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Abstract It is hard to localize the primary cause of performance anomalies in cloud computing systems

because of the complexity of interactions between components. The hidden connections in the huge number of

request execution paths in such systems usually contain useful information for diagnosing performance anomalies.

We propose an approach to localize anomalous invoked methods and their physical locations by leveraging

request trace logs, which involves two steps: (1) firstly, cluster the requests according to their corresponding

call sequences, identify anomalous requests with principal component analysis, and then pick out anomalous

methods with Mann-Whitney hypothesis test; (2) secondly, compare the behavior similarities of all replicated

instances of the anomalous methods with Jensen-Shannon divergence, and select the ones whose behaviors are

different from those of others, which will be chosen as the final culprits of performance anomalies. We conduct

experiments with four real-world cases to validate our approach in Alibaba Cloud Computing Inc. The results

demonstrate that our approach can locate the prime causes of performance anomalies with the low false-positive

rate and false-negative rate.
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1 Introduction

Due to the continuous growth of the scale and complexity of systems, it becomes more and more difficult

to build software with high quality assurance [1–3]. It is beyond the engineers’ ability to design sufficient

test cases to cover all scenarios for the production environments. Some bugs will not manifest themselves

until a specific condition occurs. Therefore, it is almost impossible to deploy a bug-free system.

Compared to the functional bugs that usually cause the breakdown of the systems, performance anoma-

lies are harder to be diagnosed [4]. Performance diagnosis is labor-intensive, especially for the production
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Figure 1 The spatial distribution of the time-out anomaly for one anomalous method in a production cluster for 24 hours.

cloud computing systems. Such systems generally consist of numerous software components and serve

tremendous user requests simultaneously. Furthermore, to achieve elasticity, each component generally

has a lot of duplicated instances. Replicated instances enhance the scalability and availability of the sys-

tem, but make performance anomaly diagnosis more complex. Sometimes, when performance anomalies

happen, the defect of a component is only manifested in part of instances and anomalous instances are

mixed with normal ones . For example, a defective load balance policy in a storage service may result

in some overloaded storage component instances, whereas, the remaining instances may behave normal-

ly. Figure 1 shows the spatial distribution of the time-out anomaly for one anomalous method in one

Alibaba prodution cluster. We can see that most time-out anomalies only happened in five instances in

24 hours. In this situation, operators not only want to know which invoked methods (i.e. logical compo-

nent) become anomalous, but also need to identify their instances (i.e., physical locations). Hence, when

the system suffers performance degradation (e.g., the average response time of user requests increases),

locating anomalous instances becomes of critical importance.

However, current approaches generally focus on locating anomalous physical nodes (e.g., [5]) or logi-

cal components (e.g., [6–8]). Such coarse-grained results are not enough. In the former case, given an

anomalous physical node, system operators have to identify the faulty component among many com-

ponents hosted in the physical node. In the latter case, given an anomalous logical component, the

operators have to identify which ones among its tremendous instances distributed in the cloud are faulty.

Consequently, huge human efforts are still required to further pinpoint the subtle root cause.

Furthermore, many existing research investigations utilize rule-based approaches (see, e.g., [9]) or

expectation-based approaches (e.g., [7,10]) to diagnose performance. Engineers are required to manually

design detecting rules or expectations according to their specific domain knowledge. However, a produc-

tion cloud system generally offers a lot of concurrent services and user requests because these services

are complicated. Engineers have much difficulty in understanding the characteristics of component in-

teractions. It is beyond the engineers’ ability to construct such rules or expectations in cloud computing

system.

This paper is an extended work of our previous research [11] that localizes the anomalous invoked
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methods. In this paper, without any specific domain knowledge, we aim at not only localizing anomalous

methods but also the anomalous instances that are the physical locations of the anomalous methods.

Since typical cloud computing systems are service-oriented, the response time of user requests naturally

reflects the system performance. In this regard, an end-to-end tracing user request approach is a viable

means to expose performance data so as to help performance diagnosis. Therefore, based on request

trace logs, we solve the problem with two steps. First, the anomalous methods are localized with three

sub-steps: (1) cluster the user requests into categories; (2)identify anomalous requests within the same

category through the principal component analysis [12] and separate the normal and anomalous requests

into two sets; (3) compare the behavior of the same invoked methods in normal and anomalous sets with

Mann-Whitney non-parameter statistical hypothesis test [13] and pick out anomalous methods. Second,

anomalous instances are localized with two additional sub-steps: (1) group the latencies of an anomalous

method by the host addresses of instances and create histograms for each of them; (2) compare the

similarities among these histograms with Jensen-Shannon divergence [14] and localize the histograms

whose behaviors are the most different from those of others, which are considered to be the culprit of the

anomalous methods.

