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Prompt Tuning in Code Intelligence:
An Experimental Evaluation
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Abstract—Pre-trained models have been shown effective in
many code intelligence tasks, such as automatic code summariza-
tion and defect prediction. These models are pre-trained on large-
scale unlabeled corpus and then fine-tuned in downstream tasks.
However, as the inputs to pre-training and downstream tasks
are in different forms, it is hard to fully explore the knowledge
of pre-trained models. Besides, the performance of fine-tuning
strongly relies on the amount of downstream task data, while in
practice, the data scarcity scenarios are common. Recent studies
in the natural language processing (NLP) field show that prompt
tuning, a new paradigm for tuning, alleviates the above issues
and achieves promising results in various NLP tasks. In prompt
tuning, the prompts inserted during tuning provide task-specific
knowledge, which is especially beneficial for tasks with relatively
scarce data. In this article, we empirically evaluate the usage and
effect of prompt tuning in code intelligence tasks. We conduct
prompt tuning on popular pre-trained models CodeBERT and
CodeT5 and experiment with four code intelligence tasks includ-
ing defect prediction, code search, code summarization, and code
translation. Our experimental results show that prompt tuning
consistently outperforms fine-tuning in all four tasks. In addition,
prompt tuning shows great potential in low-resource scenarios,
e.g., improving the BLEU scores of fine-tuning by more than
26% on average for code summarization. Our results suggest
that instead of fine-tuning, we could adapt prompt tuning for
code intelligence tasks to achieve better performance, especially
when lacking task-specific data. We also discuss the implications
for adapting prompt tuning in code intelligence tasks.

Index Terms—Code intelligence, prompt tuning, empirical
study.
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I. INTRODUCTION

CODE intelligence leverages machine learning, especially
deep learning (DL) techniques to intelligently assist

developers programming, aiming at improving their developing
efficiency. The state-of-the-art DL-based approaches to code in-
telligence exploit the pre-training and fine-tuning paradigm [1],
[2], [3], [4], [5], in which language models are first pre-trained
on a large unlabeled text corpora and then fine tuned on down-
stream tasks. For instance, Feng et al. [1] proposed CodeBERT,
a pre-trained language model for source code, which leverages
both texts and code in the pre-training process. To facilitate
generation tasks for source code, Wang et al. [2] proposed a
pre-trained sequence-to-sequence model named CodeT5. These
pre-trained source code models achieve significant improve-
ment over previous approaches.

However, there exist gaps between the pre-training and the
fine-tuning process of these pre-trained models. As shown
in Fig. 1(a), pre-training models such as CodeBERT [1] and
CodeT5 [2] are generally pre-trained using the Masked Lan-
guage Modeling (MLM) objective [6], [7]. The input to MLM is
the representation of the randomly masked tokens in a mixture
of code snippets and natural language texts, and the models
are trained to predict the masked tokens via the MLM head.
However, when models are fine-tuned into the downstream
tasks, e.g. defect detection, the input involves only source code,
and the training objective changes to a classification problem.
As shown in Fig. 1(b), the pre-trained model calculates the
representation of each input code snippet [X] and predicts the
label via a classifier which is also called CLS head [6]. The in-
consistent inputs and objectives between pre-training and fine-
tuning render the knowledge of pre-trained models hard to fully
exploit, leading to sub-optimal results for downstream tasks.
Besides, the performance of fine-tuning largely depends on the
scale of downstream task data [8], [9], [10], [11]. For instance,
the work [11] points out that utilizing limited data to fine-tune
the large amount of parameters in pre-trained models is prone
to cause overfitting, leading to a sub-optimal performance in
downstream tasks.

Recently, prompt tuning [8], [9], [12], [13], [14] is proposed
to mitigate the above issues of fine-tuning. Fig. 1(c) illustrates
the concept of prompt tuning. Instead of only involving source
code as input, prompt tuning firstly rewrites the input by adding
a natural language prompt such as “The code is [MASK]” at
the end of the code snippet, and then let the model predict
the masked token [MASK]. The added prompt to rewrite the
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model input is also called the prompt template. There is also
a verbalizer [9], [13] that maps the tokens predicted by the
model to a class. By adding a prompt and verbalizer, prompt
tuning reformulates the classification problem into an MLM
problem, aligning the objective with the pre-training stage. This
alignment unleashes the hidden power stored in the pre-trained
models. Besides, the inserted prompt can involve task-
specific knowledge to facilitate the adaption to downstream
tasks [12], [13], [15], [16]. Equipped with the knowledge
provided by prompt tuning, pre-trained models can handle low
resource scenarios where a limited amount of data are available.
Additionally, another training paradigm of prompt tuning called
parameter efficient prompt tuning [12], [17] is also widely uti-
lized in low resource scenarios. The parameter efficient prompt
tuning tunes only partial parameters in the prompt with other
parameters fixed for ameliorating overfitting and reducing the
training cost.

