (15.6) 71.6 ± 9.2 (0.3) 71.7 ± 9.6 (4.9)
3C-SVM 73.0 ± 9.5 72.9 ± 9.3 73.0 ± 9.3

MNIST

SVM 68.7 ± 13.5 (2.0) 68.7 ± 13.5 (2.6) 68.7 ± 13.5 (3.9)
S3VM 68.0 ± 4.1 (1.2) 58.2 ± 2.2 (0.0) 56.6 ± 1.6 (0.0)

L = 10 U-SVM 72.0 ± 9.6 (17.2) 72.5 ± 9.3 (24.8) 72.7 ± 9.2 (36.8)
U = 1000 LapSVM 65.0 ± 10.7 (1.0) 66.3 ± 10.8 (2.6) 66.9 ± 11.6 (4.9)

SS-ELM 72.7 ± 9.7 (27.0) 72.8 ± 9.4 (35.6) 72.8 ± 9.3 (49.3)
3C-SVM 73.5 ± 8.8 73.5 ± 8.6 73.5 ± 8.3
• For 3C-SVM, it attains the best results among all compared
cases. Especially, it significantly outperforms SVM and S3VM at
90% significance level, while outperforms LapSVM at 95%
significance level. It is also significantly better than U-SVM for
8 cases and SS-ELM for 4 cases among all 12 compared cases.
Overall, the performance of 3C-SVM is relatively stable with
respect to different τ .

5.3. Sensitivity analysis

Here,we conduct sensitivity analysis on thehyperparameters of
3C-SVM for U = 100 with the validation sets of both handwritten
digit datasets. For U = 1000, the analysis is similar. As the best
kernel width γ is 1

d ×
1
4 in SVM, we fix γ to that value and set

other parameters for the min loss function as default, i.e., D = 2,
ε = 0.01, and κ = 0.01. We then tune C and CU by the grid
search in the range of {1, 10, 100} and {0.1, 1, 10}, respectively.
After that, we tune γ in 1

d × {
1
16 ,

1
8 ,

1
4 ,

1
2 , 1}, five consecutive

values of the best γ in SVM. Next, we tune D in {1, 2, 5, 10}, ε in
{0, 0.01, 0.1, 0.2, 0.5, 0.8, 1.0}, andκ in {0.01, 0.1, 0.2, 0.5}. Fig. 7
shows the performance of 3C-SVM with different hyperparameter
settings when τ = 0.5. From these results, we have the following
observations:

• For the regularized parameters, 3C-SVM achieves the best
performance when C = 10 and CU = 0.1 for both USPS and
MNIST datasets. The regions in Fig. 7(a) and (b) show that the
performance of 3C-SVM becomes more stable and better when
C is large and CU is small.

• For the kernel width of the RBF kernel, 3C-SVM attains the best
performancewhen γ is 1

d ×
1
2 for USPS and γ is 1

d ×
1
4 forMNIST.

The results in Fig. 7(c) show that searching around the best
kernel parameter found by SVM is an efficient way to identify
the best kernel parameter for 3C-SVM.

• For the parameter D, it is observed that the best performance of
3C-SVM is attained when D = 5 for USPS and D = 2 for MNIST.
The results in Fig. 7(d) reveal that when D is relatively large, the
performance is stable.

• For the parameter ε, the best performance of 3C-SVM is
obtained when ε is 0.01 for USPS and 0.1 for MNIST. The
curves in Fig. 7(e) show that when the value of ε increases, the
performance decreases gradually. Finally, the best performance
is obtained when ε is small.

• From results in Fig. 7(f), it is observed that the performance is
insensitive with respect to the parameter κ .

• Overall, we observed that the regularization parameters, C and
CU, and the kernel parameter γ will significantly affect the
performance of 3C-SVM. When the above best parameters are
found, the parameters of D, ε, and κ for the min loss function
can fine-tune the final performance of 3C-SVM.

