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Abstract—A service-oriented System of Systems (SoS) considers a system as a service and constructs a robust and value-added

SoS by outsourcing external component systems through service composition techniques. Online reliability prediction for the

component systems for the purpose of assuring the overall Quality of Service (QoS) is often a major challenge in coping with a loosely

coupled SoS operating under dynamic and uncertain running environments. It is also a prerequisite for guaranteeing runtime QoS of a

SoS through optimal service selection for reliable system construction. We propose a novel online reliability time series prediction

approach for the component systems in a service-oriented SoS. We utilize Probabilistic Graphical Models (PGMs) to yield near-future,

time series predictions. We assess the approach via invocation records collected from widely used real Web services. Experimental

results have confirmed the effectiveness of the approach.

Index Terms—Online reliability prediction, time series, service-oriented computing, system of systems
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1 INTRODUCTION

ASystem of Systems (or SoS) pools individual, possibly
heterogeneous, systems together, to create a new,

value-added, and more complex system [1], [2]. The concept
of SoS and the associated challenges have attracted signifi-
cant attention in recent times [3]. As a relatively new com-
puting paradigm, Service-Oriented Architecture (SOA) has
provided a principled mechanism for constructing a SoS by

dynamically integrating its component systems through ser-
vice composition [4], [5], [6], [7].

A major step in constructing a service-oriented SoS is the
realization of each component system as a Web service via
some popular frameworks (e.g., Jersey1 and Flask2). The
functionality of each component system may be simple or
relatively complex. From the perspective of users, each com-
ponent system can be an atomic or a composite service and
provides one or multiple Web-based invocation interfaces
for SoS integration. The SoS is constructed finally by dynami-
cally integrating differentWeb services bymeans of a service
compositionmethodology based onWeb technologies.

A service-oriented SoS usually operates in complicated
and highly dynamic environments where the component
systems are muchmore loosely coupled than simple in-house
software systems. It is also different from traditional network-
based systems as a set of novel challenges arises in a service-
oriented SoS environment. These include (1) More effective
execution and analysis technologies are needed tomake inde-
pendent and heterogeneous systems working cooperatively
for achieving a common goal; (2) an SoS requires higher capa-
bilities and performance than traditional systems to interact
among themselves; and (3) reliability has become the focus of
an SoS because failures in individual systems within the SoS
may even lead to cascading failures [3]. Hence, the question of
how to guarantee the performance of the constructed system
is of significant importance for a service-oriented SoS.

Proactive Fault Management (or PFM) aims to ensure
runtime quality of systems by failure avoidance and offers
an effective mechanism for enhancing the reliability of a

� H. Wang is with the School of Computer Science and Engineering and
Key Laboratory of Computer Network and Information Integration,
Southeast University, SIPAILOU 2, Nanjing 210096, China.
E-mail: hbw@seu.edu.cn.

� L. Wang is with the School of Computer Science and Engineering and Key
Laboratory of Computer Network and Information Integration, Southeast
University, SIPAILOU 2, Nanjing 210096, China, and with the Depart-
ment of Management Science and Engineering, Nanjing Forestry Univer-
sity, Nanjing, Jiangsu 210037, China. E-mail: leiwang@seu.edu.cn.

� Q. Yu is with the College of Computing and Information Sciences, Roches-
ter Institute of Technology, 102 Lomb Memorial Drive, Rochester, NY
14623-5608. E-mail: qi.yu@rit.edu.

� Z. Zheng is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510275, China, and the Key Laboratory of
Machine Intelligence and Advanced Computing, Sun Yat-sen University,
Ministry of Education, Guangzhou 510275, China.
E-mail: zhzibin@mail.sysu.edu.cn.

� M.R. Lyu is with the Shenzhen Research Institute, and the Department of
Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin HSB 101, Hong Kong, China, and with the School of Computer Sci-
ence, National University of Defence Technology, Hunan 410073, China.
E-mail: lyu@cse.cuhk.edu.hk.

� A. Bouguettaya is with the School of Information Technologies, The
University of Sydney, NSW 2006, Australia.
E-mail: athman.bouguettaya@sydney.edu.au.

Manuscript received 7 Jan. 2014; revised 17 Sept. 2016; accepted 30 Sept.
2016. Date of publication 5 Oct. 2016; date of current version 20 June 2017.
Recommended for acceptance by M. Dwyer.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2615615

1. https://jersey.java.net/
2. http://flask.pocoo.org/

556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 6, JUNE 2017

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 02:54:53 UTC from IEEE Xplore.  Restrictions apply. 



software system [8]. Specially, in the IEEE standard glossary,
reliability is defined as “the ability of a system or component to
perform its required functions under stated conditions for a speci-
fied period of time” [9]. Invariably, while integrating a service-
oriented SoS, each component system has replaceable ones
with similar (or even identical) functionalities. However, the
Quality of Service (QoS) provided by each component sys-
tem can be quite different and vary with time. To achieve
PFM and avoid potential software and hardware failures
and performance anomalies at the level of the SoS, each com-
ponent system needs to be selected optimally while con-
structing the SoS. A key requirement in this regard is the
successful deployment of a sustainable and stable SoS
through optimal service selection. Further, the SoS requires
accurate, real time, online prediction of the reliability of each
invoked component system.

As illustrated in Fig. 1, online reliability prediction seeks
to estimate the component system’s reliability in the “near
future” (i.e., the prediction time period of Dtp) based on cur-
rently observed system execution parameters and historical
records. Dtl is defined as the leading time and starts from t
and endswhen the component system is invoked. The length
of Dtl should be greater than the time required to construct
an optimal composite system. Dtp is the prediction period,
which corresponds to a future invocation time period. Dtd is
the data window time for compiling historic records.

In a service-oriented SoS, the prediction period Dtp for
each invoked component system is determined by the corre-
sponding execution period. However, since the duration of
invocation is usually uncertain, the length of Dtp varies with
one user’s requirement to another.

To deal with the communication link instabilities caused
by the needs of various users, reliability prediction for the
component systems in a service-oriented SoS needs to cap-
ture changes in reliability during a variable prediction
period. Assume that Dtp is long enough for most users’
requirements. The key idea behind reliability prediction
with respect to the component systems is to predict the reli-
ability time series (i.e., the reliability values at multiple con-
tinuously time points) within Dtp. In practice, to avoid
prediction difficulties caused by an overly long prediction
period setting, the length of Dtp should cover most users’
usage habits and should be set in accordance with the par-
ticular application.

To the best of our knowledge, this is the first work on
online reliability time series prediction for the component sys-
tems in a service-oriented SoS. Specifically, the aim is to
meet the following three challenges:

1) The QoS parameters of a component system often
change irregularly over time, which makes it difficult
to identify time-dependent regularities in system
reliability. The patterns of system parameters may
also change with time.

2) Reliability prediction may cover a time interval con-
taining multiple time points (in the form of a time
series). Due to the dynamic nature of QoS parame-
ters, it is difficult to assure high prediction accuracy
over multiple time points in the near future on the
basis of the updated system running state.

3) With the exception of response time, throughput,
and reliability, the performance parameters of a com-
ponent system (e.g., CPU usage, memory usage, and
system load) are usually difficult to measure solely
from client-side evaluations.

None of the existing approaches can systematically
address the above challenges [10], [11]. For example, in col-
laborative filtering (CF)-based Web service reliability pre-
diction (e.g., [12], [13], [14]), the prediction results come
from the user-service failure probability matrix. The failure
probability (which can be used to calculate reliability) is
usually evaluated during the historical time period (i.e.,
data window time in Fig. 1). However, to deal with the com-
plex and dynamic running environment, we still need to
predict the online reliability time series based on the system
parameters during the data window time. Likewise, with
reference to online failure prediction methodologies for tra-
ditional computer systems (i.e., Failure Tracking, Symptom
Monitoring, and Detected Error Reporting) [8], [11], we may
assert the following. First, failure tracking based online fail-
ure prediction captures the time regularities of historic fail-
ures. As for a traditional non-networked computer system,
the system performance may gradually decline during the
execution life cycle. The occurrence time of failures will fol-
low certain statistical rules. However, due to the highly var-
iable QoS caused by uncertain network, service usages, and
internal working states, this is often infeasible for compo-
nent systems in SoS. Second, Symptom Monitoring and
Detected Error Reporting require analyses of the system’s
internal performance parameters or log files. This renders
them inapplicable to a component system of a service-ori-
ented SoS; since the parameter information of remotely
located component systems is usually not available. More-
over, the fact that the running environment of a component
system is typically more dynamic makes the variation regu-
larity of parameters more difficult to be discovered.

In contrast to existing online failure prediction issues,
which focus on predicting system failures (the occurrence
times and types of failures), our work aims to predict the
reliability time series (i.e., the reliability values of multiple
and continuous time points). Not all influencing factors for
the occurrence of system failures and the dynamic changes of reli-
ability time series are the same.

The reliability of the component system is affected often
by several major factors, including (1) the unstable commu-
nication links between the component systems and the client;
(2) the internal working status of the component systems,
such as exceptional memory usage, CPU load, disk I/O, and
unusual function calls; and (3) the loading capacity of the
component systems under the corresponding throughput.

The above three factors significantly affect the response
times and throughputs of the component systems. In partic-
ular, when the three factors of a component system vary,
response time and throughput will change accordingly.
More importantly, parameters such as response time and

Fig. 1. Schematic view of online reliability prediction.
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throughput can be easily obtained via client-side evaluation
of the target component system, which allows one to ana-
lyze a component system’s reliability based on its response
time and throughput.

This paper presents a novel online reliability time series
prediction approach for the component systems in a service-
oriented SoS. The approach serves the purpose of dynamic
component selection for SoS construction by addressing the
key challenges. The major contribution of this paper arises
from the use of Probabilistic Graphical Models (PGMs) for
analyzing historical and the most recent system parameters
(including response time, throughput, and reliability). Rele-
vant historical parameters are preprocessed and divided
into time series of equal length. The concept of motifs is then
adopted to describe the patterns of the historical parameter
time series. First-order Markov chain rules are employed to
capture the causal relationships between different time series
of system parameters. These relationships are represented as
Conditional Probability Tables (CPTs), which are used
together with PGMs to make an online reliability time series
prediction based upon the updated system parameters.
Experiments conducted over real-world Web services have
confirmed the effectiveness of the proposed approach.

The application of PGMs for online reliability time series
prediction was first presented in a shortened form as a confer-
ence paper [15]. In that paper, we presented a comprehensive
framework, referred to as PGMs-RTSOP (or ROP for short),
which exploited PGMs to achieve accurate and robust Reli-
ability Time Series Online Prediction for an SoS. The remain-
der of the present paper is organized as follows. We give an
overview of related works in Section 2. We briefly introduce
background knowledge and basic definitions in Section 3. We
describe the proposed prediction methodology in Section 4.
We present a case study in Section 5 and experimental results
in Section 6. We conclude by identifying some important
future directions in Section 7.

2 RELATED WORKS

In this section, we review previous works that are par-
ticularly relevant to the proposed approach, including
reliability prediction for service-oriented systems and meth-
odologies for online prediction.

2.1 Reliability Prediction

Service selection is a widely investigated topic amongst
researchers studying the integration of distributed services
and the construction of service-oriented systems. The QoS-
MOS framework was proposed to support service selection
for composing a system [16]. The MOSES tool can support
runtime assurance of QoS (which involves reliability as well
as performance) through service selection and coordination
pattern selection mechanisms [17] under the prevailing dis-
tributed, dynamic and complex operating environment [18].

Reliability prediction has become an important issue in
optimal service selection. Personalized reliability prediction
usually utilizes Collaborative Filtering (CF) to predict the
QoS (including reliability) of Web services on the basis of a
limited number of client-side reliability evaluations [10],
[12], [19], [20], [21], [22]. Clustering (CLUS)-based reliability
prediction considers user-, service- and environment-

specific parameters to predict the reliability of an atomic
Web service in a specific time window by means of k-means
clustering [23]. The overall system level reliability can be
computed by aggregating prediction results on the compo-
nent services on the basis of the composition (or workflow)
structure [12], [24]. In such reliability prediction exercises,
the historically average reliability is used to evaluate the
performance of each Web service. The reliability of previ-
ously unknownWeb services is then predicted.