Although prompt tuning has been proven useful in type
prediction [18], the effectiveness of prompt tuning in popular
code intelligence tasks still remains unexplored. The code in-
telligence tasks refer to the tasks about functionalities that are
closely tied to source code and help to improve programmer
productivity and software quality Therefore, in this article, we
aim at investigating if prompt tuning is effective for code intelli-
gence. We conduct an experimental evaluation of the effective-
ness of prompt tuning on four popular code intelligence tasks:
defect detection, code search, code summarization, and code
translation. We mainly investigate the following four research
questions (RQs):

RQ1: How effectively does prompt tuning solve four canon-
ical code intelligence tasks?

RQ2: How well does prompt tuning handle data scarcity?
RQ3: How sensitive is prompt tuning to prompt templates?
RQ4: How effective is parameter efficient prompt tuning?
To answer the first RQ, we apply prompt tuning to the four

code intelligence tasks. To answer the second RQ, we evaluate
prompt tuning in data scarcity scenarios from two aspects,
including low-resource settings and cross-domain settings. To
answer the third RQ, we comprehensively study the influence
of different prompt templates and verbalizers on model per-
formance. In the fourth RQ, we explore the effectiveness of
parameter efficient prompt tuning.

Key Findings. Based on the extensive experiments, we ob-
tain some key findings:

• Prompt tuning brings non-trivial improvement to the per-
formance of downstream code intelligence tasks, including
classification, retrieval, and generation tasks.

• When the training data are scarce, prompt tuning can sig-
nificantly outperform conventional fine-tuning. The less
training data, the greater the performance improvement.

• Involving domain knowledge into the prompt template and
verbalizer design is helpful to obtain further improvement.

• Parameter efficient prompt tuning can achieve comparable
and even better performance than fine-tuning with signif-
icantly fewer parameters tuned in data scarcity scenarios.

Contributions. The major contributions of this article are
listed as follows:

1. This article explores the performance of prompt tuning for
code intelligence tasks.

2. We explore how different prompts can affect the perfor-
mance of prompt tuning on code intelligence tasks.

3. We discuss the implications of our findings for adapting
prompt tuning in code intelligence tasks.

Paper structure. The remainder of the paper is organized
as follows. In Section II, we briefly introduce the background
of prompt tuning. In Section III we present four code-related
tasks and the corresponding prompts we use in different tasks.
In addition, we describe the datasets, baselines, and evaluation
metrics we used in experiments. Section IV discusses the exper-
iment results and findings in detail. In Section V we summarize
the implications of this article, provide case studies, and discuss
the threats to validity. Sections VI and VII present the related
work and conclusion.

This work is an extension of our ESEC/FSE 2022 paper
[19]. Compared to the preliminary version, we explore mixed
prompts in Section II and the code search downstream task
in Section III. Additional discussions and experimental re-
sults of mixed prompts and code search tasks are included in
Section IV. We also answer an additional research question
(RQ4) about parameter efficient prompt tuning in Section IV.

II. BACKGROUND

A. Fine-Tuning

Fine-tuning a pre-trained model for downstream tasks [6],
[20], [21] is a prevalent paradigm in the NLP field. Fine-tuning
aims at exploiting the knowledge learned by pre-trained models
without learning from scratch and can be regarded as a way
of applying transfer learning [22]. To adapt pre-trained models
into downstream tasks, fine-tuning trains the model in a super-
vised way. Specifically, given a dataset that consists of task-
specific samples X and corresponding labels Y , fine-tuning
aims to find a set of parameters θ for the pre-trained model,
that θ = argmin

θ
P (Y |X; θ).

B. Prompt Tuning

The intuition of prompt tuning is to convert the training
objective of downstream tasks into a similar form as the pre-
training stage, i.e., the MLM objective [1], [6], [7]. As shown
in Fig. 1(c), prompt tuning aims at predicting masked tokens in
the input. It also modifies the model input by adding a natural
language prompt, enabling the input format identical to the pre-
training stage.

Specifically, prompt tuning employs a prompt template fp(x)
to reconstruct the original input x, producing new input x′.
As illustrated in Fig. 6, the prompt template can involve two
types of reserved slots in, i.e., input slot [X] and answer slot
[Z]. The input slot [X] is reserved to be filled with original
input text, and the answer slot is to be filled by predicted labels
such as defective. For the example shown in Fig. 1, prompt
tuning outputs the final predicted class by a verbalizer [9], [13].
The verbalizer, denoted as V , is an injective function which
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Fig. 1. Illustration on the process of pre-training, fine-tuning, and prompt tuning on defect detection task. [SEP ] denotes a special token in pre-trained models.

maps each predicted label word to a class in the target class
set Y :

V :W → Y (1)

where W indicates the label word set. For the example in
Fig. 1(c), the label word set W includes “[bad, defective]” for
buggy code snippets and “[perfect, clean]” for the others. The
class set Y contains “+” and “−” for indicating defective and
clean code, respectively. In the example, the verbalizer maps
the label with the highest probability “defective” into the target
class “+” in the class set.