5.4. Efficiency of 3C-SVM

The convergence of 3C-SVMhas been demonstrated in the right
part of Fig. 5, one trial result of the objective function values and
test errors at each CCCP iteration with different number of labeled
data (L = 20 and L = 200) and fixed number of unlabeled
data (U = 500). The results show that at each CCCP iteration,
both the objective function values and test errors decrease and the
algorithm converges in a constant number of iterations, as shown
in less than 10 iterations.

In the following, we show the efficiency of 3C-SVM by
comparing its implementation of CCCP with the implementation
of SDP (Huang et al., 2008). In the test, we adopt the first kind of
the synthetic data. The number of labeled data from L±1 is set
to 20 and 200, respectively, and the number of unlabeled data is
selected from {20, 50, 100, 200, 500, 1000}. τ equals 0.5, a balance
setting for the unlabeled data. Fig. 8 shows the time cost of 3C-SVM
implemented by CCCP and SDP, respectively, in the log–log scale.
It is shown that 3C-SVM implemented by SDP spends much more
time (over hundreds, or even thousand times slower) than 3C-SVM
implemented by CCCP. It is noted that our 3C-SVM can still be
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Fig. 8. Time cost of 3CSVM on the first synthetic dataset.
improved by controlling the sparsity of the solution and adopting
the warm-start scheme. We leave this work as future work.

6. Conclusion

In this paper, we have proposed a maximum margin semi-
supervised model, named 3C-SVM, to learn from labeled and
mixed unlabeled data. In order to alleviate the effect of mixed
unlabeled data, we build up the formulation based on the logistic
principle and maximum entropy principle. More specifically, we
introduce a new min loss function to distinguish the mixed
unlabeled data into relevant and irrelevant data based on which
error occurring is smallerwhen assigning the data to the associated
class. The irrelevant data can then play the role on seeking the
optimal decision subspace. Moreover, 3C-SVM generalizes several
popular maximum margin classifiers, including SVMs, S3VMs, and
U-SVMs. Furthermore, in implementation, we transform and relax
3C-SVM froman integer programmingproblem to solve a sequence
of QP problems. The approximation by the concave–convex
procedure can speed up themodel significantly and yield the same
worst case time complexity as that of S3VMs. We demonstrate
the effectiveness and efficiency of 3C-SVM through a series of
experiments.

There are some interesting research problems left. One
direction is to extend the model to solve the multi-class semi-
supervised classification problem. The other direction is to design
more efficient scheme for tuning the models’ hyperparameters,
e.g., via Bayesian inference framework. Finally, it is worthy to
explore the sparsity structure of the problem and apply the warm-
start technique to further speed up 3C-SVM.
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Appendix. Proof of Theorem 3

Proof. With all available data, labeled L±1 data (new paired L0
data as in Eqs. (15) and (16)), and new paired unlabeled data as
in Eqs. (13) and (14), we can expand the relaxed optimization
problem Eq. (18) as follows:

min
w,b,ξ,ξ∗,d

λ

2
∥w∥

2
+

L
i=−|L0|,i≠0

riξi +
L+2U
i=L+1

ri(ξi + ξ ∗

i )

+

L+2U
i=L+1

µiyifϑ(xi)

s.t.



yifϑ(xi) + ε + ξi ≥ 0, i = −|L0|, . . . , |L0|, i ≠ 0
yifϑ(xi) − 1 + ξi ≥ 0, i = |L0| + 1, . . . , L,
yk+Lfϑ(xk+L) + D(1 − dk) − 1 + ξk+L ≥ 0,
yk+LU fϑ(xk+LU) + D(1 − dk) − 1 + ξk+LU ≥ 0,
yk+Lfϑ(xk+L) + Ddk + ε + ξ ∗

k+L ≥ 0,
yk+LU fϑ(xk+LU) + Ddk + ε + ξ ∗

k+LU ≥ 0,
ξi ≥ 0, i = −|L0|, . . . , L + 2U, i ≠ 0,
ξ ∗

i ≥ 0, i = L + 1, . . . , L + 2U,
0 ≤ dk ≤ 1, k = 1, . . . ,U .