Statistical time series models (e.g., Autoregressive Inte-
grated Moving Average, ARIMA, and novel improved
models) have also been used to predict future QoS and reli-
ability of Web services [25], [26]. Using statistical time series
models, predictions are made on the basis of trend statistics
at the next time series point [27]. Each subsequent predic-
tion depends on the previous predicted result. More nearby
time points will enhance prediction accuracy.

It has been observed that the arrival times of failures in
an atomic Web service follow an Erlangian distribution, i.e.,
the failures depend upon the running states (e.g., idle and
active states) of services [13], [28].

In a highly dynamic execution environment, the QoS of
each service varies with time. Effective service selection
should be able to avoid interruptions during the operation
of service-based applications [29]. Such reliability prediction
has already been used to assure the software runtime qual-
ity [30], [31], [32].

Reliability prediction for a component system selection
for a service-oriented SoS should be able to forecast the reli-
ability during the execution period, if the component sys-
tem has been invoked. Different from most existing works,
this paper investigates an online reliability time series pre-
diction methodology capable of providing some early infor-
mation on future system reliability time series with a view
to supporting more effective component system selection.

2.2 Prediction Methodologies

A variety of online prediction methodologies are available
in literature on traditional computer systems. An example
is Online Failure Prediction that aims to identify whether a
failure will occur in the near future based on an assessment
of the current running state of the system. This has become
an important research issue in view of the increasing mobil-
ity of devices, changing execution environments, frequent
updates and upgrades, online repairs and improvements,
addition and removal of system components, and system/
network complexity. Existing online failure prediction
approaches can be grouped into the three categories [8], [11]
described below.

(1) Failure Tracking based failure prediction aims to make
inferences about upcoming failures by studying the occur-
rence of previous failures as well as the types of failures
that have occurred. Most approaches rely on estimations of
the probability distribution. For example, Bayesian Predic-
tors [33] adopt a Bayesian framework to estimate the proba-
bility of failures on the basis of data related to previous
failure occurrences. The work in [34] assumes that failures
satisfy a Bernoulli experiment and collects statistics on
time-between-failures (TBF) to estimate the probability
P ðftÞ for a failure f that occurs at time t. Co-occurrence is
another approach [35], which analyzes the temporal and

558 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 6, JUNE 2017

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 02:54:53 UTC from IEEE Xplore.  Restrictions apply. 



spatial compression for all events to examine correlations
between different types of failures.

(2) Symptom Monitoring analyzes monitored data to
detect symptoms (i.e., side effects of errors) that point to an
upcoming failure. It can dynamically predict failures
according to the current system state. Typical approaches
for symptom monitoring include Function Approximation,
Classifiers, System Models, and Time Series Analyses. Function
Approximation discovers how historical parameters change
with time and fit a function to predict the future system run-
ning state [36], [37], [38]. Classifiers divide historical parame-
ters into a number of classes and assign the future state to
the most similar class [39], [40], [41], [42], [43]. System Models
model the system’s running state together with failure
occurrence so as to predict future system failures [40], [42],
[44], [45], [46], [47], [48], [49]. Time Series Analyses make pre-
dictions by analyzing the characteristics of the time series
on the basis of the system’s historical system parame-
ters [50], [51], [52], [53].

(3) Detected Error Reporting uses error reports (collected via
some logging mechanism) as input to model chronological
information on failure occurrence, conversion of failure state,
and similarities between failures. Typical technologies
include genetic algorithms [54], [55], Discrete Fourier Trans-
form (DFT) [56], hidden semi-Markov Models (HSMM) [57],
and alliance queue [58]. Rule-based Approaches are
adopted [54], [55] to predict online failures using system log
files. Episode rules (failure rules) are determined using
data mining followed by manual selection. Semi-Markov
chains and HSMM are used to model failure-prone system
states [57]. Other approaches, such as pairwise alignment,
are used to compute similarities between sequences bymeans
of biological sequence analyses [58].

Many existing online failure prediction approaches esti-
mate the probability of failure occurrence by conducting
performance evaluation regularly (e.g., note gradual
declines) of traditional computer systems. To predict the
online reliability time series for component systems in SoS,
most existing approaches perform reliability prediction by
analyzing system running states through observed system
QoS parameters. Different from the traditional computer
system, the QoS of a service-oriented system changes irreg-
ularly. More determinants make the causal relation for eval-
uating complex regularities in the running states of the
system. Although probability-based models can be used to
capture the evaluation regularities, the complex causal rela-
tions for evaluating the running states makes existing online
failure prediction methodologies fall short of being able to
meet new prediction challenges. In this paper, we will com-
bine probability and the complex causal relations based on
probabilistic graphical models to model the evaluation reg-
ularities in the system’s running status and predict the
online reliability time series for the component systems of
service-oriented SoS.

3 PRELIMINARIES

Section 3.1 presents the reifying application to motivate the
discussion of the proposed ROP approach. Section 3.2
briefly overviews the Dynamic Bayesian Networks (DBN)
along with the 2-Time-slice Bayesian Network (or 2-TBN)

which is a cornerstone of the approach being proposed in
this paper. Section 3.3 clarifies the notations and basic defi-
nitions of major concepts used in this paper.

3.1 Reifying Through Application

In this section, we will examine how our ROP approach can
be applied to a service-oriented SoS. First, we present an
example for the application of a service-oriented SoS, a
travel planning system, known as TripPlanner. Second, we
examine how ROP can be applied to the trip planning appli-
cation and support service selection for the service composi-
tion execution engine.

Let us consider a travel planning system, TripPlanner,
which aims to provide services to international travelers. A
service composition execution engine in TripPlanner selects
optimal component systems from massive candidates and
integrates the individual component systems. Reliable
applications for TripPlanner are dynamically constructed
by the service composition execution engine to fulfill the
needs of travelers. TripPlanner can serve as a representative
application scenario for a service-oriented SoS.

As illustrated in Fig. 2, suppose that a user, say George, is
planning to travel from Beijing, China to New York, USA on
a weekend morning. When turning to TripPlanner for help,
George wants to get weather forecasting information and
information on feature spots in and around New York to
plan his touring route. When George has determined his
feature spots, he may want to use a mapping service to
select the hotel(s) and public transports in New York. He
may also want an E-commerce platform to book the hotel
and air tickets. TripPlanner will construct a trip planning
application for George. Each requirement can be fulfilled by
integrating a public Web service.

There may be a large number of publicly available candi-
date Web services that meet each of the requirements. For
example, BloomSky and Weather Web services may be used
for Weather forecasting. Google search and Bing search are
helpful for information retrieval. Yahoo Maps and Bing
Maps can provide mapping services, while SalesForce and
Amazon are well-known E-commerce services. To guaran-
tee the execution quality of the constructed system, Trip-
Planner should optimally select the Web services with
desired online reliability. The results from the selected Web

Fig. 2. Trip planning application for international travelers.
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services will be composed by the service composition execu-
tion engine. A reliable TripPlanner application will be con-
structed for George.

The ROP method for predicting the online reliability time
series can serve the purpose of selecting reliable candidate
Web services for a TripPlanner application. As illustrated in
Fig. 3, ROP can work for the service composition execution
engine through the following steps. First, we collect the his-
toric parameters (including response time, throughput, and
reliability) for each of the candidate Web services for Trip-
Planner. The historic parameters are then used to identify
the time series motifs and construct the CPTs for the time
series evaluation regularity. Online reliability prediction is
provided based on the system parameters time series motifs
collected in real time and the CPTs. The prediction results for
each of the candidate services are gathered and used by the
service composition execution engine for service selection.

ROP is capable to handle large-scale service composition
applications. On the one hand, the ROP prediction can be
focused on some critical component systems. Through this
method, we can guarantee the reliability of the critical
component systems. On the other hand, a broker node can
also be deployed in the Internet. For example, we can use
a centralized broker to collect the ROP prediction results
by limiting the number of the couples from client side to
identify candidate component systems. For all of the client
sides and the candidate component systems, a sparse
matrix can be used to record the prediction value for each
time point of the online reliability time series. Collabora-
tive filtering can be used to calculate the missing value in
the sparse matrix (cf. [10]). In this way, the ROP prediction
can be expanded through the broker. For each client-side
node of the application, we only need to deploy ROP pre-
diction on some critical component systems. The broker
node will provide the prediction results to the service com-
position execution engine.

3.2 Dynamic Bayesian Networks

As a class of probabilistic graphical models, DBNs are well-
known in the context of template-based representations and
reasoning [59]. When a dynamic system characterized by the
template variables x ¼ fxð0Þ;xð1Þ; . . . ;xðtÞ;xðtþ1Þ; . . .g satisfies
the independence assumption of a first-order Markov chain
process, we can represent the process by DBNs. As illus-
trated in Fig. 4a, the independence assumption states that,

the variables in xðtþ1Þ is only determined by xðtÞ, it cannot
directly depend on variables in xðt

0Þ, for all t � 0 and t0 < t.

Generally, a DBN is a two-tuple < B0; B! > , where B0

is a Bayesian network over xð0Þ representing the initial state
distribution, and B! represents the transition model for the
first-order Markov process. Specially, the transition model
is a Conditional Probability Distribution (or CPD), and can
be represented by a conditional Bayesian network, also
called a 2-Time-slice Bayesian Network. Fig. 4c gives a 2-

TBN model as an example, where X
ðtÞ
i 2 xðtÞ, for any integer

i 2 ½1; v�, represent observed variables, HðtÞ 2 xðtÞ represents
hidden variable and is determined by the observed varia-
bles. 2-TBN describes the transition model for template vari-

ables evolving from xðtÞ to xðtþ1Þ, for all t > 0.
In practice, a Conditional Probability Table is typically

used to represent the conditional probability distribution of
jointly random variables for 2-TBN [60]. Each template vari-
able of xðtþ1Þ in the 2-TBN has a CPT that represents all pos-
sible values of the conditional probability for each value of

template variableX
ðtþ1Þ
i .

The DBN model can be used to reason upon the subse-
quent template variables for the dynamic system. As illus-
trated in Fig. 4d, we can unroll a DBN over any desired
time span by B0 and B!, where

� the structure and CPDs for X
ð0Þ
i are the same as for

those in B0, and
� the structure and CPDs ofX

ðjÞ
i for j > 0 are the same

as those forX
ðtþ1Þ
i in B!.

3.3 Notations and Definitions

This section provides basic definitions related to reliability
for a service-oriented SoS as well as the definition of our
prediction objective. The major notations of our online reli-
ability time series prediction are listed in Table 1.

The reliability of a service-oriented SoS describes the
probability of successful message delivery between the two
endpoints (the component system and the client) in the
presence of component-system/network failures and com-
ponent system performance anomalies. As defined in
ANSI/IEEE STD-729-1991 [9], software reliability is widely
used to describe the reliability of software systems, compo-
nent-based systems, Web services, etc., [10], [61], [62]. As a

Fig. 3. Application framework of ROP.