According to the flexibility of the inserted prompt, prompt
tuning techniques can be categorized into two types: hard
prompt and soft prompt. We elaborated on the details of each
prompt type in the following.

1) Hard Prompts: The hard prompt [9], [10], [13] is a
technique that modifies the model input by adding fixed natural
language instruction (prompts). It aims to elicit task-specific
knowledge learned during pre-training for the tuning stage. The
hard prompt is also known as discrete prompt since each token
in the prompts is meaningful and understandable [10], [23]. For
instance, in the defect detection task, by appending “The code is
[Z].” to the input code, the task objective becomes predicting
the label word at the answer slot [Z], such as “defective” or
“clean”. The designed prompt template for the defect prediction
task can be formulated as:

fp([X], [Z]) = “[X] The code is [Z]” (2)

where [X] denotes the input code. Although hard prompts have
shown promising performance in previous work, the template
design and the verbalizer choices are challenging. For exam-
ple, the prompt template fp([X], [Z]) can also be designed as
“[X] It is [Z]”, where the label words in the verbalizer involve
“bad” and “perfect”.

2) Soft Prompts: The Soft prompt [9], [12], [24], as the name
implies, is an alternative to the hard prompt. Different from
hard prompts, the tokens in the soft prompt templates are not
fixed discrete words of a natural language. Instead, these tokens
are continuous vectors that can be learned during the tuning
stage. They are also called virtual tokens because they are not
human-interpretable. Soft prompts are proposed to alleviate the
burden of manually selecting prompt templates in hard prompts.

Fig. 2. Illustration on the different types of prompt, where [X] and [Z]
indicate the input slot and answer slot, respectively. Both vanilla soft prompt
(b) and prefix soft prompt (c) belong to the soft prompt.

There are two kinds of soft prompts, denoted as vanilla soft
prompts and prefix soft prompts, respectively.

Vanilla soft prompts, as depicted in Fig. 2(b), can be obtained
by simply replacing the hard prompt token with a virtual one,
denoted as [SOFT ], such as:

fp([X], [Z]) = “[X] [SOFT ] [SOFT ] [SOFT ] [Z]” (3)

The embedding of virtual tokens is optimized during the tuning
stage.

Prefix soft prompts prepend several virtual tokens to the
original input, as shown in Fig. 2(c). It can generate comparable
performance with the vanilla soft prompts and hard prompts.

fp([X], [Z]) = “[SOFT ] ∗ n [X] [Z]” (4)

where n indicates the number of virtual tokens.
3) Parameter Efficient Prompt Tuning: As aforementioned

in Section II-B-2 that the parameters in the soft prompt are
learnable, therefore, a training paradigm for soft prompts called
parameter efficient prompt tuning is proposed for reducing
training cost [12], [17]. For parameter efficient prompt tuning,
in the tuning stage, the pre-trained models are fixed and only
the parameters in the soft prompts are tuned. In this training
paradigm, the training cost can be significantly reduced. For
instance, if the soft prompts have n learnable tokens and the
dimension of the model embedding is d, and the number of
tuned parameters is only n× d instead of the whole model.

4) Mixed Prompts: Mixed prompts [9], [14], also called
hybrid prompts, are the combination of hard prompts and soft
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TABLE I
STATISTICS OF THE DATASETS USED IN THIS ARTICLE

Tasks Datasets
Training Val. Test

Set Set Set

Defect Detection Defect 21,854 2,732 2,732

Ruby 48,791 2,209 2,279
Code JavaScript 123,889 8,253 6,483

Summarization Go 317,832 14,242 14,291
& Python 409,230 22,906 22,104

Code Search Java 454,451 15,053 26,717
PHP 523,712 26,015 28,391

C 104,267 13,033 13,034

Code Translation Translation 10,300 500 1,000

prompts, making prompt templates involve both delicately de-
signed domain knowledge and learnable parameters. In this ar-
ticle, we study two popular kinds of approaches to mix hard and
soft prompts including replacement and insertion, respectively.