We verify the effectiveness of our approach in the Alibaba cloud computing platform, which is a real-

world enterprise-class cloud computing infrastructure providing services to the public in China. The ex-

perimental results demonstrate that our approach can locate the primary causes of performance anomalies

with a low false-positive rate and false-negative rate. So far, our approach has been successfully applied in

the Alibaba cloud computing platform to diagnose performance anomalies in both testing and production

clusters.

The remainder of this paper is organized as follows. Section 2 compares our approach with the related

work. In Section 3, we briefly introduce the workflow of our approach. Section 4 and Section 5 respectively

present how to localize the anomalous methods and service instances in detail. In Sections 6 and 7, we

give the experimental scenarios and results. Section 8 concludes this paper.

2 Related work

End-to-end request tracing approaches are efficient for operators to conduct performance debugging.

Basically, in order to get request trace data, there are two kinds of instrumentation mechanisms: white-

box based mechanism and black-box based mechanism. A white-box based mechanism (e.g., [15–17])

assumes the availability of the source codes and utilizes explicit global identifiers to correlate runtime

events; while a black-box-based mechanism (e.g., [18–22]) assumes no knowledge of the source codes and

adopts probabilistic correlation methods or statistical regression techniques to infer the casual paths.

Since the source codes are available in typical production cloud systems, in this paper, we utilize a

white-box instrumented mechanism to trace requests.

Pinpoint [23] traces request call relationship in multi-layers of Web service components and adopts a

clustering algorithm to group failure and success logs. It finds out the anomalous components through

dependency mining and a probabilistic context free grammar. Chen et al. [24] present a thoughtful

discussion on how request tracing can help operators on the process of performance anomaly detection

and diagnosis. Magpie [25] uses event schema to correlate requests and clusters requests according to

the similarity of structure and timing of requests’ paths. X-trace [26] constructs the causal relationship

of requests through modifying the transport protocol and detects the anomaly through comparing the

structure difference of requests. Pip [7] and Ironmodel [10] apply users’ expectation to determine whether

a request is anomalous or not. The common ground of these researches is that they use self-definition

event schema or expected models to detect requests. It is very hard to construct these models because it

requires much specific domain knowledge. However, our approach makes the intrinsic characteristics of

trace logs to diagnose the anomalies without domain knowledge.

Spectroscope [8] groups the paths of requests by call structures and finds the anomalous requests

through comparing the behaviors of requests in two time periods. This research focuses on performance

changes of two time periods, while our work tries to narrow down the space of potential root causes
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Figure 2 Basic structure of tracing logs.
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Figure 3 Overview of the approach.

of performance problems with the trace logs in one time period. Furthermore, it does not differentiate

the importance of invocation methods in call graphs and exhausts all related methods to localize the

abnormal ones. Magnifier [27] performs an empirical study on localizing the performance bottlenecks.

Troubleshooters are required to instrument the probes conforming to the naming specifications of the

system architecture. This paper is free from this restriction.

Other existing approaches aim at utilizing system resources [28–31] to learn models to detect per-

formance anomalies; whereas, such models cannot detect performance anomalies with finer granularity

(e.g., anomalous instances). Furthermore, it takes more time for them to train logs in exchange for the

sufficient accuracy of inference.

3 Sketch of the approach

Our tracing mechanism explicitly instruments the target system and associates the activities of requests

with global identifiers. Since the execution time of the invoked methods can directly reflect how the

system performs a request, we choose to capture such execution time. Once the instrumented methods

are invoked, a record with some contextual information will be kept into a log. Figure 2 shows the

basic structure of the trace logs. Each line contains the current time stamp, the global identifier for the

request, the name of the invoked methods, the label signifying the start or end of the invocation, and

other redundant information. The call sequence of a user request can be constructed from the distributed

trace logs according to the nested relationships of start/end flags. Usually, performance anomalies are

directly reflected from the deviation of request latencies. Hence, these trace logs could be utilized to

localize the primary causes of performance anomalies.

Our approach contains two parts. First, we try to localize the anomalous methods with three sub-

steps. Second, we try to localize the anomalous instances of service components with two sub-steps. The

workflow of our approach is shown in Figure 3.