Fig. 4. Dynamic Bayesian networks.
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TABLE 1
Notations of Online Reliability Time Series Prediction

Categories Notations Descriptions

Number g The number of time series in a continuously historic system parameter

n The number of time points within a time series

k The number of motifs for the set of a type of system parameter time series

nf The number of invocations with failure responses or performance anomalies

ni The total number of invocations

h The total number of the time points in a continuously system parameter, and h ¼ g� n

Time Dtd Data window time, i.e., the time span for the component system’s running state on which a prediction depends

Dtl Leading time, i.e., the time span for which the period for prediction should skip ahead

Dtp Prediction period, i.e., the time span for the reliability time series to be predicted

t Current time

T The up-to-date time span

u A time span

ui The ith (i 2 ½1; h�) time span for evaluating a system parameter value

Time Series p!r The online reliability time series to be predicted

x! The set for the time series template variables

x!ðT Þ The time series for x! in time span T

R
! The set for the reliability time series with the evolution of time

Q
! The set for a QoS parameter time series with the evolution of time

D
!

rt
The set for the time series of response time parameter during data window time

D
!

t
The set for the time series of throughput parameter during data window time

P
!

rt
The set for the time series of response time parameter during prediction period

P
!

t
The set for the time series of throughput parameter during prediction period

P
!

r
The set for the time series of reliability parameter during prediction period

O
!

rt
The real-time observed up-to-date response time parameter time series

O
!

t
The real-time observed up-to-date throughput parameter time series

O
!

r
The real-time observed up-to-date reliability parameter time series

D
!ðiÞ

rt
The ith (i 2 ½1; g�) time series in D

!
rt

r!r The observed real reliability time series during the prediction period

Motifs bQ The set of the motifs for a QoS parameter Q’s time series

bDrt
The set of the motifs for the response time parameter time series during data window time

bDt
The set of the motifs for the throughput parameter time series during data window time

bPrt
The set of the motifs for the response time parameter time series during prediction period

bPt
The set of the motifs for the throughput parameter time series during prediction period

bPr
The set of the motifs for the reliability parameter time series during prediction period

bDrtðiÞ The ith (i 2 ½1; k�) motif in bDrt

A The set for the motifs in a L

CPT B The set for the conditional probability table for the right side nodes in the m_DBNs

CPT ð bPrtÞ The conditional probability table for bPrt

CPT ð bPtÞ The conditional probability table for bPt

CPT ð bPrÞ The conditional probability table for bPr

Models B0 The Bayesian Network for the initial template variables set xð0Þ

B! The two-time slice Bayesian Network describing the transition model for the template variables from xðtÞ to xðtþ1ÞbBobs
Bayesian Network for the real-time observed system parameters time series which are represented by their motifs

bB! The two-time slice Bayesian Network describing the transition model for the time series motifs from Dtd to Dtp

L The simplified probability representation for an m_DBNs model

Parameter Values p!ðiÞr The value for the ith (i 2 ½1; n�) time point in p!r

D
!ðiÞ

rt ðjÞ The value of jth (j 2 ½1; n�) time point in the time series D
!ðiÞ

rt

DrtðjÞ The average value of the jth (j 2 ½1; n�) time point for the time series of bDrt

O
!

rtðjÞ The value for the jth (j 2 ½1; n�) time point in the observed up-to-date response time parameter time series

rðuÞ The reliability value of a component system evaluated by a client during time span u

rtðiÞ ith (i 2 ½1; h�) value of the response time parameter

tðiÞ ith (i 2 ½1; h�) value of the through parameter

rðiÞ ith (i 2 ½1; h�) value of the reliability parameter

rtðtjÞ The returned response time parameter for the jth time of invocation

tðtjÞ The value of throughput for the jth time of invocation

r!ðiÞr The value for the ith (i 2 ½1; n�) time point in r!r
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type of complex software system, service-oriented SoS con-
structs the system by dynamically integrating the compo-
nent systems through a service composition technique.
Accordingly, the definition of software reliability also
applies to a service-oriented SoS.

Moreover, reliability can be measured in different forms,
such as Mean Time To Failure (MTTF), Mean Time Between
Failures (MTBF), hazard rate (the system has survived until
time t) and failure-rate (or failure probability) [63]. As for
the uncertain running environment of a component system,
the time interval between successive failures appears usu-
ally with no obvious regularity, which makes the metrics of
MTTF, MTBF, and hazard rate inapplicable for the systems
referred to in this paper. Therefore, just like [10], we use fail-
ure-rate as a basis for the component system’s reliability
measurement.

The failure-rate reflects the probability that an invoca-
tion may fail under the evaluation period [61]. Similar
to [10], [12], we calculate in this paper failure-rates during
continuous invocation evaluations under a fixed time
period for an observed component system. For each evalu-
ation period, the exponential reliability function is then
used to calculate the component system’s normalized reli-
ability based on its failure-rate [63]. Different from the tra-
ditional computer systems, the performance of component
systems changes irregularly. The failure responses or the
performance anomalies for each invocation make the com-
ponent system deviate from the requirement of the users.
Consequently, failures for the component system invoca-
tions include (1) the failure response, and (2) the perfor-
mance anomalies (e.g., time-outs). The failure-rate is
calculated by counting the number of fail invocations
under a fixed total invocation time and a fixed time period.
The reliability of a component system of a service-oriented
SoS is defined as follows [10], [12]:

Definition 1 (Reliability). Assume that the twofold endpoints
consist of a component system S and a client node C. Let u rep-
resent a time period, tu be any point of time during u. The reli-
ability of S is evaluated according to the failure-rate, when S is
continuously invoked by C during period u. We formally define
the reliability of S at time tu evaluated by C as

rðtuÞ ¼ rðuÞ ¼ e�g�lenðuÞ; (1)

where lenðuÞ represents the length of time period u, g ¼ nf =ni
is the failure-rate of equal length time-interval client-side invo-
cation evaluations for S, ni represents the number of total
invocation times, and nf denotes the number of invocations

that meet with failure responses or performance anomalies,
which deviate from the user (or application system)
requirement.

Given the above reliability definition, this paper seeks to
predict the time series of component system S’s reliability
relative to client C. The time series covers the time duration
of prediction period Dtp. The prediction is based on the sys-
tem’s running state (reflected by the QoS parameters) dur-
ing data window of time. We can now define an online
reliability time series as follows:

Definition 2 (Online Reliability Time Series). Let Dtp
represent the prediction period (see Fig. 1), we divide Dtp into n
sub time durations with equal length, i.e., u1; u2; . . . ; un. The

online reliability time series to be predicted ( p!r) for a compo-
nent system S relative to client C is defined as a vector describ-
ing the reliability values in multiple time points, i.e.,

p!r ¼ ð p!ð1Þr ; p!ð2Þr ; . . . ; p!ðnÞr Þ;
where n represents the number of time points within a time

series; p!ðiÞr , for any integer i 2 ½1; n�, represents the ith time

point’s reliability value, where p!ðiÞr ¼ rðuiÞ.

4 TIME SERIES PREDICTION

To cope with the three prediction challenges for a compo-
nent system in a service-oriented SoS (see Section 1), we
will study the conditional dependency for the dynamically
waving system runtime parameters of the component sys-
tems. We use the system parameter time series to character-
ize the system running status and make online reliability
prediction by modeling the causal relations [59] between
the system running status during the data window time
(i.e., the time period of Dtd) and the system reliability in pre-
diction period (i.e., Dtp).

First, we propose a motifs-based Dynamic Bayesian Net-
works (or m_DBNs) model to represent the casual relations
for the evolution of system parameters time series from data
window time to prediction period. Second, we give the pre-
diction steps of our ROP approach using them_DBNsmodel.

4.1 Model

The typical PGM model supports temporal processes, such
as the DBNs model (retrieve Section 3.2), which evolve
through continuous time [59]. Recently, DBNs have been
widely used to represent the conditional dependency
among time intervals and predict the near-time future.

TABLE 1
(Continued )

Categories Notations Descriptions

rtðtjÞs The returned response time parameter for the sth thread’s jth time of invocation

tðtjÞs The value of throughput for the sth thread’s jth time of invocation

Miscellaneous x The template variables set with the evolution of time

xðtÞ The template variables set in time t

g Failure-rate, and g ¼ nf=ni

Xi The set for the ith (i 2 ½1; v�) template variable with the evolution of time

x2
rt

chi-square statics for the observed up-to-date response time parameter time series

x2
t

chi-square statics for the observed up-to-date throughput parameter time series
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As stated in the description of challenge 1 (see Section 1),
the changes from adjacent time points of historical system
parameters may not exhibit obvious causality due to the
dynamics of the SoS runtime environment. This means that
the uncertain network status, internal working status, and
system load lead to random waves in component system
runtime parameters.

The regulation of changes in the system parameters’ time
series can reflect the system’s running state for the corre-
sponding time duration. Therefore, we look inside neigh-
boring system parameters time series to discover
regularities. In particular, to evaluate the real-time perfor-
mance, application-level metrics (i.e., response time and
throughput) or hardware-level metrics (e.g., instructions
execution rate and cache access behavior) have been used to
describe the running states of Web-based systems [64]. To
predict the online reliability time series, we use the combi-
nation of time series for response time and throughput
parameters to reflect the running states for a component
system. Intuitively, when the waiting time for an invoked
component system has significantly exceeded its normal
response time, it is reasonable to believe that the component
system may be in the state of low reliability. The issue on
what kind of dependencies between the performance
parameters (e.g., response time) and reliability may be
derived from statistical learning.

Consider that a component system is working under a
certain running state. It will be transferred to the next run-
ning state if it is influenced by a specific event (e.g., fluctua-
tions of system load or network performance). Nonetheless,
it is always uncertain for the event type to have occurred for
the current component system. Therefore, the component
system’s running state in the future is affected only by the
current running state and the event itself. It is independent
of the previous running state. Hence, we can say that the
time series related to the system parameters will evolve in a
first-order Markovian chain manner, i.e., the near future
system parameters time series will depend only on the up-
to-date time series. Earlier time series are irrelevant for pre-
dicting the future. If the system’s running state can be
reflected by some system parameters, for the above evolv-
ing characteristic, the time series associated with the param-
eters can describe only the current running state; it cannot
reflect the system running state during other time durations.

As illustrated in Fig. 5, the entire axis is divided into time
spans of equal length, i.e., 0; . . . ; T � 1; T; T þ 1; . . . , where
T is the current time span. The templates variables, x, are

divided as time series, i.e., x!. We can use the time series in

x! to reflect the system runtime status for the corresponding

time period. For example, the system parameters’ time

series x!ðT Þ represents the system running state under time
span T . We use the following two independence assumptions
to describe the dynamic evolution for the component sys-
tem’s system parameters time series [59]:

1) Markovian Process Assumption: The first-order
Markovian chain evolution nature of system param-
eters time series makes the future system parameters
time series (i.e., x!ðTþ1Þ) to be determined only by the

current system parameters time series x!ðT Þ. It is
independent of the previous system parameters time
series from 0 to T � 1.

2) Conditional Independence Assumption: Let R
!

be
the reliability time series, the current reliability time

series R
!ðT Þ

is determined only by the current run-
ning state of the component system. The current sys-

tem running state is reflected by x!ðT Þ, that is to say,

R
!ðT Þ

is in dependence of x!ðT Þ. It is also independent
of the other time span’s system parameters time
series (i.e., the system parameters time series fall in
the ranges 0 to T � 1, and T þ 1 to1).

As for prediction challenge 2, to achieve online time
series prediction and a high prediction accuracy, we pro-
pose an augmentation of the traditional DBNs, m_DBNs,
which uses the above two independence assumptions to
model the evolution regularity between the historic system
parameters time series (i.e., the system parameter time
series during the data window time Dtd and the time series
during prediction period Dtp). As shown in Fig. 6, m_DBNs
combines the traditional DBNs model with time series
motifs [65], [66], [67]. The parameters are represented by the
patterns exhibited by the time series (henceforth referred to
as motifs) discovered from historical data to facilitate the
prediction of future time series.

In sum, m_DBNs models the casual relationships on a
component system running parameter time series’ temporal
evolution regularities. The time series motifs of response
time and throughput are used to describe the running states
of the component system for a specified time period [64]. As
for a component system, the following casual relationships
are assumed and used for online reliability time series pre-
diction based on the two independence assumptions [59].
First, the component system’s running state during predic-
tion period is only determined by the running state during
its data window time. Second, the component system’s run-
ning state only determines its reliability time series during
the same time period.

More specifically, we divide the system parameter from a
long time period into multiple time series of equal length.
The recurring time series are referred to as motifs in the
m_DBNs model. As a result, the possible values for each
node in the m_DBNs model are the corresponding parame-
ter motifs. We define motifs as follows:

Definition 3 (motifs). Let Q
!¼ fQ!ð1Þ; Q!ð2Þ; . . . ; Q!ðT Þg be the

time series which are divided from a long-term continuously
QoS parameter Q of a component system with the time spans of

0; 1; . . . ; T . After a clustering algorithm (e.g., k-means) on Q
!
,

motifs for the parameter is defined as the centroids of the

Fig. 5. Independence assumptions.
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resultant time series clusters, i.e., bQ ¼ f bQð1Þ; bQð2Þ; . . . ;bQðkÞg, where k represents the number of motifs.

To better describe the system parameter time series dur-
ing the prediction period, we separately identify the motifs
for each parameter time series within a given data window
time and prediction period. For any QoS parameter, Q, we
separately collect time series within a Data window time

(D
!

Q) and a Prediction period (P
!