For replacement [14], we randomly replace some natural
language tokens in the hard prompt template with soft ones.
For instance, given the hard prompt shown in Equation (2), the
mixed prompt version of replacement can be:

fp([X], [Z]) = “[X] The code [SOFT ] [Z]” (5)

For insertion, following [9], we add additional learnable
tokens at the beginning and the end of the hard prompts. For
the aforementioned hard prompts, the mixed prompt templates
generated by insertion can be formulated as:

fp([X], [Z]) = “[SOFT ] [X] The code is [Z] [SOFT ]” (6)

III. EXPERIMENTAL EVALUATION

A. Research Questions

We aim at answering the following research questions
through an extensive experimental evaluation:

RQ1: How effectively does prompt tuning solve four canon-
ical code intelligence tasks?

RQ2: How well does prompt tuning handle data scarcity?
RQ3: How sensitive is prompt tuning to prompt templates?
RQ4: How effective is parameter efficient prompt tuning?
We design RQ1 to verify our hypothesis that prompt tuning,

which aligns the training objectives with the pre-training stage,
is more effective than fine-tuning for the downstream code intel-
ligence tasks. RQ2 aims at investigating whether prompt tuning
embodies an advantage in data scarcity scenarios including low-
resource and cross-domain settings. In RQ3, we aim at explor-
ing the impact of different prompt templates, such as varying
prompt types and selection of label words, on the performance
of downstream tasks. In RQ4, we study the effectiveness of
parameter efficient prompt tuning in low resource scenarios. In
particular, we fix the weights of pre-trained models and only
tune the parameters in the soft prompt.

B. Code Intelligence Tasks With Prompt Tuning

To evaluate the prompt tuning technique on source code, we
adopt four downstream code intelligence tasks, namely defect

detection, code search, code summarization, and code transla-
tion. We describe the details of pre-trained models and prompt
templates of each task in the following.

1) Pre-trained Models: We choose CodeBERT [1] and
CodeT5 [2] as the studied pre-trained models, since they are the
most widely-used model and state-of-the-art model for source
code, respectively.

CodeBERT [1] is an encoder-only model which is realized
based on RoBERTa [7]. CodeBERT is pre-trained on Code-
SearchNet [25]. It is able to encode both source code and natural
language text. CodeBERT has 125 million parameters.

CodeT5 [2], a variant of text to text transfer Transformer
[26], is the state-of-the-art model for code intelligence tasks. It
regards all the tasks as a sequence-to-sequence paradigm with
different task specific prefixes. It can solve both code under-
standing and code generation tasks. Code-T5 is pre-trained on
a larger dataset including CodeSearchNet [25] and an addi-
tional C/C# language corpus collected by the authors. CodeT5
is classified into two versions: CodeT5-small and CodeT5-
base, according to their sizes. The numbers of parameters in
CodeT5-small and CodeT5-base are 60 million and 220 million,
respectively.

2) Defect Detection: Given a code snippet, defect detection
[27], [28] aims to identify whether it is defect prone, such as
memory leakage and DoS attack. The task is defined as a binary
classification task in training CodeBERT and a generation task
in training CodeT5 [2], [26].

For hard prompts: As shown in Fig. 1(c), with prompt tuning,
models predict the probability distribution over the label words.
A verbalizer V maps the label word with the highest probability
to the predicted class. One cloze-style template fp(·) with an
input slot [X] and an answer slot [Z] is designed as below:

fp([X], [Z]) = “The code [X] is [Z]”

V =

{
+ : [defective, bad ]

− : [clean, perfect ]
(7)

where the left and right sides of : indicate the predicted
class and corresponding label words. To study the im-
pact of different prompts, we also design other prompt
templates including “[X] It is [Z]”, “[X ] The code is [Z]”,
“[X] The code is defective [Z]” and “A [Z] code [X]”.

For vanilla soft prompts: For facilitating the comparison
of hard prompts and vanilla soft prompts, we simply replace
the natural language tokens in the hard prompt templates with
virtual tokens for generating vanilla soft prompts. For example,
“[X][SOFT ][SOFT ][Z]” is the vanilla soft prompt version of
“[X] It is [Z]”.

For prefix soft prompts: We design the prefix soft prompts
by prepending a learnable prefix prompt according to
Equation (4).

For mixed prompts: To study the effectiveness of mixed
prompts, we design mixed prompt templates based on the exper-
imented hard prompts via the approaches including replacement
and insertion as described in Section II-B-4.

3) Code Search: Code search is to retrieve relevant code
snippets based on a natural language query. Following previous
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work [1], [5], [29], we only use CodeBERT in this task because
CodeT5 has not been utilized for code search in the original
article [2] and a recent work [30] demonstrates that CodeT5 is
not ideal for this task.

In this article, we use a two-tower architecture [5], [31], [32],
[33] to measure the relevance between natural language descrip-
tions and code snippets for code search tasks. More specifically,
given the pair of description and code snippet, we obtain their
embedding vectors via a shared CodeBERT and calculate the
cosine similarity between two vectors as their relevance score.