3.1 Localizing anomalous methods

3.1.1 Clustering requests

Usually, user requests for the same service may have different types of call sequences. For example, the

call sequence of reading files from the cache is different from that of reading files from the disk. Different
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call sequences reflect different semantics; hence, we first cluster user requests into categories according to

their call sequences. The requests within one category have the same method call sequence.

3.1.2 Separating requests to normal and anomalous sets

The latencies of requests will be influenced when they pass through anomalous methods. We hope

to localize the anomalous methods through comparing the behavior of normal requests with that of

anomalous requests. Therefore, we need to identify anomalous requests within the same category, and

then separate the normal and anomalous requests into two sets.

3.1.3 Ranking suspicious methods

Then, for invoked methods, the latency distributions in normal sets are compared with those in abnormal

sets. A method is defined to be anomalous if the two latency distributions differ obviously. We pick out

all suspicious methods and present the top k to operators.

3.2 Localizing anomalous instances

The target of this step is to help operators diagnose whether the behavior of methods becomes abnormal

in all replicated instances or it just happens in parts of them. It helps operators further locate the primary

causes of problems and understand the extent of the crisis. This process contains two sub-steps: (1) group

the latencies of an anomalous method by the host addresses of instances and create histograms for each

of them; (2) compare the similarities among these histograms and select the ones whose behaviors are

mostly different from those of the others.

4 Localizing anomalous methods

4.1 Clustering requests

Homogeneous replicated instances provide the same instrumented methods for the public. Identical

requests may pass through different instances. Although the physical locations (i.e. replicated instances)

of instrumented methods are important attributes, we cannot directly consider them during clustering.

Suppose a request goes through three instrumented methods. The three methods belong to three kinds

of services respectively and each service has one hundred homogenous instances deployed on one hundred

hosts. In total, the request has C1
100 × C1

100 × C1
100 = 1 × 106 kinds of physical paths, except for the

failure paths. Actually, the number of instrumented methods that user requests invoke is far more than

three. If the host addresses are involved in the process of clustering, it will cause too much computational

complexity. Hence, we first cluster requests without considering the physical information.

An incremental clustering algorithm [25] is applied. For a request i, all its relevant methods could

be stitched together by the request identifier, and its call sequence Seqi = 〈(m)ij〉 can be constructed.

Then a corresponding string representation m1m2 · · ·mj can be created from the call sequence. Requests

within one cluster have the same string representation. The string representations are defined as the

centroids for clusters. The distance metric is the string-edit-distance. For a new request, the cluster

calculates the distance between the string representation of the request and the centroid of each cluster.

The request will be added into the cluster with the zero distance, unless there is no zero distance, in

which case a new cluster is created. The whole process of clustering can be finished by traversing all call

sequences just one time.

4.2 Separating requests to normal and anomalous sets

When performance anomalies occur, normal and anomalous requests may share the same call sequence

and be grouped into one cluster; hence, for each cluster, we hope to first identify the anomalous requests.

Since we do not need domain specific knowledge, an unsupervised machine learning algorithm (i.e.,

principal component analysis) is utilized to achieve the goal.
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Figure 4 Ratios of the request number in each cluster

to the length of corresponding call sequence.

Figure 5 Cumulative ratios of the request number in

each cluster to the total requests.

Principal component analysis (PCA) is a useful algorithm for high-dimensional data compression and

is widely adopted in anomaly detection [32–34]. Two conditions need to be satisfied for the input data

of PCA. First, the number of observations must be greater than or equal to that of their variants, i.e.,

PCA requires the number of requests to be greater than or equal to the length of the corresponding

call sequences. Second, the high-dimensional data should have the low dimensionality. Hence, for each

cluster, we have to check whether the trace data satisfies these two conditions.

4.2.1 Checking the characteristic of the clusters

From Figure 4, we can see that the request numbers in most clusters are smaller than the lengths of the

corresponding call sequences. It means that most clusters cannot satisfy the first condition. In other

words, these clusters cannot be directly utilized by PCA. This figure contains three kinds of applications

in our study. The x-axis is the cluster identifier and the y-axis represents the ratio of the request number

in a cluster to the length of corresponding call sequence.

Although it is statistically meaningless to use PCA for these small clusters, we cannot discard them.

These clusters cannot be dropped since the summed effect of the long tail is equally important to those

of large clusters. Figure 5 shows that although just a small proportion of clusters (statistically less than

10%) contains over 75% of all requests, the summed request number in left 90% clusters still takes up

about 25% of all requests. The x-axis is the cluster number and the y-axis is the cumulative percent ratio.