(26)

This is a standard QP problemwith inequality constraints. Stan-
dard Lagrange multiplier method (Bertsekas, 1999; Boyd & Van-
denberghe, 2004) can be adopted to seek its dual form. Hence, we
construct the corresponding Lagrange function,L(w, b, ξ, ξi, d, α,
α∗, γ, γ∗, p, q), as follows:

L =
λ

2
∥w∥

2
+

L
i=−|L0|,i≠0

riξi +
L+2U
L+1

ri(ξi + ξ ∗

i )

+

L+2U
i=L+1

µiyifϑ(xi) −

|L0|
i=−|L0|,i≠0

αi(yifϑ(xi) + ε + ξi)

−

L
i=|L0|+1

αi(yifϑ(xi) − 1 + ξi)

−

U
k=1

αk+L(yk+Lfϑ(xk+L) + D(1 − dk) − 1 + ξk+L)

−

U
k=1

αk+LU(yk+LU fϑ(xk+LU) + D(1 − dk) − 1 + ξk+LU)

−

U
k=1

α∗

k+L(yk+Lfϑ(xk+L) + Ddk + ε + ξ ∗

k+L)

−

U
k=1

α∗

k+LU(yk+LU fϑ(xk+LU) + Ddk + ε + ξ ∗

k+LU)

−

L+2U
i=−|L0|,i≠0

γiξi −

L+2U
i=L+1

γ ∗

i ξ ∗

i −

U
k=1

pk(1 − dk) −

U
k=1

qkdk.



102 H. Yang et al. / Neural Networks 70 (2015) 90–102
Hence, taking the derivative of L with respect to the primal
variables, setting them to zeros, and utilizing the conditions of
γ ≥ 0 and γ∗

≥ 0, we obtain

w =
1
λ

 L+2U
i=−|L0 |

i≠0

αiyiφ(xi) +

L+2U
i=L+1

(α∗

i − µi)yiφ(xi)

 , (27)

and

L+2U
i=−|L0|,i≠0

αiyi +
L+2U
i=L+1

α∗

i yi =

L+2U
i=L+1

µiyi, (28)

0 ≤ αi ≤ ri, i = −|L0|, . . . , L + 2U, i ≠ 0,
0 ≤ α∗

i ≤ ri, i = L + 1, . . . , L + 2U,

D(αk+L + αk+LU − α∗

k+L − α∗

k+LU) = qk − pk, (29)

where pk, qk ≥ 0, k = 1, . . . ,U .
Hence, minimizing the objective function in Eq. (25) is

equivalent tomaximizing the following objective function (Vapnik,
1999):

max
α,α∗,p,q

−
1
2λ

[α; α∗
]
⊤�[α; α∗

] + ϱ⊤
[α; α∗

] − p⊤d (30)

s.t. (28)–(29), and p ≥ 0, q ≥ 0, (31)

where� and ϱ are defined as in Theorem 3. In Eq. (30), the variable
[α; α∗

] is a vector consisting of an |L0|+L+4U elements. The (i, j)-
element of 3i,j is defined by φ(xi)⊤φ(xj), which can be calculated
by a kernel function.

In the following, we analyze the optimization in Eq. (30) on how
to discard variables p and q. The following are two reasons:

1. Since pk and dk are non-negative, in order to maximize the
objective in Eq. (30), we will get pkdk = 0, for all k. In addition,
from the KKT conditions, we have pk(1−dk) = 0. Summarizing
these two equalities, we obtain pk = 0.

2. After pk vanishes, adding the condition of qk ≥ 0, we can
transform the inequality constraint of Eq. (29) toαk+L+αk+LU −

α∗

k+L − α∗

k+LU ≥ 0, for k = 1, . . . ,U .

Hence, removing the vectors p and q, we can attain the QP
optimization problem in Eq. (21). �
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