For hard prompts, we prepend a task-specific prompt before
the description and code snippet:

fp([Xc]) = “The [LANG ] code is [Xc]”

fp([Xd]) = “The description is [Xd]” (8)

where the [Xc] and [Xd] indicate the input code and description,
respectively. The [LANG] denotes the name of the correspond-
ing programming language such as Python. It is worth noting
that there is no answer slot because the models in two-tower
architecture are only used for generating embedding vectors;
thus, there is no verbalizer in the code search task.

For the vanilla soft prompts, prefix soft prompts, and mixed
prompts: We design the three types of prompt in the same way
as the defect detection task. For example, we replace the nat-
ural language tokens in the hard prompt templates with virtual
tokens for generating vanilla soft prompt templates. The prefix
soft prompts are defined according to Equation (4).

4) Code Summarization: Given a code snippet, the code
summarization task aims to generate a natural language com-
ment to summarize the functionality of the code. We only
utilize CodeT5 in this task because CodeBERT does not have
a decoder to generate comments.

For hard prompts: We prepend the natural language instruc-
tion of the task to the input code, so the template can be:

fp([X], [Z]) = “Generate comment for [LANG ] [X] [Z]”
(9)

where [LANG], [X], and [Z] denote the slot of a program-
ming language type, input slot, and the generated answer slot.
The natural language instruction “Generate comment for” is
manually pre-defined for adjusting the generation behavior of
CodeT5. We also design other prompt templates for experi-
mentation including Summarize [LANG]. Note that there is no
verbalizer for the generation task.

For the vanilla soft prompts, prefix soft prompts, and mixed
prompts: They are designed in the same way as the above
two tasks.

5) Code Translation: Code translation aims to migrate
legacy software from one programming language to another
one. Except hard prompts, the other three types of prompts
are similar to those for the above three tasks, so here we only
describe the hard prompts for this task. For hard prompts, we
design the template by prepending task-specific instructions:

fp([X], [Z]) = “Translate [X ] to [LANG ] [Z]” (10)

The template explains that the model is translating the input
code [X] in one programming language to the answer slot in
another programming language [LANG].

C. Evaluation Datasets

To empirically evaluate the performance of prompt tuning for
source code, we choose the datasets for the four tasks from the
popular CodeXGLUE benchmark1 [29].

Defect Detection The dataset is provided by Zhou et al. [27].
It contains 27K+ C code snippets from two open-source projects
QEMU and FFmpeg, and 45.0% of the entries are defective.

Code Search We use the same dataset as the previous work
[1], [5]. The dataset is from CodeSearchNet [25], which con-
tains thousands of code snippets and natural language descrip-
tion pairs for six programming languages including Python,
Java, JavaScript, Ruby, Go, and PHP. Additionally, we further
compare fine-tuning and prompt tuning on the C Code Summa-
rization Dataset (CCSD) dataset [34] which is randomly split
into training, valid, and testing set with the ratio of 8:1:1.

Code Summarization We use the same dataset as the CodeT5
work [2]. The datasets used for the code summarization task are
also CodeSearchNet and CCSD.

Code Translation The dataset is provided by Lu et al.
[29], and is collected from four public repositories (including
Lucene, POI, JGit, and Antlr). Given a piece of Java (C#) code,
the task is to translate the code into the corresponding C# (Java)
version.

D. Evaluation Metrics

1) Defect Detection: For the defect detection task, following
[2], we use Accuracy as the evaluation metric. The metric is to
measure the ability of model to identify insecure source code,
defined as:

ACC =

∑|D|
i=1 1(yi == ŷi)

|D| (11)

where D is the dataset and |D| denotes its size. The symbol
yi and ŷi indicate the ground truth label and predicted label,
respectively. The 1(x) function returns 1 if x is True and oth-
erwise returns 0.

2) Code Search: For code search task, following previous
work [1], [5], we utilize Mean Reciprocal Rank (MRR) to
evaluate the retrieval performance of prompt tuning and fine-
tuning. MRR is the average of the reciprocal ranks of the correct
answers of query set Q ordered by matching score, which is
another popular evaluation metric for the code retrieval task.
The metric MRR is calculated as follows:

MRR=
1

|Q|

|Q|∑
q=1

1

Rankq
, (12)

where Rankq indicates the rank of the ground truth code snip-
pet in the return sequences ordered by matching score.