For instance, the ratios of requests for the SaveFile operation in the first two clusters are 0.40 and 0.25

respectively and the sum of the remaining ratios for the other clusters is 0.35, which has a statistically

significant influence on the false-negative rate of the diagnosing process (see Section 7). Therefore the

clustering result of the step one should be adjusted further in order to utilize all clusters.

The target of adjustment is to select major clusters and merge the minor ones into them. Clusters with

the large ratios of requests are defined as major clusters and those with the small ratios are defined as

minor clusters. There are many algorithms for us to choose; here a simple heuristic algorithm is adopted.

(1) Selecting major clusters. First, all clusters are ranked in descending order of sizes (i.e., the ratios

of requests). Then, clusters are selected until their summed ratios are larger than a threshold α. These

selected clusters are considered as the major clusters.

(2) Merging minor clusters into major ones. All the other clusters are traversed in order. The similar-

ities between the centroid of each minor cluster and the ones of major clusters are computed. A minor

cluster will be merged into the major one with the largest similarity. The measurement of similarity has

two standards: first, the string-edit-distance is the nearest; second, the number of invoked methods in

minor clusters is larger than or equal to that of major clusters.

The detailed algorithm is shown in Algorithm 1. We set the threshold α to adjust the cluster numbers,

as shown in Figure 5. In our application, there are on average 3 to 5 major clusters for each kind of user

request.

Then, we check if the trace data in major clusters meets the second condition. For each major cluster,
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Algorithm 1: Adjustment of clusters

Input: Cseq = 〈(c, n)i〉, a call sequence list of clusters, where c is the centroid of cluster and n is the

ratio of requests.

Output: Cmain = 〈(c, n)i〉, a call sequence list of main clusters.

Cseq .Sort(reverse = True)

sum ratio = 0;

Cmain = [];

main token = 0;

/*Selecting */

for i in range(len(Cseq)) do
c ratio = Cseq [i][1];

sum ratio+ = c ratio;

if sum ratio > α then
main token = i;

break;
end

end

/*Merging */

for i in range(main token+ 1,len(Cseq)) do
max sim = 0;

token = 0;

for j in range(len(Cmain)) do
sim = Similarity(Cseq[i][0], Cmain[j][0]);

if max sim < sim then
max sim = sim;

token = j;
end

end

Cmain[token][1]+ = Cseq [i][1];

end

we construct a matrix Y with its requests. The element Yij denotes the execution time of the jth

method in the call sequence of the ith request. We observe that all these matrices have the low intrinsic

dimensionality. For example, Figure 6 plots the cumulative variance distribution of the invoked methods

for four major clusters in our application. Just as the traffic datasets studied in [35], Figure 6 shows that

a small set of principal components captures the large percent of the total variance, which demonstrates

that the trace data in major clusters satisfies the requirement of PCA.

4.2.2 Separating requests into two sets

Determining principal components. For a cluster containingm requests, suppose there are n invoked

methods for the corresponding call sequence (i.e., the length of this call sequence is n), we can construct

an m × n latency matrix Y . The value of each element is the response latency for the method in the

corresponding request. Row i is the n-dimensional latency vector for the ith request while column j is

the m-dimensional latency vector of the jth method in all call sequences. After adjusting Y to ensure

that each column has the zero-mean, we apply PCA to get k principal components (PCs). Along these

k PCs, the requests are captured with a majority of total variance.

Identifying anomalous requests. The set of principal components can be utilized to construct

a matrix P , which represents the norm subspace of the corresponding cluster. On the contrary, the

remaining components can form a matrix I − PPT denoting the anomalous subspace. For each major

cluster, we separate their requests into the normal set and the anomalous set according to the distances of
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Figure 6 Cumulative percent variance of methods in different major clusters.

their projection onto the anomalous space. A request will be put into the anomalous set if its projection

is larger than a given threshold, which can be computed as squared prediction error (SPE):

SPE =
∥
∥(I − PPT)y

∥
∥ > δβ , (1)

where δβ is the value of the Q-statistic at the 1− β confidence level.

4.3 Localizing anomalous methods

We care about the methods whose response latencies have much fluctuation in the problem periods.

However, we observe that the invocation time of many methods in user requests is stable. These methods

are not the causes of performance degradation, but the noises for diagnosis. Thus we first need to filter out

the noises and keep the methods whose response latencies have much fluctuation. These kept methods

are then defined as the principal methods. Then, we localize anomalous methods from the principal

methods.