Q) during the historical sys-

tem parameter evaluation. The motifs are calculated as bDQ

and bPQ, respectively. As stated above, the first-order Mar-
kov chain rule and motifs are adopted in the DBNs model.
The m_DBNs model is fundamentally different from exist-
ing DBNs. The variables for template transition in m_DBNs
are represented by time series motifs. Each motif can be
regarded as a step within the evolution trajectory, which
contains multiple continuous DBN template variables. We
define the m_DBNsmodel as follows:

Definition 4 (m_DBNs). A motifs-based Dynamic Bayesian
Networks is a pair of < bBobs; bB! > , where the values for each
node are the corresponding parameter motifs, where

� bBobs is a Bayesian Network of the real-time observed
system parameter motifs (during time span T ), repre-
senting the dependence rules for the system parameters
motifs under time span T .

� bB! is a 2-time-slice Bayesian network for the system
parameter time series motifs transformation from the
data window time to the prediction period, where each
time-slice is composed of a time series motif.

� The Conditional Probability Tables for each of the pre-
diction period nodes in bB! are the Conditional Proba-
bility Distribution under the joint distribution of their
parent nodes.

� As for the online prediction of desired time series span,
the distribution of the system parameter time series
motifs over T and T ’s prediction period is defined in
terms of one-step unrolled Bayesian Networks, wherebBobs is the distribution of the initial system parameter

time series motifs, and bB! describes the unrolling rule.

As for prediction challenge 3, the nodes in the m_DBNs
corresponding to the component system’s QoS parameters,
including Response Time, Throughput, and Reliability, are
evaluated through client side observation.

In particular, the same response time parameter for a
component system under different running statuses may
lead to different throughput values. Consequently, the
response time and throughput are independent in a single
time-slice Bayesian network for the dynamic variation of
service load and uncertain network status. Since both are
easy to measure and can be used to reflect the component
system runtime status, they are denoted as shaded nodes.

On the other hand, the joint distribution of response time
and throughput always significantly impacts the system
runtime status, as well as its Reliability. Hence, the latter is
usually derived on the basis of both response time and
throughput; it can be regarded as a hidden variable
(denoted as an unshaded node). According to the second
independence assumption presented above, reliability
depends only on current system parameters time series of
response time and throughput.

In bBobs (see Fig. 6a), the realtime Observed response time

and throughput parameters time series (O
!

rt and O
!

t) are
labeled separately by the nearest motifs of response time
and throughput parameter time series for the data window

time. We denote these as bDrtðaÞ and bDtðbÞ, respectively.
The combination of bDrtðaÞ; bDtðbÞ can determine the reliabil-

ity motif bDrðgÞ under the observation time span.
In addition, dependencies across the time series bound-

aries (i.e., from Dtd to Dtp) follow the first-order Markov
chain rule whereas dependencies within the same time
series follow the causal relationships among response time,
throughput, and reliability, as mentioned above.

In bB! (see Fig. 6b), the following dependency rules are
modeled. First, according to the first independence assump-
tion, the component system’s running status in the prediction
period is determined only by the running state during the
period on data window time. The combination of the time
series motifs within Data window time for response time

( bDrt) and throughput ( bDt) has causal relationships with the
component system’s running states in the Prediction period,

i.e., with the motifs of bPrt for response time and the bPt for
throughput, respectively. Second, according to the second

independence assumption, similar to bBobs, bPr is determined

by the combination of bPrt and bPt.
In the m_DBNs model, the CPTs for the nodes over the

prediction period can be used to describe the temporal eval-
uation regularity of the motifs for the historical in bB!. The
CPTs for bPrt, bPt, and bPr are constructed on the basis of the
statistics of the historical evaluation process for the histori-
cal parameters.

Fig. 7 gives a brief demonstration of the CPT for bPrt.
Assuming that the motifs number k is set to 2, let the motifs

that have been identified for bDrt, bDt, and bPrt in the historic

system parameter be: bDrt ¼ f bDrtð1Þ; bDrtð2Þg, bDt ¼ f bDtð1Þ; bDt

ð2Þg, and bPrt ¼ f bPrtð1Þ; bPrtð2Þg, respectively. The CPT for bPrt

is a table describing the conditional probability from the joint

distribution of bPrt’s parents nodes to bPrt. Specially, each

Fig. 6. Motifs-based dynamic Bayesian networks.
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possible combination of the values of bDrt and bDt represents a
conditional item. The probability from the conditional item to

each value of bPrt describing the distribution of the conditional
probability ariseswithin historic temporal evaluations.

Prediction of the online reliability time series is executed
by unrolling the m_DBNs based on the CPTs for the nodes
over prediction period and the motifs in bBobs. The proposed
m_DBNs model can support the uncertain execution envi-
ronment for predicting the online reliability time series
associated with the component systems. The result obtained
by using a one-step-ahead time series prediction is a reli-
ability time series. It is fundamentally different from the tra-
ditional statistical time series prediction models (e.g.,
ARIMA model [27]), as each step-ahead prediction result
only contains one time point.

For practical purpose, we can simplify the m_DBNs
model probability representation by a two-tuple, i.e., L ¼
<A;B> , where

� A represents the featured patterns of system parame-
ters time series identified from historical system
parameters, for both data window time Dtd and pre-
diction period Dtp. Actually, the patterns of system
parameters time series can be represented by types-
types of system parameters motifs, i.e.,

A ¼ f bDrt; bDt; bPrt; bPt; bPrg:
� B is the set of CPTs for the nodes over prediction

period, each CPT describes the system parameters
motifs’ transition probability from the parent nodes
to the target node, i.e.,

B ¼ fCPT ð bPrtÞ; CPT ð bPtÞ; CPT ð bPrÞg;
where CPT ð�Þ represents a CPT.

The m_DBNs with the graphical model (cf. Fig. 6) and
the simplified probability representation L will be used for
our online reliability time series prediction.

4.2 Approach

The proposed ROP using m_DBNs for online reliability time
series prediction consists of five main steps. First, in Data
Preparation, we preprocess the historical system parameters.
Second, in the stage of Motifs Discovery, we discover motifs
from the historical time series of system parameters. Third,

in Time Series Representation, we use the motifs to represent
the time series of the system parameters by labeling them
using the most similar motifs. Fourth, in Conditional Proba-
bility Table Construction, we derive the causal relationships
from historical data and construct the CPTs. Finally, in Reli-
ability Time Series Prediction, we make predictions according
to the currently observed up-to-date (i.e., real-time) time
series of the system parameters.

4.2.1 Data Preparation

Data preparation refers to the stage of preprocessing the
continuously collected historical parameters of response
time, throughput and reliability for training the m_DBNs
model. We divide each of the historical parameters into two
different groups of time series—the data window time and
prediction period, respectively. As for the nodes in bB!, the
motifs for each parameter, they can be discovered from two
categories of the time series, which are different for the left

column and the right column nodes in bB!.
To enable the m_DBNs to model continuous time series

with time evolutions (i.e., 0,. . . ; T � 1; T ), we divide the
time series for adjacent nodes in m_DBNs into the same
length. Hence, the lengths of the data window time of Dtd
and the prediction period of Dtp are the same.

As an example for the data preparation of response
time parameter (see Fig. 8), we continuously divide the
time series from the historic parameter. In this way,
we capture the continuous evolutions for the historic
response time parameter time series. Each data window
time series of response time parameter has a time series for
its prediction period. We have the following two types of
time series.

First, we divide the historic response time parameters
into multiple continuous time series for the data window
time as D

!
rt. The time span for each of the time series is Dtp.

Letting T be time span for the last time series of the
response time parameter, the time series in the data window
time for response time parameter can be represented as

D
!

rt ¼ fD!
ð1Þ
rt ; . . . ; D

!ðiÞ
rt ; . . . ; D

!ðT Þ
rt g; (2)

where D
!ðiÞ

rt represents the ith time series in D
!

rt, and it is a
vector containing multiple response time parameter data
points for the component system. We further assume that n

is the number of time points in time series D
!ðiÞ

rt . Let D
!ðiÞ

rt ðjÞ
represent the jth data point in the time series of D

!ðiÞ
rt , then

we can get D
!ðiÞ

rt as

D
!ðiÞ

rt ¼ ðD
!ðiÞ

rt ð1Þ; . . . ; D
!ðiÞ

rt ðjÞ; . . . ; D
!ðiÞ

rt ðnÞÞ: (3)

Second, to obtain the time series for the prediction
period, we re-divide the time period for response time
parameter and then obtain the near future time series. We
choose the time period after Dtl for each D

!ðiÞ
rt , which is

Fig. 7. Brief demonstration of conditional probability table (CPT).

Fig. 8. Response time parameter time series.
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defined as P
!ðiÞ

rt . In this way, we also divide the response
time parameter into time series data. These also contain n
data points in each time series. It is important to note that,
during the historical execution parameter of the component
system, when the response time parameter time series is

D
!ðiÞ

rt , the corresponding time series during the prediction

period will be P
!ðiÞ

rt .
The same process can be applied to preprocess and

obtain the other parameters’ time series (i.e., D
!

t, P
!

t, and

P
!

r) for the historical parameters.

4.2.2 Motifs Discovery

To identify the featured patterns of time series (or motifs)
from the parameters of response time, throughput and reli-
ability of a component system, we group similar time series
in each preprocessed historic parameter by means of a K-
means clustering algorithm.

In the following two steps, we use the response time
parameter as an example to illustrate motifs discovery and
the same process can be applied to other parameters.

First, we discover the motifs for the data window time of
response time parameter time series D

!
rt. We use the euclid-

ean distance to calculate the distance between two time

series. Hence, the distance between two time series D
!ðaÞ

rt

and D
!ðbÞ

rt is

dist½D!ðaÞrt ; D
!ðbÞ

rt � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1 ½D
!ðaÞ

rt ðjÞ � D
!ðbÞ

rt ðjÞ�
2

r
; (4)

whereD
!ðaÞ

rt ðjÞ andD
!ðbÞ

rt ðjÞ represent the value of jth timepoint

in D
!ðaÞ

rt and D
!ðbÞ

rt , respectively, and n is the total number of
time pointswithin the time series. Once the clusters have been
formed by the K-means clustering algorithm using the above
distance function, themotifs for the datawindow time param-
eter time series of response time are calculated as the centroids
of the clusters. Thesemay be formalized as

bDrt ¼ f bDrtð1Þ; bDrtð2Þ; . . . ; bDrtðkÞg; (5)

where k represents the number of the motifs, which is the
centroids number for the K-means algorithm.

Second,wewill use themotifs discoverymethodpresented
earlier for D

!
rt to discover motifs in P

!
rt for the prediction

period parameter time series. Asmentioned in Section 4.1, for
the simplified probability representation L of m_DBNs
model, the tuple A for the patterns of the system parameter
time series can be identified via motifs discovery. As for the
response time parameter, the historical response time param-

eter time series for the data window time is divided as D
!

rt.

The motifs for D
!

rt can be identified as bDrt. The motifs for
response time parameter time series during the prediction
period and the other parameters (throughput and reliability)
are identified using amethod similar tomotifs discovery.

4.2.3 Time Series Representation

In this step, we label system parameters time series by the
discovered motifs. In particular, each time series of a system

parameter is labeled by the nearest motif discovered in the
previous step. This allows the time series system parame-
ters to be represented by the respective motifs so that their
causal relationships can be derived. Again, we will use
response time parameter as an example and the same pro-
cess applies to other parameters.

Let k represent the motifs number for each system
parameter time series. For some integer $ 2 ½1; k�, we label
the response time parameter time series to each data win-

dow time D
!ðiÞ

rt by bDrtð$Þ as

D
!ðiÞ

rt  bDrtð$Þ; (6)

where bDrtð$Þ 2 bDrt is the nearest motif for D
!ðiÞ

rt . For any

integer w 2 ½1; k�, bDrtð$Þ can be determined by the follow-
ing equation:

bDrtð$Þ ¼ argminbDrtðwÞ
fdist½D!ðiÞrt ; bDrtðwÞ�g: (7)

Accordingly, each system parameter’s time series for pre-
diction period is labeled according to the corresponding
motifs.

In practice, the nearest motifs for D
!ðiÞ

rt may be not unique.