1https://github.com/microsoft/CodeXGLUE
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TABLE II
HYPERPARAMETER SETTINGS

Hyperparameter Value Hyperparameter Value

Optimizer AdamW [38] Warm-up steps 10%
Learning rate 5e-5 Training batch size 64
LR scheduler Linear Validation batch size 64

Beam size 10 Adam epsilon 1e-8
Max. gradient norm 1.0

3) Code Summarization: Following previous work [1], [2],
we use Bilingual Evaluation Understudy (BLEU) score [35] to
evaluate the quality of generated comments. The idea of BLEU
is that the closer the generated text is to the result of ground truth
text, the higher the generation quality. The metric is defined
as below:

BP =

{
1 if c > r

e1−r/c if c≤ r
(13)

BLEU =BP · exp
( N∑
n=1

wn log pn

)
(14)

where pn means the modified n-gram precision and wn is the
weight. BP represents the brevity penalty, and c and r indicate
the lengths of generated comment and target comment length,
respectively. In our experiments, we choose smoothed BLEU-4
score, i.e., n= 4, for evaluating the generation tasks following
previous work [1], [2], [36].

4) Code Translation: To better measure the quality of gen-
erated code snippets, besides the BLEU score, another two
metrics including Accuracy and CodeBLEU [37] are used fol-
lowing [2], [29]. The computation of Accuracy is the same as
Equ. (11), which is the most strict metric.

CodeBLEU parses the generated code, and takes both the code
structure and semantics into account for measuring the similar-
ity between the generated code and the code in ground truth.
Its computation consists of four components including n-gram
matching score (BLEU ), weighted n-gram matching score
weighted_BLEU , syntactic AST matching scoreAST_Score
and semantic data flow matching score DF_Score:

CodeBLEU = α ∗BLEU + β ∗ weighted_BLEU

+ γ ∗AST_Score+ δ ∗DF_Score (15)

where α, β, γ, δ are weights for each component. Following [2],
[29], they are all set as 0.25.

E. Implementation Details

1) Experimental Setup: All the pre-trained models and cor-
responding tokenizer in our experimentation are loaded from
the official repository Huggingface2. The overall framework
is Pytorch3. Our implementation of prompt tuning is based
on OpenPrompt [39]. We use the generic training strategy
and parameter settings following the official implementation of
CodeT5 [2], with details shown in Table II.

2https://huggingface.co/models
3https://pytorch.org/

TABLE III
CLASSIFICATION ACCURACY ON DEFECT DETECTION.

“∗” DENOTES THE STATISTICAL SIGNIFICANCE IN

COMPARISON TO THE BASELINE MODELS WE

REPRODUCED (I.E., TWO-SIDED t-TEST WITH

p-VALUE < 0.05)

Methods Accuracy

CodeBERT
Fine-tuning 62.12

Prompt tuning 64.55∗

CodeT5-small
Fine-tuning 62.96

Prompt tuning 63.91∗

CodeT5-base
Fine-tuning 65.00

Prompt tuning 65.82

Specifically, for the defect detection task, we train Code-
BERT and CodeT5 for 5 and 15 epochs, respectively. For the
CodeT5 model, we set the maximum source length and target
length as 512 and 3, respectively. For the code summariza-
tion task, because CodeBERT is an encoder-only architecture
model, we focus on evaluating prompt tuning on CodeT5. We
train CodeT5 for 20 epochs. The maximum lengths of the
source text and target text are defined as 256 and 128. For
the code translation tasks, we train the CodeT5 models for 50
epochs. The maximum length of the source text and target text
is set as 256 and 256, respectively. For the code search task, we
train CodeBERT for 50 epochs with an early stopping strategy
following previous work [1], [29]. The maximum length of
natural language descriptions and source code is 256. The batch
size used in code search tasks is 32. For parameter configura-
tion in fine-tuning, we use the configurations provided by the
original work [1], [2], which were already well-adjusted. For
a fair comparison, we use the same parameter configurations
when implementing prompt tuning.

All the experiments are run on a server with 4 * Nvidia Tesla
V100 and each one has 32GB graphic memory.

2) Fine-Tuning Baselines: We fine-tune CodeBERT and
CodeT5 on the four code intelligence tasks. Specifically, we
fine-tune CodeBERT for the defect detection and code search
tasks, and CodeT5 for all the tasks except code search. For
CodeBERT, we use the first output token (the [CLS] token)
as the sentence embedding and feed it into a feed-forward
network (FFN) to generate predictions. For CodeT5, all the
tasks are treated as generation tasks. It takes either code or
natural language sentences as input and generates target texts.

IV. EXPERIMENTAL RESULTS

A. RQ1: Effectiveness of Prompt Tuning

In this section, we study the effectiveness of prompt tuning
by comparing it with the standard tuning paradigm – fine-
tuning on the four code intelligence tasks: defect detection, code
search, code summarization, and code translation. We present
the best performance achieved by our experimented prompts.
Full results can be found in our project repository4. We also
discuss the impact of different prompts in Section IV-C.