4.3.1 Selecting principal methods

In this section, we introduce how to extract principal methods from all methods in major clusters. Note

that the PCs (i.e., eigenvectors of Y TY ) are not the principal methods. If high dimensional matrix can

be described by the k PCs, the original matrix can be replaced by a subset of k columns with a relatively

small loss of information [12]. Therefore, we utilize the B4 [36] to pick out principal columns (i.e.,

principal methods) from all candidate columns. The target of the B4 is to select principal methods whose

regression coefficients (i.e., weights) are the largest in corresponding PCs. Each PC can be considered as

the linear combination of columns (i.e., methods), and the larger the weight of a method is, the more it

contributes to its corresponding PC.

For a major cluster, the selection process is as follows: first all PCs are ranked in descending order of

variance; then for each principal component, the column with the largest coefficient is retained. If the

column with the largest coefficient in one PC has been selected from the former PCs, the column with the

second largest coefficient will be considered to pick out. The process will be iterated until all k principal

methods are selected.
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4.3.2 Identifying anomalous methods

By comparing the response latencies of each principal method in the normal and anomalous sets, we can

quickly localize the ones whose performance fluctuates the most severely. For each principal method in

major clusters, its corresponding latency distributions in the normal and anomalous sets are compared.

We employ a standard Mann-Whitney U test [13] to quantify the difference between the two latency

distributions. The null hypothesis is that the latency distributions for the normal set and the anomalous

set are the same. A principal method is defined to be anomalous if its null hypothesis is rejected, i.e.,

the difference between the two latency distributions is calculated to be statistically obvious.

There are two reasons for us to choose the Mann-Whitney U test. First, the latency datasets of the

principal methods do not belong to any particular distribution; therefore, the statistical hypothesis test

should require no specific distributions for the data sets; second, in some major clusters, the number

of requests in the anomalous set is small, which requires the statistical hypothesis test to consider the

small and large sample volume separately. The characteristic of the Mann-Whitney U test satisfies our

requirements.

A scoring scheme is applied to record the suspicious extent of principal methods. For each principal

method, we assign it a score to indicate how the method is suspicious, and iterate all clusters to calculate

the score. At the beginning, the score for each principal method is zero. For one cluster, if a principal

method is judged to be suspicious, the score of this method will be added by one. The top k methods

will be selected according to the suspicious scores. Operators are encouraged to examine the methods in

order of decreasing suspiciousness.

5 Localizing anomalous instances

Next, we try to localize the anomalous instances that are the physical locations of the anomalous methods.

For anomalous method of mi, we measure the behavior similarity in all related instances. If the behavior

of an instance in host hj differs significantly from the ones in other hosts, the misbehavior of mi is

considered to be caused by the instance in host hj .

The similarities between two instances are measured by the square roots of Jensen-Shannon divergence

(JSD) [14]. JSD is widely adopted to quantify the similarity between two data sets. The latencies of

the suspicious method mi in all anomalous sets are categorized according to the instance addresses and

the histogram of latencies for each category is generated. Here a latency histogram of the method mi in

instance j is defined as

hij = (r1, r2, . . . , rn)ij , (2)

where rk is the ratio of the invoked times of mi in the kth bin to the total invoked times in the instance

j. For simplicity, the width of each bin is considered to be the equal and computed by the formula

⌈
max(l)−min(l)

binNum

⌉

,

where l is the latency of mi. The histograms of the method mi for all instances have the same size of

bins. For method mi, the dissimilarity between the instance j and k is defined as

{
dissimj,k = JSD(hij , hik) =

1
2D(hij , vij) +

1
2D(vij , hik),

vij =
1
2 (hij + hik),

(3)

where D(X,Y ) represents the Kullback-Leibler divergence [14] and can be computed as

D(X,Y ) =
∑

i

X(i) ln
X(i)

Y (i)
. (4)

The larger the dissimj,k is, the more dissimilar the two instances are.
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Algorithm 2: Process of computing the dissimilarity ratio for each instance

Input: S = {(h, l)i}, a set of 2-tuple, where h is the host address of the instance and l is the response

latency.

Output: dissimRatio dic, a dictionary of (instance, dissimilarity ratio) pair.

/* Categorizing the requests by the host addresses of instances.*/

host latencyList dic = GroupByHostIP (S);

host histogram dic = {};
for hi, latencyListi in host latencyList dic do

/*Computing the histogram for each host.*/

hist = Histogram(latencyListi);

/*Computing the ratio of the number in each bin to total counts.*/

host histogram dic[hi] = hist/len(latencyListi);

end

/* Computing the JSD of histograms between the host*/

total = 0;

hist dissimilarity dic = {};
for hi in host histogram dic do

dissimi = 0;

for hj in host histogram dic do
dissimi,j = JSD(hi.hist, hj.hist);

dissimi+ = dissimi,j;

end

hist dissimilarity dic[hi] = dissimi;

total+ = dissimi;
end

/*Computing the dissimilarity ratio for each instance*/

dissimRatio dic = {};
for hi, dissimi in host dissimilarity dic do

dissimRatio dic[hi] = dissimi/total;

end

Then, we use the dissimilarity ratio to measure the dissimilarity extent of one instance with the others.