As an example, let integer $
0 2 ½1; k�, and $ < $

0
, the fol-

lowing equation may hold:

bDrtð$0 Þ ¼ bDrtð$Þ:
The motifs with different serial numbers (i.e., $

0
and $)

together may constitute the nearest motif for the time series

of D
!ðiÞ

rt . Ambiguities can arise in the time series representa-

tion for D
!ðiÞ

rt . The ambiguities can be eliminated by improv-
ing the precision of the values for the response time
parameter. However, if an ambiguity does arise, the motif
with the least serial number can be used to represent the

time series. As for the example, bDrtð$Þwill be used to repre-

sent D
!ðiÞ

rt .

4.2.4 Conditional Probability Table Construction

In the proposedm_DBNs, the evaluation rules of the compo-
nent system’s running states are reflected by bB!. The CPTs

in bB! capture the causal relations for the system parameter
time series.

As defined in the simplified m_DBNs probability repre-
sentation of L, the CPTs included in tuple B are used to
describe the temporal evaluation regularity for the target

nodes in bB!. To predict the online reliability time series of a
component system, the CPTs need to be constructed via sta-
tistics on the evolution process of the historical system
parameter time series. We use the CPT for the prediction

period response time motifs bPrt as an example. The same
process can be applied to other CPTs.

Returning to the example presented in Fig. 7, to construct
the CPT for bPrt, we need the statistics on the historical time
series evaluation regularity from the joint distribution of
response time and throughput in the data window time to
the response time in prediction period. We also assume that
the motifs number k is set to 2. As an example, we choose
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six groups of continuously system parameter time series to

demonstrate the construction process of CPT ð bPrtÞ.
The time series representations of the historical system

parameter time series of D
!

rt, D
!

t, and P
!

rt are shown in
Figs. 9a and 9b, respectively. Each group of the historical
system parameter time series has a series number with the
range of ½1; 6�, represents a 2-TBN transformation of the sys-
tem parameter time series. For example, the 3th group time

series represents that, with the time series of D
!ð3Þ

rt and D
!ð3Þ

t

as the data window time system parameter, the response

time parameter time series would be transformed as P
!ð3Þ

rt

during the prediction period.
As for the CPT, each row in CPT ð bPrtÞ corresponds to one

possible combination of values (represented by motifs)

taken by its dependent nodes, i.e., bDrt and bDt. Each column

denotes one of the k motifs of bPrt. We analyze the historical
parameters’ chains represented and gather the necessary
statistics to fill each cell of the CPT. Letting g represent the
total group number of the time series, we identify a time
series serial number set I, for each i 2 I, i � g, if each ith
group of system parameter time series can be represented
by the motifs as

D
!ðiÞ

rt  D̂rtðmÞ
D
!ðiÞ

t  D̂tðnÞ
P
!ðiÞ

rt  bPrtðcÞ:

8>><
>>: (8)

We will fill the cell in CPT ð bPrtÞ at the intersection of rowbDrtðmÞ; bDtðnÞ and column bPrtðcÞ by the value of jIj=g.
As demonstrated in Fig. 9, since the time series serial

numbers of 3 and 5 satisfy the dependence rule in the CPT
with the row of bDrtð1Þ; bDtð1Þ and the column of bPrtð2Þ, then
I ¼ f3; 5g, and jIj ¼ 2. The cell at the intersection of rowbDrtð1Þ; bDtð1Þ and column bPrtð2Þwill be jIj=g ¼ 2=6.

In sum, the simplified probability representation
L ¼ fA;Bg for a component system can be constructed via
the Motifs Discovery and Conditional Probability Table Con-
struction steps. The construction process is based on the
long-term observed continuously historical system parame-
ters of response time, throughput, and reliability. L is used
with the real-time observed up-to-date response time and
throughput time series for online reliability time series

prediction. The algorithm for constructing L is named ROP-
SPRC and is summarized in Algorithm 1.

Algorithm 1. ROP-SPRC

Input: The training set fD!ðiÞrt ; D
!ðiÞ

t ; P
!ðiÞ

rt ; P
!ðiÞ

t ; P
!ðiÞ

r g,
for i 2 ½1; g�, and the motifs number k

Output: L ¼ fA;Bg
1: Find the motifs bDrt for D

!
rt ¼ fD!

ðiÞ
rt ggi¼1 by the k-means

clustering;
2: Find the motifs for D

!
t, P
!

rt, P
!

t, P
!

r;
3: A f bDrt; bDt; bPrt; bPt; bPrg;
4: Represent each P

!ðiÞ
rt by solving (6);

5: Represent other system parameter time series by similar
method;

6: Initialize the CPT table structure for CPT ð bPrtÞ;
7: for Each cell in CPT ð bPrtÞ do
8: for all i 2 ½1; g� do
9: I  i, when the dependence rule for the cell

satisfies (8);
10: Fill the cell by jIj=g;
11: end for
12: end for
13: Construct CPT ð bPtÞ, CPT ð bPrÞ by similar method;
14: B fCPT ð bPrtÞ; CPT ð bPtÞ; CPT ð bPrÞg;
15: return fA;Bg;

4.2.5 Reliability Time Series Prediction

The online reliability time series for a component system is
predicted based on the one-step unrolling of the corre-
sponding Bayesian Networks. To unroll the Bayesian Net-
works, the real-time observed up-to-date system
parameters time series O

!
rt and O

!
t are labeled by the nearest

motifs identified for data window time, i.e., bDrt and bDt,
respectively. The results are substituted into the transforma-

tion model B̂!. According to the maximal conditional prob-
ability distribution, the CPTs in L are used finally to find
the most possible online reliability time series as the predic-
tion result for the component system. In particular, the pre-
diction is carried out through the following three steps:

1) O
!

rt and O
!

t are labeled by their nearest motifs we
had previously discovered for response time and
throughput for data window time. We assume that

they result in D̂rtðaÞ and D̂tðbÞ, respectively.

Fig. 9. Construction process of CPT.
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2) D̂rtðaÞ; D̂tðbÞ will be the conditional item for CPT

ð bPrtÞ and CPT ð bPtÞ. Hence, the prediction results for
the parameters of response time and throughput will
be the motifs holding the maximal probability by the

conditional item. We assume them to result in bPrtðuÞ
and bPtð#Þ, respectively.

3) Finally, bPrtðuÞ; bPtð#Þ will be the conditional item of

CPT ð bPrÞ, and the prediction result for online reli-

ability time series of p!r will be

p!r ¼ bPrð�Þ; (9)

where bPrð�Þ is the motif of the reliability time series
identified for prediction period, which holds a maxi-

mal probability by the CPT ð bPrÞ’s conditional item

with the property combination of bPrtðuÞ; bPtð#Þ, i.e.,

bPrð�Þ ¼ argmaxbPrðwÞ; w2½1;k�
fP ½ bPrðwÞj bPrtðuÞ; bPtð#Þ�g: (10)

During the above steps, while substituting the conditional
items, the maximal probability for the objective motifs in the
corresponding CPTs may not turn out to be unique. An exam-
ple can be found in Fig. 9c, at row bDrtð2Þ; bDtð1Þ. All transforma-
tion probabilities are equal to 0.167 with the conditional item.
This poses a dilemma during the prediction of the objective
motif. We can always avoid this problem by increasing the size
of model training set. But, when conflict arises, we will select
the motif having the least label number as the prediction result
in order to side step this kind of conflict completely.

Moreover, the systemmay come across abnormal running
states due to the conditions of service attack, hardware fail-
ures, etc. Our online prediction approach should be able to
deal with such conditions by adopting specific mechanisms,
because they may lack samples reflecting system’s outlier
state in the training set which is used to trainmodelL.

To help our approach predict outlier states, the following
two techniques are added:

� Specific motifs (i.e., worst-case [68] motifs) are added
into the tuple A of L for bDrt and bDt. During Online
Reliability Time Series Prediction, when the real-
time system parameters’ nearest motifs match the
worst-case, the prediction result will be a fixed vec-
tor with the least reliability values for each time

point, e.g., p!r ¼ ð0:14; 0:14; . . . ; 0:14Þ;
� Outlier detection techniques are also applicable and

can help in finding abnormal parameter time series
(e.g., we can use the chi-square statistic to capture
the multivariate outlier [69]). Let DrtðjÞ be the jth
time point’s average value for all the time series of
response time parameter in data window time.
According to (2) and (3), we have

DrtðjÞ ¼ 1

g

Xg

i¼1 ½D
!ðiÞ

rt ðjÞ�;

where D
!ðiÞ

rt ðjÞ represents the jth time point for the ith
time series of the data window time response time
parameter, and g represents the total number of time

series for D
!

rt in the training set.

We define O
!

rtðjÞ as the value for the jth time
point of the observed real-time response time param-

eter time series, so the chi-square statistic x2 for real-
time response time parameter is defined as

x2
rt ¼

Xn

j¼1
½O!rtðjÞ �DrtðjÞ�

2

DrtðjÞ
;

where x2
rt represents the chi-square statistic for real-

time response time parameter time series, n repre-
sents the number of time points within a time series.

Similarly, we can obtain the chi-square statistic x2
t

for real-time throughput parameter time series.
During the process of online reliability time series

prediction, we will first calculate the chi-square sta-

tistic. If x2
rt or x

2
t is bigger than a threshold value d,

then the system running state will be regarded as
anomaly. Consequently, the reliability prediction
result will hold least reliability values for each time

point, e.g., p!r ¼ ð0:14; 0:14; . . . ; 0:14Þ. Otherwise, the
reliability prediction will be regularly handled by
m_DBNs model.

5 CASE STUDY

In this section, we present a case study to illustrate how the
proposed ROP can be used to make online reliability time
series prediction. We collect historical system parameters of
response time, throughput, and reliability by invoking the
Microsoft Bing search Web service for 24 hours. To calculate
the reliability of each time point in the time series, the time
interval needed for each client side service invocation is
200 ms. Every 10 continuous returned observations of a QoS
parameter are calculated as a time point.

We assume that the leading time of when users will
request for a search service is Dtl ¼ 4 s with the average
operating time being 20 s. Consequently, the length of each
time series is set as Dtp ¼ 20 s, while there are 10f¼
20 s=ð200 ms� 10Þ} time points in each time series.

5.1 Model Training

To train the m_DBNmodel probability representation L, we
divide the above three groups of parameters into
4; 320ð¼ 24� 60� 3Þ continuous time series for data win-
dow time and prediction period, respectively, by Data Prep-
aration (see Section 4.2.1). More details concerning data
processing will be presented in Section 6.1.

We train the m_DBNs model probability representation
by the preprocessed historical system parameters using the
process described in Algorithm 1. During the process of
Motifs Discovery (see Section 4.2.2), when the motifs num-
ber k is set to 2, the motifs for the reliability time series in

prediction period (i.e., bPr) show significant differences. As

can be seen from Table 2, for bPrð1Þ, the reliability values of

TABLE 2
Motifs for Reliability Parameter Time Series in Prediction Period

Labels Values

bPrð1Þ (0.82, 0.67, 0.82, 0.55, 0.67, 0.82, 1, 0.82, 0.82, 1)bPrð2Þ (0.82, 0.82, 1, 0.82, 0.67, 0.55, 1, 0.45, 0.82, 0.82)
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the front half part time points are lower than the latter part.

For bPrð2Þ, it is just the opposite. The Web services providing
the above different prediction results will easily found to be
suitable for different users usage habit, so we set the num-
ber of motifs as k ¼ 2 in our case study.

Note that k in ROP is used to specify the number of
motifs in the k-means clustering algorithm. The value of
k impacts the performance and scalability for the appli-
cation of ROP. To scale to larger datasets and guarantee
the performance, there have been studies on how to
determine the k value. For example, we can first select a
set of data points with a reasonable size and provide an
approximate range of k values according to the applica-
tion requirement. We then determine the best value of k
by comparing the performance of the results obtained
from different k [70].

As can be seen from Table 3, we obtain the motifs for
each parameter time series of m_DBNs for the data window
time (i.e., bDrt and bDt) by the process of Motifs Discovery.