4https://github.com/adf1178/PT4Code
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TABLE IV
RESULTS (MRR) OF THE CODEBERT MODEL ON CODE SEARCH TASK. “∗” DENOTES THE STATISTICAL SIGNIFICANCE

IN COMPARISON TO THE BASELINE MODELS WE REPRODUCED (I.E., TWO-SIDED T-TEST WITH p-VALUE < 0.05)

Methods Ruby JavaScript Go Python Java PHP C Overall

CodeBERT
Fine-tuning 73.12 62.04 81.47 61.19 62.23 67.34 57.78 66.44

Prompt tuning 75.76∗ 63.12∗ 84.55∗ 65.77∗ 63.11∗ 69.99∗ 59.28∗ 68.79∗

TABLE V
RESULTS (BLEU-4 SCORES) OF THE CODET5 MODEL ON CODE SUMMARIZATION TASK. “∗” DENOTES THE STATISTICAL

SIGNIFICANCE IN COMPARISON TO THE BASELINE MODELS WE REPRODUCED (I.E., TWO-SIDED T-TEST WITH

p-VALUE < 0.05)

Methods Ruby JavaScript Go Python Java PHP C Overall

CodeT5-small
Fine-tuning 13.38 14.94 21.27 17.88 18.38 24.70 24.37 19.27

Prompt tuning 13.60 15.91∗ 22.33∗ 18.34 20.60∗ 26.95∗ 25.86∗ 20.51∗

CodeT5-base
Fine-tuning 13.70 15.80 22.60 17.97 19.56 25.77 25.50 20.12

Prompt tuning 14.29∗ 16.04 23.11 18.52 19.72 27.06∗ 26.41∗ 20.74∗

TABLE VI
EXPERIMENTAL RESULTS ON CODE TRANSLATION TASKS: JAVA-C# AND C#-JAVA. “∗” DENOTES THE

STATISTICAL SIGNIFICANCE IN COMPARISON TO THE BASELINE MODELS WE REPRODUCED (I.E., TWO-SIDED

T-TEST WITH p-VALUE < 0.05)

Methods
C# to Java Java to C#

BLEU Accuracy CodeBLEU BLEU Accuracy CodeBLEU

CodeT5-small
Fine-tuning 78.67 65.40 82.55 82.29 63.80 87.01

Prompt tuning 79.59∗ 66.00 83.45∗ 83.33∗ 64.30 87.99∗

CodeT5-base
Fine-tuning 79.45 66.10 83.96 83.61 65.30 88.32

Prompt tuning 79.76 66.10 84.39 83.99 65.40 88.74

Defect Detection. Table III shows the comparison results
for defect detection, in which CodeBERT and CodeT5 serve as
pre-trained models. We can observe that prompt tuning always
outperforms fine-tuning across different pre-trained models. For
example, prompt tuning obtains an improvement of 3.30% over
fine-tuning on CodeBERT. For CodeT5-small and CodeT5-
base, the improvements are 1.51% and 1.26%, respectively.
We also perform a statistical significance test (t-test) on the
defect detection task, and the results show that prompt tuning
outperforms fine-tuning at the significance level of 0.05 on both
CodeBERT and CodeT5-small. The results indicate that prompt
tuning is more effective than fine-tuning for pre-trained mod-
els with different architecture or different sizes on the defect
detection task.

Code Search. For code search task, we follow previous work
[1], [5] and use CodeBERT to compare the performance of
prompt tuning and fine-tuning. In Table IV, we show the results
of prompt tuning and fine-tuning of the CodeBERT model on
seven different programming language datasets. From the table,
we can find that prompt tuning improves the MRR consistently
over fine-tuning on all of the experimented datasets. On aver-
age, prompt tuning increases the performance by 3.54%. For
the statistical results, we observe that prompt tuning achieves
statistically significant improvement (p-value less than 0.05)
over fine-tuning on all of the seven programming languages.
Such improvement demonstrates the effectiveness of prompt
tuning in the code search task.

Code Summarization. Since CodeBERT is an encoder-only
model, we only involve CodeT5 as the pre-trained model on
the code summarization task. Table V presents the BLEU-4
scores achieved by prompt tuning and fine-tuning for different
programming languages. We can observe consistent improve-
ment on overall performance as in the code search task: com-
pared with fine-tuning, prompt tuning obtains an improvement
of 6.43% and 3.08% when using CodeT5-small and CodeT5-
base as pre-trained models, respectively. Looking into a specific
programming language, prompt tuning also always achieves
better summarization performance than fine-tuning. It shows
the largest advancement for the code written in PHP, with
an increasing rate of 9.11% and 5.01% on CodeT5-small and
CodeT5-base, respectively. Overall, prompt tuning can perform
statistically better than fine-tuning at the significance level of
0.05 on both CodeT5-small and CodeT5-base. Specifically,
prompt tuning on CodeT5-small achieves statistically signif-
icant improvement for the five programming languages. The
results indicate the effectiveness of prompt tuning in the code
summarization task.