For instance j, the dissimilarity ratio is defined as

dissim ratioj =

∑

k∈H dissimj,k
∑

j∈H

∑

k∈H dissimj,k
. (5)

Ideally, the dissim ratio for all instances should be close to each other. If a given instance’s dissim ratio

differs significantly from those of the other instances, the instance is considered to the location of the

anomalous methods, which help operators narrow down the diagnosing scope. The detailed measuring

algorithm is described in Algorithm 2.

6 Evaluation

Our approach has been applied in Alibaba Cloud Computing Inc. to diagnose anomalies when the

performance of systems degrades. In this section, we mainly describe the experimental environment and

four scenarios of performance anomalies.
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Table 1 Key factors influencing the diagnosing results

Factor Value Description

α 0.75 The ratio of the request numbers in main clusters to the total requests.

γ 0.95 The required variance for the trace logs in PCA.

β 0.05 The significant level for the anomalous request detection in PCA.

λ 0.05 The significant level for Mann-Whitney U test.

6.1 Experimental setup

6.1.1 Cluster sizes and workloads

The following experiments are based on the Alibaba cloud computing platform, which contains a series of

service components, such as distributed scheduler, storage, communication, and monitor. The application

that we use is a file-sharing service, which is deployed on the distributed computing infrastructure. When

the performance (i.e., response latencies) of the application degrades under the steady load, we try to

detect the primary causes. The effectiveness of our approach is studied in a testing cluster of 100 nodes in

Alibaba Cloud Computing Company. Three types of user operations are applied, i.e., SaveFile, ListFile,

and ReadFile.

6.1.2 Performance problems scenarios

Many factors can cause performance degradation of cloud computing systems. We will evaluate our

approach by four case scenarios. All cases are the typical real-world performance anomalies that happened

in Alibaba cloud computing platform. The first three performance anomalies are selected from the bug

repository of the Alibaba cloud computing platform. We re-inject these anomalies into the system and

validate whether our approach can diagnose these problems or not. The last performance anomaly occurs

in the production cluster. With our approach, an operator conducts the diagnosing process.

1) Misconfiguration. In a configuration file, the parameter controlling ON/OFF of merging small files

is set to OFF, which causes the performance of the ListFile to degrade sharply.

2) Failover. A small portion of service instances used for storing files is killed. In the process of

service recoveries, the performance of the SaveFile decreases significantly.

3) Code bug. When a service component is upgraded, a deprecated method that adds an extra cost

of the ReadFile is accessed due to the mistake of a developer. It causes the average response latencies of

the ReadFile to rise obviously.

4) Design defect. Most SaveFile requests are centralized to a small portion of hosts for a period of

time due to a defect of the load balance mechanism. Hence, the average response latencies increase about

two times larger than the normal.

7 Evaluation of results

We use the metrics of false-positive rate and false-negative rate to evaluate the results of localizing

anomalous methods. The false-positive rate is defined as

num of misunderstood methods

num of normal methods
, (6)

i.e., the ratio of the number of normal methods which are mistaken for the anomalous to the total normal

methods. The false-negative rate is defined as

num of leaked methods

num of anomalous methods
, (7)

i.e., the ratio of the number of abnormal methods which are mistaken for the normal to the total anomalous

methods.
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Table 2 Results of localizing the anomalous methods

Scenario

Ratio of major

clusters to total

clusters (%)

Cluster

adjustment

(Y/N)

Ratio of principal

methods to total

methods (%)

Ratio of involved

requests to total

requests (%)

False

negative

rate (%)

False

positive

rate (%)

Case scenario 1 3.3
N 3.0 73.1 26.1 2.7

Y 4.1 100 5.9 2.1

Case scenario 2 5.6
N 2.3 69.0 31.4 5.1

Y 4.5 100 7.6 4.2

Case scenario 3 7.1
N 2.9 78.3 21.7 3.9

Y 3.7 100 7.6 2.1

Case scenario 4 5.2
N 4.7 69.6 21.4 4.3

Y 6.1 100 12.7 5.4
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Figure 7 Principal methods selection in different scenarios. (a) Scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario 4.