Each group of the 4,320 time series for data window time
is represented by its nearest motifs label and the same pro-
cess is conducted for the parameters time series in predic-
tion period. As illustrated in Fig. 10, each cell in the CPT for

CPT ð bPrtÞ is calculated by the statistics on the conditional
probability from the historical system parameter. Each col-

umn in CPT ð bPrtÞ is a motif in bPrt. For the probability ofbPrtð1Þ or bPrtð2Þ, the conditional item for the conditional
probability is the joint distribution of the data window time
motifs, one from response time parameter and the other
from throughput parameter.

Specifically, since the representation satisfying

½ bDrtð1Þ; bDtð1Þ� ! bPrtð1Þ
appears 456 times in the evolution of historic parameters,
i.e., jIj ¼ 456, and g ¼ 4;320, the value of the cell at the inter-

section of the row bDrtð1Þ; bDtð1Þ and column bPrtð1Þ is:
0:1056ð¼ 456=4;320Þ. The other CPTs are computed in the

same way. The resulting CPT ð bPrtÞ, CPT ð bPtÞ, and CPT ð bPrÞ
are presented in Fig. 10. The CPTs as well as the motifs that
consist of the trained m_DBNs model probability represen-
tation L. These will be used for online reliability prediction.

5.2 Online Prediction

The goal of online prediction is to predict the online time
series for system reliability by the trained m_DBNs model
and the observed real-time up-to-date system parameters
time series. In our case study, the up-to-date time series for
system parameters of response time O

!
rt and throughput O

!
t

are first collected and then preprocessed. The results are
shown in Table 4.

By (4), the distance from the up-to-date response time
and throughput parameters time series to their motifs are:

� dist½O!rt; bDrtð1Þ� ¼ 870:01;

� dist½O!rt; bDrtð2Þ� ¼ 844:05;

� dist½O!t; bDtð1Þ� ¼ 36;920:50;

� dist½O!t; bDtð2Þ� ¼ 31;435:46:

Hence, O
!

rt and O
!

t are represented by their nearest

motifs as bDrtð2Þ and bDtð2Þ, separately. The combination ofbDrtð2Þ; bDtð2Þ are the conditional items substituted into

TABLE 3
Motifs for the Parameters Time Series within the Data Window Time

Labels Values

bDrtð1Þ (618.7, 714.1, 711.6, 724.6, 714.2, 711.1, 716.9, 875.6, 606.8, 528.9)bDrtð2Þ (702.5, 532.4, 474.1, 812, 877.1, 1059.8, 795.3, 793.7, 679.2, 518.7)bDtð1Þ (18,078.9, 24,419, 25,605.1, 15,820.2, 16,756.5, 15,625.8, 14,934.3, 16,255.3, 19,847.7, 22,343.7)bDtð2Þ (17,715, 18,679.4, 18,501.8, 18,727.2, 18,579.9, 18,246.9, 16,842.1, 20,251.3, 18,267.9, 20,497.6)

Fig. 10. A concrete example for ROP prediction.
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CPT ð bPrtÞ and CPT ð bPtÞ, separately, to obtain the maximal
probability. As shown in Fig. 10, the biggest values in rowsbDrtð2Þ; bDtð2Þ in CPT ð bPrtÞ and CPT ð bPtÞ are 0.1882 and
0.0779, respectively. Therefore, we obtain the predicted
motifs for parameter response time and throughput through
steps (1) and (2). Finally, the online reliability time series is

predicted as bPrð2Þ through step (3). From Table 2, we can
obtain immediately the predicted online reliability time

series values as p!r ¼ ð0:82; 0:82; 1; 0:82; 0:67; 0:55; 1; 0:45;
0:82; 0:82Þ. The reliability values from time points 1-4 are
0.82 or 1. According to (1), the 0.82 represents one failure (or
performance anomaly) returned during 10 times of invoca-
tions, and the reliability value of 1 represents no failure. The
values for time points 5, 6 and 8 are 0:67; 0:55 and 0.45,
respectively. They indicate that there are 2, 3, and 4 times of
failures (or performance anomalies) returned during the 10
times of invocations, respectively. This prediction result
suggests that, when a user’s usage habit is only one time
search and s/he seldom prefers subsequent operations (e.g.,
change keywords for re-search or move over the next page’s
hyperlink, etc.), then the search system with the predicted
reliability values in front of the time points is suitable for
this user. Otherwise, if the user prefers operating fre-
quently, then the Service Composition Execution Engine
should consider for other candidate search Web services,
and select more suitable ones.

6 EXPERIMENTS

We conducted a set of experiments to assess the effective-
ness of the proposed ROP. As stated previously in Section 1,
each component in a service-oriented SoS is realized as a
Web service. The ROP prediction for Web services can also
be applied for the component systems in a service-oriented
SoS. We focus on evaluating the proposed ROP approach
on general Web services for experimentation purposes. The
ROP prediction requires a historical dataset that continu-
ously records system parameters, including response time,
throughput, and reliability, to train the m_DBNs model.
However, there is no sizable Web service dataset that pro-
vides continuous observations on these system parameters
in the public domain. As a result, we build our own dataset
by invoking a set of real Web services and recording the
required system parameters.

6.1 Dataset

To build our dataset, we downloaded the WSDL files of
Web services, including: (1) well-known popular Web serv-
ices, such as Bing, SalesForce, PayPal, Google Search, and Ama-
zon; (2) Web services fromWebserviceX service repository 3;

and (3) popular Web services published in China: Weather,
QQ Online, and DomesticAirline. In the event, a total of 100
Web services were collected from different industries and
regions. All these services provide usable WSDL files and
support Java Remote Method Invocation (RMI). We then
converted the WSDL files into java classes and generate java
test files using Axis2.4 Finally, service invocation requests
for a randomly selected API of each Web service were sent
out every 200 ms from our PC client (installed with Win-
dows 7 OS and Intel(R) Core(TM) i7 2600 CPU, 4 GB RAM,
Seagate 1 TB HDD). Next, the response times, the sizes of
returned data (bit), and the returned types of HTTP mes-
sage were collected.

As can been seen from the above procedure, the response
time parameter is directly determined from the service
invocations. Let the data size for the returned message from
a remote Web service be ret_size, the response time parame-
ter be rt. We represented the throughput as the data size
successfully transmitted within a unit time from the Web

service, i.e., ret size
rt�1;000 (kbps). We set an upper limit for the

response time of a service invocation as 1,000 ms. If the
response time went beyond the limit, it was considered a
Timeout error. In the event, we collected the system parame-
ters at two different time spans: 24 hours and 1 month,
which resulted in two different datasets: 24 H and 1 M.

We preprocessed the collected system parameters as fol-
lows. We defined the time interval for each continuous 10
returned messages as the period for each system parameter
evaluation. Since a service request is sent every 200 ms, let
u ¼ fu1; u2; . . . ; ui; . . .g represented the time slide for neigh-
boring system parameters, then lenðuiÞ ¼ 2 s. The ith
parameter for the continuous historical system parameter
was calculated as

rtðiÞ ¼ rtðuiÞ ¼ 1

10

X10

j¼1 rtðtjÞ; (11)

tðiÞ ¼ tðuiÞ ¼ 1

10

X10

j¼1 tðtjÞ; (12)

rðiÞ ¼ rðuiÞ ¼ e�g�lenðuiÞ; (13)

where rtðiÞ, tðiÞ, and rðiÞ represent the ith response time,
throughput, and reliability parameter in the continuous his-
torical system parameter, respectively; ui represents the
time period for the evaluation of rtðiÞ, tðiÞ, and rðiÞ; rtðtjÞ
and tðtjÞ denote the returned response time and throughput
parameter for the jth invocation during ui, separately; g is
the failure-rate of the invocations during ui.

To obtain the time series for data window time and pre-
diction period, we set the length for time period Dtp ¼ 20 s,
and Dtl ¼ 4 s. So the predicted online reliability time series
contained 10 time points. We built the historic time series
parameters for the data window time and prediction period
according to Section 4.2.1. More specifically, the time series
for data window time: the preprocessed response time,
throughput and reliability system parameters for each Web

service were divided into time series as D
!

rt, D
!

t, and D
!

r.
Finally, we got 4;320ð¼ 24� 60� 3Þ continuous time series
in the 24 H dataset and 129;600ð¼ 30� 24� 60� 3Þ continu-
ous time series in the 1 M dataset for each Web service,

TABLE 4
The Real-Time Up-to-Date System Parameters Time Series

Parameters Parameter Values

O
!

rt
(692, 581, 401, 806, 1,013, 1,013, 418, 1,142, 943, 951)

O
!

t
(33,109, 10,694, 9,989, 7,715, 30,484, 10,717, 31,443,
22,151, 10,603, 16,514)

3. http://www.webservicex.net/ws/default.aspx 4. http://axis.apache.org/axis2/java/core/
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respectively. To generate the time series for prediction
period, we moved right twelve points (i.e., the time span of
Dtd þ Dtl, which is 24 s based on the time points at time Dtd,
and each set of 10 continuous points as a time series. These

time series are represented as P
!

rt, P
!

t, and P
!

r, respectively.

6.2 Approaches Subjected to Comparison

As noted in Section 2, many prediction approaches rely on
Bayesian rules (or Markov models) for primary modeling
notation. Moreover, modeling approaches such as Regres-
sion, Classification, System Model, and Collaborative Filter-
ing are also widely adopted. These notations have also
become the potential online reliability time series prediction
approaches. Accordingly, we implemented four different
reliability time series online prediction approaches based
on existing works and compared the proposed ROP with
four independent approaches to justify the effectiveness of
the proposed approach. Specifically, the four approaches
under comparison included

� Average Value of Historical Reliability (AVHR): The
reliability prediction result for a Web service based
on collaborative filtering approaches (e.g., [10], [12],
[19], [20], [21]) is the average value (during the
observed time period) from multiple evaluating cli-
ents. In order to study the effectiveness if this
method is applied for online reliability prediction
(i.e., predict the near future reliability), we use the
historic average reliability value as the prediction
results and name this approach as AVHR, i.e., the 10
points of the predicted time series p!r are all
1
h

Ph
i¼1 rðiÞ, where rðiÞ represents the ith reliability

value, and there are all together h reliability values
in the historical system parameter.

� Regression (Reg): Regression is a widely used, classi-
cal method for prediction. In literature [37], [50],
regression models based on curve fitting are used for
online failure prediction. Inspired by this observa-
tion, a regression method based on mean least
square error is proposed for comparison. The least
square fitting function is defined as

y ¼ p!r ¼ fðO!rÞ ¼ a0 þ a1O
!

r þ a2ðO!rÞ
2
;

where O
!

r represents the real-time observed up-to-

date reliability time series, and p!r represents the
online reliability time series to be predicted. The his-
torical reliability time series divided for data win-
dow time and prediction period will form

P
!ðiÞ

r ¼ fðD!ðiÞr Þ. The coefficients a0, a1 and a2 in the
fitting function y are calculated according to the his-
torical reliability time series. Next the fitting function

is used to predict the reliability time series of p!r.
� Similarity-based Prediction (SP): Instance Models (e.g.,

[44]) for online failure prediction adopt distance-
based similarity to find the most similar historic
parameters to the real-time parameters. Hence,
when the real-time reliability time series parameter
is similar to some historic reliability time series, the
most similar historic reliability time series’ near

future time series represent the prediction result.
The SP approach has been designed under the above
assumption. Let the real-time observed up-to-date

reliability time series be O
!

r, P
!ðiÞ

r will be the predic-

tion result, where D
!ðiÞ

r is the nearest data window

time reliability time series to O
!

r.
� Bayes’ Rules (BR): The BR approach is designed using

the Bayes’ Rule for prediction (e.g., [33], [57]). We
cluster the preprocessed historical reliability time
series and identify the motifs by the proposed motifs
discovery approach. We label each historic reliability
time series as recommended in (6). We estimate the
probability of the causal relations by the motifs in
the historical reliability time series evolution frombDr to bPr. Let g represent the total number of reliabil-
ity time series in the historical parameter, and for
any integer w 2 ½1; g�, assume the nearest motif for
the real-time observed up-to-date reliability time

series is D̂rðgÞ, then the motif of P̂ rð�Þwill be the pre-

diction result, which makes P ½P̂ rð�ÞjD̂rðgÞ� obtain
the maximal probability, i.e,

p!r ¼ bPrð�Þ ¼ argmaxbPrðwÞ; w2½1;g�
fP ½ bPrðwÞj bDrðgÞ�g:

6.3 Metrics

We employ the widely adopted Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) to evaluate the
prediction accuracy of different prediction approaches.