There are four factors influencing the diagnosing results, as shown in Table 1. Empirically, we set α to

0.75. How to select the most suitable values for the other factors has been well studied in their relevant

research areas [13, 35]. Here, we just use the recommended values for them.

Table 2 summarizes the results of localizing the anomalous methods in different scenarios. From

Table 2 we can see that about 30% requests will be discarded without adjusting clusters. It causes the

high false-negative rate (in each case, the false-negative rate is above 20%). However, after merging the

minor clusters into the major ones, the false-negative rate decreases obviously. For instance, in case 2,

the false-negative rate decreases by 23.8%.

Figure 7 shows the cumulative percent variance of components for the four scenarios. The top k

components whose summed variance is larger than the threshold (i.e., 0.95) are considered as the principal

components. From these principal components, we can extract the principal methods. The number of

principal methods equals that of principal components.

Figure 8 lists the suspicious scores of the principal methods for each scenario. All related method
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Figure 8 Suspicious scores of principal methods in different scenarios. (a) Scenario 1; (b) scenario 2; (c) scenario 3; (d)

scenario 4.

names have been replaced by the numbers due to the confidentiality. For space consideration, we just list

the dissimilarity ratios of the instances for the top one anomalous method in each scenario, as shown in

Figure 9. The ratios have been ranked in a descending order.

7.1 Case scenario 1

Performance anomalies due to misconfigurations are frequently encountered in large scale systems like a

production cloud. But they are very difficult to be troubleshot. It is hard to correlate the performance

degradation to the relevant misconfigured parameters. This case reports how our approach helps engineers

debug misconfiguration-related performance anomalies.

In our target system, the distributed file system is built with Hadoop-like architecture. A mechanism

is provided to merge small files into a bigger one in case of excessively accessing disks. In our experiment,

we disable this merging mechanism through setting the relevant parameter of the configuration file to

be OFF. Therefore, the meta data of users increases over time, which causes the response latency of the

ListFile to rise significantly. We try to validate whether our approach can localize the method of reading

user meta data that correlates with this performance degradation.

Figure 7(a) shows that there are four major clusters in this case. In each cluster, the summed variance

of the first three principal components captures more than 0.95 of variance in the data. Therefore, for

each major cluster, about four principal methods are picked out. The suspicious scores of the top four

principal methods are listed in Figure 8(a). The top one method is used to fetch the user meta data. Its

suspicious score is four, which means that it is considered to be suspicious in each major cluster. The

experimental results confirm that our approach localizes the anomalous method precisely. Furthermore,

the dissimilarity ratios of instances for the top one anomalous method are shown in Figure 9(a). We can

see that there are three instances whose behavior are significantly different from others. In other words,

the behavior of the top one method manifests to be anomalous in these three replicated instances. It

gives operators very meaningful clues to diagnose the problems more effectively. Without this information,



2770 Mi H B, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

I20 I40 I60 I80 I100

D
is

si
m

ila
ri

ty
 r

at
io

 (
%

)

Instance ID

(a)

 0

 2

 4

 6

 8

 10

 12

I20 I40 I60 I80 I100

D
is

si
m

ila
ri

ty
 r

at
io

(%
)

Instance ID

(b)

 0

 1

 2

 3

 4

 5

 6

I20 I40 I60 I80 I100

D
is

si
m

ila
ri

ty
 r

at
io

(%
)

Instance ID

(c)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

I20 I40 I60 I80 I100

D
is

si
m

ila
ri

ty
 r

at
io

(%
)

Instance ID

(d)

Figure 9 Dissimilarity ratios of instances in different scenarios. (a) Scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario

4.

operators have to check all corresponding instances, which will suffer poor efficiency.

As is shown in Table 2, the number of principal methods takes up only 4.1% of the total invoked

methods, which sharply decreases the localization scopes. Without adjusting the clusters, the false-

negative rate and false-positive rate are 26.1% and 2.7% respectively; however, after merging the minor

clusters into the major ones, the false-negative rate decreases to 5.9% and the false-positive rate declines

to 2.1%.

7.2 Case scenario 2

In large-scale cloud computing systems, component failures are the norm rather than the exception [37]. In

case of service inaccessibility, the distributed platform provides a failover mechanism to recovery the killed

instances. It will influence the system performance during the recovering process. In our experiment, we

manually kill one fourth of chunk-server service instances that store files into disks. Then, the response

latencies of most SaveFile operations clearly increase. We try to check whether our approach can detect

the methods that reflect the recovery process.