Let p!r be the prediction result and r!r be the observed
real reliability time series during the prediction period. The
MAE and RMSE are then defined as

MAE ¼
PN

s¼1
P10

i¼1 j p!ðiÞr � r!ðiÞr jjs
10�N

; (14)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
s¼1

P10
i¼1 ð p!ðiÞr � r!ðiÞr Þ

2

js
10�N

vuut
; (15)

where p!ðiÞr and r!ðiÞr are the values for the ith time point in

the time series of p!r and r!r, respectively. N is the total
times of predictions. According to (14) and (15), smaller val-
ues ofMAE and RMSE indicate better prediction accuracy.

6.4 Performance Comparison

We use both the 24 H dataset and 1M dataset to train the pre-
diction models for each Web service. We set the number of
motifs as k = 20 and k = 25 in ROP and BR, respectively, for
eachWeb service, and compare the averagedMAE andRMSE
of different prediction methods for 10, 50, 100, 200, 300 and
400 times of predictions. The experimental results for 24 H
and 1 M datasets are shown in Tables 5 and 6, respectively.
Because AVHR, Reg and SP methods are independent of the
number ofmotifs, the values are the same in row.

As can be seen from the results, both for BR and the pro-
posed ROP, the prediction accuracy has increased slightly
with the increment of prediction times. The prediction
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accuracies of AVHR, Reg and SP change differently as the
number of predictions increases. In addition, changes in
ROP and BR are much more gentle, whereas those of AVHR
and SP show obvious fluctuations. This observation demon-
strates the robustness of prediction performance of ROP
and BR. This is mainly due to that the dependency between
adjacent motifs has certain patterns as the system parame-
ters change, which makes the proposed motifs-based DBNs
model more suitable to carry out online reliability time
series prediction.

6.5 Motifs Number k

To study the impact of the number of motifs, we vary k from
5 to 30. The experiments are conducted using both the 24 H
and 1 M datasets. Each prediction method is executed 50
and 200 times for each Web service. The MAE and RMSE
values were analyzed and compared with the other four
prediction methods. Also, in the BR method, the number of
motifs was found to be the same as with our ROPmethod.

As can seen in Fig. 11, the value ofmotifs number exhibits a
significant impact on both ROP and BR. The larger value of k
results in a smaller MAE and RMSE. When k � 20, improve-
ments in prediction accuracy slow down for both the 24 H
and 1 M datasets. Since the AVHR, Reg and SP do not exploit
motifs, theirMAE andRMSE values remain constant over dif-
ferent k values. When k � 20, the prediction accuracy of ROP
outperforms all other four approaches significantly.

In sum, as the number of motifs increases, the prediction
accuracy also improves. However, when the number of

motifs reaches a certain limit (k � 25), no further improve-
ment can be achieved. In addition, comparing the results
obtained from the 24 H and 1 M dataset, for the same k
value, a larger training dataset shows a higher prediction
accuracy.

6.6 Training Set Scale

To study the effect of training dataset scale on prediction
accuracy, we extracted 1,500, 2,000, 2,500, 3,000, 3,500, and
4,000 time series respectively from each parameter’s 4,320
time series in 24 H dataset, and built the prediction model
for each method of ROP, AVHR, Reg, SP and BR, in which
the numbers of motifs in ROP and BR were set as 20 and
25, respectively. For each prediction method, we executed
the routine 100 times and 200 times, respectively, for each
Web service. The results are compared in Figs. 12a, 12b,
12c, and 12d.

Moreover, we separately selected the datasets nearby 5,
10, 15, 20, 25, and 30 days in the 1 M dataset, and con-
structed the m_DBNs model. The motifs numbers were all
set as k ¼ 25. We used the above six m_DBNs models for
ROP prediction, and the number of prediction times were
all set as N ¼ 200. The MAE and RMSE compared with
other four approaches are analyzed in Figs. 12e and 12f.

We also divided the 1 M dataset as day 1-5, day 6-10, day
11-15, . . . , day 26-30, and got six groups of datasets, and
constructed the m_DBNsmodels, separately. We also set the
motifs number as k ¼ 25, and the number of prediction
times as N ¼ 200. The comparison result related to ROP

TABLE 5
Prediction Accuracy Comparison for the 24 H Training Dataset

Metrics Methods
The motifs number k = 20 The motifs number k = 25

N = 10 N = 50 N = 100 N = 200 N = 300 N = 400 N = 10 N = 50 N = 100 N = 200 N = 300 N = 400

MAE

ROP 0.033 0.031 0.028 0.027 0.026 0.027 0.026 0.024 0.022 0.020 0.020 0.018
AVHR 0.097 0.087 0.095 0.088 0.085 0.099 0.097 0.087 0.095 0.088 0.085 0.099
Reg 0.056 0.053 0.049 0.048 0.045 0.045 0.056 0.053 0.049 0.048 0.045 0.045
SP 0.084 0.072 0.074 0.074 0.071 0.061 0.084 0.072 0.074 0.074 0.071 0.061
BR 0.069 0.060 0.062 0.064 0.058 0.057 0.062 0.055 0.053 0.051 0.045 0.038

RMSE

ROP 0.068 0.065 0.065 0.061 0.057 0.057 0.052 0.052 0.050 0.050 0.045 0.041
AVHR 0.201 0.183 0.197 0.187 0.178 0.208 0.201 0.183 0.197 0.187 0.178 0.208
Reg 0.103 0.097 0.095 0.094 0.092 0.093 0.103 0.097 0.095 0.094 0.092 0.093
SP 0.170 0.162 0.150 0.182 0.144 0.132 0.170 0.162 0.150 0.182 0.144 0.132
BR 0.135 0.113 0.122 0.109 0.115 0.110 0.113 0.107 0.104 0.105 0.092 0.083

TABLE 6
Prediction Accuracy Comparison for the 1 M Training Dataset

Metrics Methods
The motifs number k = 20 The motifs number k = 25

N = 10 N = 50 N = 100 N = 200 N = 300 N = 400 N = 10 N = 50 N = 100 N = 200 N = 300 N = 400

MAE

ROP 0.023 0.019 0.016 0.014 0.013 0.012 0.013 0.009 0.007 0.006 0.006 0.006
AVHR 0.092 0.088 0.081 0.082 0.081 0.080 0.092 0.088 0.081 0.082 0.081 0.080
Reg 0.038 0.032 0.029 0.026 0.024 0.023 0.038 0.032 0.029 0.026 0.024 0.023
SP 0.052 0.043 0.039 0.035 0.031 0.031 0.052 0.043 0.039 0.035 0.031 0.031
BR 0.028 0.022 0.021 0.022 0.017 0.015 0.028 0.022 0.021 0.019 0.017 0.015

RMSE

ROP 0.049 0.042 0.037 0.030 0.029 0.025 0.028 0.021 0.017 0.014 0.013 0.013
AVHR 0.191 0.188 0.177 0.178 0.176 0.172 0.191 0.188 0.177 0.178 0.176 0.172
Reg 0.085 0.071 0.063 0.058 0.055 0.054 0.085 0.071 0.063 0.058 0.055 0.054
SP 0.105 0.098 0.090 0.083 0.077 0.076 0.105 0.098 0.090 0.083 0.077 0.076
BR 0.064 0.051 0.049 0.048 0.041 0.039 0.065 0.052 0.050 0.045 0.042 0.038
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prediction and other approaches using the above six data-
sets, respectively, are analyzed in Figs. 12g and 12h.

The following observations can be made from Fig. 12: (1)
When the number of time series is small, the prediction
accuracy of ROP is smaller than other four methods. How-
ever, when the size reaches 3,000, its accuracy will be
higher, which indicates that ROP heavily relies on the scale
of training dataset and needs an adequate scale to ensure
the accuracy of the prediction model; (2) When the scale of
the training dataset increases, for taking different values of
k and N , in addition to the SP and BR, other prediction
methods show a significantly increasing trend in its predic-
tion accuracy rate. There is some fluctuation in the accuracy
of SP and BR with the training set size increasing, which
further proves the lack of robustness of the methods; (3)
The increasing trend of prediction accuracy slows down
when the number of time series in the training dataset
reaches 3,500. When we further enlarge the training dataset
scale, the prediction accuracy continues to grow, but slowly;
and (4) A more nearby dataset will result in higher predic-
tion accuracy. Therefore, a larger and more nearby training

dataset is more effective in increasing the prediction accu-
racy. The running statuses of Web services may be different
during various periods, which may impact the seasonal
characteristics of system parameters (e.g., system overload
during a specific festival). Furthermore, while considering
the computational complexity for model training and
updating, tradeoff decisions need to be made between accu-
racy and running time. We can also consider using multiple
m_DBNs models trained by the datasets under different
time duration. The model with higher prediction accuracy
can be selected for the corresponding time duration.

To further indicate the effectiveness of ROP in terms of
scalability and performance, we also extended the datasets
and generated synthetic datasets for reliability prediction
experiments. To better simulate the real-lifeWeb service QoS
data, the randomly selected time series data from the 1 M
dataset (altogether, we extracted a couple of time series con-
taining the time series for data window time and prediction
period) are added into the original 24 H dataset. As a result,
the original 24 H dataset was extended to have 50,000,
100,000, 150,000, and 200,000 time series, respectively.

Fig. 11. Prediction accuracy as impacted by the motifs number.

Fig. 12. Impact of training dataset scale.
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We separately constructed the m_DBNs models for each
of the 100 Web services based on the above four groups of
synthetic datasets, for which all the motifs numbers were all
set as k ¼ 25. The prediction models were used for online
reliability time series prediction for the Web services. The
number of prediction times for each Web service was set as
N ¼ 200. The prediction results are compared with the
observed real reliability time series data. The MAE and
RMSE are shown in Fig. 13.

As can be seen from the results, (1) when the numbers of
time series are 50,000 and 100,000, the MAE and RMSE are
close to the results obtained by using the data for 15 days
and 30 days in the 1 M dataset as the training sets (cf.,
Figs. 12e and 12f), which contain 64,800 and 129,600 time
series, respectively. This indicates that the synthetic datasets
approximate real data well and the prediction accuracy is
relative to the scale of training set; (2) The prediction results
also indicate high prediction accuracy with the synthetic
datasets. The prediction accuracies increase with the
increase of training set size. This provides further evidence
that a larger training set will result in better prediction per-
formance of ROP. The method of extending the training set
by adding randomly selected time series from the dataset
that is collected during different time duration is effective.

During the model training process, to ensure the trained
model is ready for use, some strategies are also needed to
judge whether sufficient data has been included in the train-
ing dataset. A more in-depth discussion can be found
in [70]. In sum, a common way to judge if the training data-
set contains sufficient data is to check whether the predic-
tion accuracy of the trained model meets the application
requirement. In general, under the premise of meeting the
time efficiency requirement for model training process, a
large training set leads to a more accurate model. To reduce
the computational cost, random sampling can be used to
reduce the scale of training data [70].

6.7 Prediction Term

As a short-term prediction problem, the online reliability
time series prediction needs to cover an effective prediction
term in the “near future”. The prediction term of ROP con-
sists of two time periods: the leading time Dtl and the pre-
diction period Dtp. Here the length of Dtl is always
determined by the time for constructing a reliable composite
system and the time when the user would actually invoke
the component system. The length of Dtp is determined by
the service execution time invoked by the user.

To study the impact of varying the length of the prediction
term on prediction accuracy, we perform two groups of experi-
ments: (1) fix the value of Dtp as 20 s and we vary the value of

Dtl from 2 to 6 s, (2) fix the value ofDtl as 4 s and vary the value
of Dtp from 10 to 50 s. We used both the 24 H and 1M datasets,
and preprocessed the two datasets using the above settings,
respectively.We set themotifs number as k = 25, the number of
predictions N as 200 times. The MAE and RMSE are analyzed
and compared with the other prediction methods as shown in
Figs. 14a, 14b, 14c, 14d, 14e, 14f, 14g, and 14h.