As is shown in Figure 7(b), about three to five principal methods can be picked out from more than

one hundred of methods for each major cluster. There are in total eight different principal methods

and Figure 8(b) lists the suspicious scores of the top six methods. The top three methods have direct

relationship with chunk server services. Because the rest chunk server instances suffer more load pressures

than before, excessive writing requests cannot be handled in time. Our approach finds out that these

methods play a major role in the performance degradation for the SaveFile. The scores of the right three

methods all equal one, which are the false-positives of our approach. Figure 9(b) lists the dissimilarity

ratios of instances for the top one anomalous method. Among them, the first two instances are the

most questionable because they suffer more accesses; thus our approach helps operators narrow down the

localization scope effectively.

The quantitative results are shown in Table 2. Through adjusting the clusters, the false-negative



Mi H B, et al. Sci China Inf Sci December 2012 Vol. 55 No. 12 2771

rate decreases from 31.4% to 7.6% and the false-positive rate declines from 5.1% to 4.2%, which again

demonstrates the effectiveness of our approach.

7.3 Case scenario 3

In cloud systems, components are usually developed by different teams. When engineers with one team

invoke public interfaces of another component developed by another team, they may invoke unsuitable

methods that cause extra performance costs. It is hard to detect such faults especially when the function

is correct. In this case study, we investigate how our approach can be utilized to help the developer

diagnose such performance anomalies.

During the running of the system, we manually inject a fault through the hot patch. The fault causes

clients of the storage service to call an interface with extra authorization logic. It costs more than two

times extra overheads due to unnecessarily adding an authorization process for clients. In the process of

performance regression tests, the performance of the ReadFile decreases dramatically.

In this scenario, the number of major clusters is three and each of them contains about four principal

methods, as is shown in Figure 7(c). Figure 8(c) shows that the relevant method is precisely found

out (i.e., the one with the highest score). The developer can easily find the mistake according to the

clue. Furthermore, the dissimilarity ratios of instances for this method are shown in Figure 9(c). The

first three instances differ significantly from others. We can know that the influence scopes of faults in

cloud computing system are different, and that without finding out the exact anomalous instances, the

debuggers will have to spend more efforts on pinpointing the culprit.

In Table 2, we can see that if requests within the minor clusters are dropped, it will cause the increase

of the false-negative rate obviously. It means that the anomalous methods within the minor clusters will

not be fully identified without adjusting the clusters.

7.4 Case scenario 4

This scenario is a real-world diagnosing process in one production cluster in Alibaba Cloud Computing

Company. Performance bugs related to user behaviors are hard to detect in the testing environment.

These bugs will not be trigged until specific user behavior occurs. Our approach is applied by an operator

to diagnose this problem.

The average latencies of the SaveFile increase about two times and this situation lasts several hours.

With our approach, the most suspicious methods are picked out, as is shown in Figure 8(d). The first

one is used to lock the file ID before the transaction of saving a file begins. Figure 9(d) shows that the

dissimilarity ratio of the first instance is sharply high. It means that the instance is the physical locations

of the top one anomalous method. Along the clue, he finds the root cause efficiently. Because the older

load balance mechanism does not consider the access patterns adequately, it causes more than 60% of

accesses to be centralized into that instance. This causes the performance of the SaveFile operation to

decline significantly in that period. The diagnosis process again helps operators localize the key issues

effectively.

From Table 2, we can see that through adjusting the clusters, the false-positive rate increases slightly;

however, the suspicious scores of the normal methods that are mistaken for the anomaly are low (just

rank top 5 and 6 in Figure 8(d)); therefore, it will not influence the diagnosing result. Furthermore, the

false-negative rate decreases from 21.4% to 12.7%.

8 Conclusions

When a system performance anomaly occurs, it is generally a labor-intensive task for operators to locate

anomalous parts of the system. Isolating the physical locations (i.e., instances) of anomalous methods

could tremendously reduce the overall manual work in identifying the root cause.

Performance anomalies always cause the change in response latencies of user requests. The hidden

connections among the huge amount of runtime request execution paths usually contain useful information
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for diagnosing performance problems. In this paper, we propose an approach to localize the anomalous

methods as well as their physical locations by engaging request trace logs. The approach requires no

specific domain knowledge for the operators. To highlight the effectiveness of the approach, we report our

experiences to diagnose four real-world performance anomalies that occurred in Alibaba cloud computing

platform. The experimental results show that our approach can locate the primary causes of performance

anomalies with low false-positive rate and false-negative rate.
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