Furthermore, to find the inflection point of prediction
term length, (1) when Dtp ¼ 20 s, we further varied the
value of Dtl from 10, 20, 30, 40, 50, 55, 60 to 65 s; (2) when
Dtl ¼ 4 s, we varied the value of Dtp from 70, 80, 90, 100,
110, 115, 120 to 125 s. TheMAE and RMSE for the prediction
results from ROP under 24 H and 1 M dataset, are analyzed
as Figs. 14i, 14j, 14k, and 14l.

As can be seen from Fig. 14, (1) the length of prediction
term exhibits a significant impact on the prediction accuracy
of ROP and the compared methods (besides AVHR). The
larger value of prediction term for both Dtl and Dtp results
in a bigger MAE and RMSE; (2) Compared with other pre-
diction methods, the MAE and RMSE values from ROP are
always the smallest under our prediction term settings; and
(3) When Dtp ¼ 20 s and Dtl ¼ 55 s, a further extension of
Dtl will have little impact on prediction accuracy. The same
is found to occur when Dtl ¼ 4 s and Dtp ¼ 115 s, and Dtp is
extended. The above results indicate that ROP fits better for
a short-term prediction. It can also provide a higher predic-
tion accuracy than other methods of competition.

6.8 Services Invocation Granularity

While invoking the Web services, some APIs needed input
parameters and the Web services performed with different
execution granularities in response to different inputs.
However, the calculation approach of reliability put for-
ward in (13) is dependent on the upper limit of the response
time. It will result in a larger invoking granularity that will
lead to lower reliability for a component system. In the
above experiments, we invoked the appropriate Web ser-
vice and collected the QoS parameters by binding randomly
selected API, while the input parameter for each invocation
was fixed. Hence, the prediction results from the above QoS
evaluation methods may be taken to be invalid; invocation
granularities from different users are unknown.

To simulate an environment with varying granularity
during service invocation, we selected 30 Web services from
our previously evaluated Web services collection. For each
Web service, we partitioned its APIs with various possible
inputs into 20 equivalence classes according to the services
execution granularity. In the event, we created 20 threads in
our evaluation PC client at the same time. We then set a sto-
chastic granularity invocation request for each thread by
selecting an input parameter for the invoked API from a
random equivalence. The 20 threads continuously send
their same invocation requests at the same time (every
200 ms). The response times, response data sizes and
response HTTP types were received and saved separately.
The upper limit for response time was set as 1,000 ms. The
invocations are conducted continuously for 24 hours.

With such QoS observation approach, our purpose is to
provide an integrated evaluation to the Web services, i.e.,
for an unknown invoking granularity, the response time,
throughput, and reliability are approximately equal to the

Fig. 13. Simulation experiments on synthetic datasets.
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average invocation granularity. Hence, (11) and (12) can be
written as

rtðiÞ ¼ rtðuiÞ ¼ 1

10� 20

X10

j¼1
X20

s¼1 rtðtjÞ
s; (16)

tðiÞ ¼ tðuiÞ ¼ 1

10� 20

X10

j¼1
X20

s¼1 tðtjÞ
s; (17)

where rtðtjÞs and tðtjÞs represent the returned response time
and throughput parameter for sth thread’s jth invocation
during time slice ui, respectively. Moreover, the failure-rate
g for the reliability in (13) was calculated by the whole 20
threads each with 10 invocations during time period ui.

The other preprocessing for this dataset are all the same
as the approaches in Section 6.1. We will use this new data-
set to perform the following experiments.

During this group of experiments, we vary the motifs
number from 5 to 30, and the m_DBNs models are trained
by the new dataset for each of our observed Web services,
separately. To study the prediction accuracy of ROP under
the new dataset, we simulated 200 rounds of the unknown
granularity user invocations by selecting stochastic granu-
larity invoking request for each Web service. The real-time
up-to-date response time and throughput parameters time
series are observed from the simulated random gran-
ularity’s invocations for each time of prediction. The MAE
and RMSE are separately computed between the real-time
observed and predicted reliability time series.

We also use the previous 24 H dataset (constructed in
Section 6.1 for these 30 Web services) to train the m_DBNs
models for each Web service, and the models are used to
predict the reliability time series by the simulated random

invoking granularity’s real-time system parameters. The
comparisons for different dataset are shown in Fig. 15.

As can be seen from the results, the models trained by the
new dataset show higher prediction accuracy; this provides
more evidence than the previous ones. This also indicates
that: (1) Different granularities of invocations affect the reli-
ability of Web services mainly because of our reliability cal-
culation approaches for a timeout limit, which is always
determined by the user’s preferences; (2) When k � 20, the
improvement of prediction accuracy also slows down under
the two different datasets; and (3) Different service QoS
evaluation methods are suitable for different types of Web
services APIs. The new QoS evaluation method is more
effective if the API performs well at different granularity or
returns different response data sizes under different invok-
ing input parameters. More specially, a hybrid evaluation of
QoS can be applied for large scale Web services.

6.9 Computational Complexity

The computational complexity of ROP can be divided into
model training (collecting the QoS parameters and train the

Fig. 14. Impact of the length of prediction term.

Fig. 15. Impact of services invocation granularity.
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m_DBNs to construct the prediction model) and online pre-
diction (performing predictions based on the model and the
real-time up-to-date system parameters). Model training
needs an off-line computing environment and it depends
on a continued time of the QoS evaluation. Once an
m_DBNs model has been trained, the computational com-
plexity of online prediction is mainly affected by the motifs
number, and it is independent from the scale of training set.

To study the impact of motifs number to the computa-
tional complexity of online prediction, we used the 24 H
dataset, and varied themotifs number k from 5 to 30.We sep-
arately constructed them_DBNsmodel for eachWeb service.
We used MySQL Database to manage the CPTs. Each CPT
was saved in a database table. To simplify the database oper-
ation, each record in the table was provided with an identifi-
cation (ID) column, with the ID representing the CPT
conditional item’s motifs combination. For example, in the

row of bDrtðiÞ; bDtðjÞ (cf. Fig. 10), the ID could be calculated as

ID ¼ ði� 1Þ � kþ j;

where k is the motifs number.
We also constructed the prediction models for the other

four prediction approaches. We set the number of predic-
tions for each Web service as N ¼ 20, and compared the
average execution time for each online prediction.

As can be seen from Fig. 16, the average execution time
for each ROP prediction increases with the increment of
motifs number. As the average execution time for SP
method 	 17 second, for any k, the curve for SP is beyond
the range of this figure. It is obviously bigger than that
found with other methods. The average execution time of
AVHR, Reg, and BR is lower than that with the ROPmethod.
This indicates that trade-off decisions need to be made
between accuracy and running time while selecting differ-
ent prediction methods.

It is worth noting that, the process of constructing the
m_DBNs model is offline. An ROP prediction with a trained
m_DBNsmodel is online, and the computational complexity
is under linear time, with the increment of k value. The
computational complexity of ROP prediction mainly
included computing the similarity between real-time param-
eters and their motifs, and searching in CPTs. The similari-
ties in computing operations require constant times. Clearly,
ROP is highly suitable for almost real-time prediction.

6.10 Discussion

In the short-term, ROP can predict the online reliability time
series for popular Web services such as Bing, SalesForce,
PayPal, Google Search and Amazon. Our experimental
results have demonstrated the effectiveness of ROP in

solving the three prediction challenges (see Section 1) for
the component systems in a service-oriented SoS.

With respect to prediction challenge 1, the Markov chain
rule was adopted to predict the future on the basis of the
up-to-date running status of the system. From Figs. 11, 12,
13, and 15, it can be seen that a proper value of motifs num-
ber k and training set scale will lead to higher prediction
accuracy for ROP. When k = 20, 25, 30 and the training set
scale is more than 3,500 time series, the prediction accuracy
of ROP performs better than other comparable approaches.
This points to the effectiveness of first-order Markov chain
rule in solving the challenge of the component system’s
irregularly changed QoS parameters.

Regarding prediction challenge 2, we proposed the
motifs-based DBNsmodel (named as m_DBNs). Figs. 11 and
15 show that, when value of k is further enlarged, the trend
of growing prediction accuracy gets arrested. This is
because the motifs in m_DBNs model basically reflect the
patterns of time series, when k � 20. However, our experi-
mental results have shown that ROP is associated with a
higher prediction accuracy than the BR approach; this fur-
ther illustrates that the causal relations among the nodes in
m_DBNsmodel are correct and effective.

With respect to prediction challenge 3, the QoS parame-
ters of response time, throughput and reliability were evalu-
ated through client side service (or component system)
invocations and the corresponding responses. This pro-
vided us the estimates of the observed parameters for online
reliability time series prediction. We have seen that the use
of our QoS evaluation method and different service invoca-
tion granularity may lead to higher running complexity and
QoS values of different server side jobs. In case of unknown
(or unpredictable) size service invocation granularity, the
training set with average invocation granularity constructed
under stochastic granularity service calls has yielded higher
prediction accuracies.

Overall, the results of the experiments have confirmed
the merit of the proposed ROP. The prediction results show
high prediction accuracy and robustness. We conclude that
the impacts on the effectiveness of ROP are on the follow-
ing: (1) the scale of the training dataset, (2) the motifs num-
ber k, (3) the length of leading time and the prediction
period, and (4) the setting for service (or component system)
invocation granularity while collecting the training dataset.

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented an online reliability time
series prediction approach, referred to as ROP for the com-
ponent systems in a service-oriented SoS. The proposed
approach integrates time series motifs into the traditional
dynamic Bayesian Networks, yielding an m_DBNs model,
that is capable of dealing with the three prediction chal-
lenges arising from (1) uncertain component systems’ run-
time environment, (2) the need to predict the time series for
near future, and (3) limited observed variables. The Mar-
kovian process assumption and the conditional indepen-
dence assumption are adopted to describe the dynamic
evolution for the component systems, and key system
parameters, including response time, throughput, and reliabil-
ity, which are represented as motifs to enable the training

Fig. 16. Execution time comparison.
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and prediction using the m_DBNsmodel. We have also con-
ducted experiments on real-world Web services to evaluate
the effectiveness of the proposed approach. Four other reli-
ability prediction approaches have also been implemented
for comparison purposes. The experimental results have
demonstrated the high prediction accuracy and the robust
prediction performance of ROP.

The proposed ROP can provide the client/service
couple’s online reliability time series prediction. In practice,
each client monitors and predicts its own focused SoS com-
ponents. As an extension, a centralized prediction broker
can be used to gather all user/service couples’ reliability
time series prediction results under a unified clock. At each
time point, the prediction results will form a sparse user/
service matrix. A collaborative filtering approach can then
be adopted to predict the missing values for each time
point’s sparse matrix. The proposed online reliability time
series prediction approach can be an instrument in serving
SoS’s optimal service selection for composite system con-
struction under a complicated and changing environment.

We have also identified some limitations of the proposed
ROP, which have pointed to important future research
directions. One limitation is that the observed input param-
eters may change while applying ROP in certain other sce-
narios. The m_DBNs model may not work well anymore,
and we will need to analyze the causal relations and modify
its structure. Besides, although the experimental results
have shown high prediction accuracy from ROP, it may still
be possible to further optimize the structure of m_DBNs.

Moreover, once ROP is integrated into a service composi-
tion execution engine for the purpose of selecting component
systems with higher runtime reliabilities, the prediction
accuracy and the real time performance of ROP prediction
should be guaranteed. The prediction accuracy and compu-
tational complexity of ROP rely on the setting of motifs num-
ber k and the trained m_DBNs model based on the dataset.
The k value can always be set following an in-depth analysis
of the experimental results over different datasets and the
requirement of specific application. A larger dataset is a posi-
tive factor affecting the prediction accuracy of ROP. During
the execution life cycles of the component systems, more and
more QoS parameters can be collected. The historical system
execution parameters with more useful instances will then
become available. To integrate these new instances and
obtain a more accurate m_DBNs model, ROP needs to re-
train the model. This can be time consuming. We regard this
as another limitation of ROP. In the future, incremental
learning technologies need to be investigated.

We plan to extend our approach via real applications.
More specifically, we propose to focus on

1) designing an SoS oriented online fault removal
framework based on the prediction result, and

2) applying this method to various types of service-
oriented systems.

We will also develop a tool to achieve proactive service
replacement based on ROP for various types of service-ori-
ented systems. These extensions should be helpful in recon-
firming the benefits of our approach and demonstrate its
applicability in service-oriented SoS and other modern
software systems.
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