Code Translation. For the task, we only involve the pre-
trained CodeT5 model for evaluating the performance of
prompt tuning. The results of prompt tuning and fine-tuning
based on CodeT5 are depicted in Table VI. From the table,
we can see that prompt tuning outperforms fine-tuning in both
directions of translation. Compared with fine-tuning, prompt
tuning achieves an average improvement of 1.22%, 0.85%,
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Fig. 3. An example for illustrating the quality of code snippets translated
by fine-tuning and prompt tuning in the code translation task, respectively,
where the pre-trained model is CodeT5-small.

and 0.87% on both directions for BLEU, Accuracy, and Code-
BLEU, respectively. We also conduct statistical tests in the code
translation task, and the results show that prompt tuning is
statistically better than fine-tuning in terms of the metrics BLEU
score and CodeBLEU on CodeT5-small. The improvement
demonstrates the effectiveness of prompt tuning on this task. To
better illustrate how prompt tuning improves the quality of code
translation, we give an example in Fig. 3. From the example, we
can see that using fine-tuning methods, CodeT5-small does not
accurately translate the C# code into the corresponding Java ver-
sion by missing an important synchronized lock statement “syn-
chronized (mutex)”, while it can output more accurately with
prompt tuning. We attribute this improvement to the learned
prior knowledge carried by the prefix soft prompts. Through
powerful prior knowledge, CodeT5 can quickly adapt to the
translation of the code in C# to Java, and pay more attention
to language-specific grammar details. But fine-tuning methods
can only make the model learn the translation direction after
multiple iterations of training, the model may fail to focus on
the important part such as “lock” in the input.

Based on the performance of four tasks, we find that prompt
tuning is more effective than fine-tuning. Another interest-
ing observation is that the improvement of prompt tuning on
CodeT5-small is 1.51%, 6.46%, and 1.22%, respectively, which
is higher than that on CodeT5-base, with the increasing rate
at 1.26%, 2.91%, and 0.43%, respectively. This may be at-
tributed to that CodeT5-base is a significantly larger model
than CodeT5-small (220 million v.s. 60 million parameters),
and prompt tuning (768 parameters per token). The observation
suggests that prompt tuning shows more obvious improvement
than fine-tuning for smaller pre-trained models.

Finding 1: On average, prompt tuning outperforms fine-
tuning by 2.03%, 3.68%, 4.68%, and 1.01% on the studied
four code intelligence tasks, respectively Besides, compared
to the improvement on CodeT5-small and CodeT5-base, the
advantage of prompt tuning on smaller pre-trained models is
60% larger than that on larger models.

B. RQ2: Capability of Prompt Tuning in Different Data
Scarcity Scenarios

Considering that the performance of fine-tuning is known to
strongly rely on the amount of downstream data [16], [40], [41],
while scenarios with scarce data in source code are common

[42], [43], [44]. In this section, we study how well prompt tun-
ing can handle data scarcity scenarios. We focus on two kinds
of data scarcity settings: 1) low-resource scenario, in which
there are significantly few training instances, and 2) cross-
domain scenario, in which the model is trained on a similar
data-sufficient domain and tested on a target domain.

Performance in low-resource scenario. We study the per-
formance of prompt tuning in low-resource setting on the clas-
sification task, i.e., defect detection, one retrieval task, i.e., code
search, and one generation task, i.e., code summarization. We
simulate this setting by randomly selecting a small subset of
training instances (also called shots) in the original dataset. To
avoid randomness in data selection, we produce each subset five
times with different seeds and run four times on each dataset.
The average results are reported.

For the defect detection task, we choose 0, 16, 32, 64, and
128 training shots per class to create five small training subsets.
Table VII presents the accuracy achieved by prompt tuning
and fine-tuning regarding the five settings. Note that in zero-
shot settings, no tuning data are involved. Given test data, the
fine-tuning model directly generates target labels (defective or
clean); while the prompt tuning model predicts the label words.
By comparing the results with those in the full-data setting in
Table III, we can find that the model performance shows severe
drop. For the CodeT5 model, it even does not converge under
the zero-shot and 16-shot settings due to the extreme lack of
training data. The low results are reasonable since pre-trained
models require task-specific data for better adapting to down-
stream tasks. However, we observe that with prompt tuning,
the pre-trained models achieve significantly better performance
than the models using fine-tuning. On average, prompt tuning
outperforms fine-tuning by 2.59%, 2.16%, and 2.08% on Code-
BERT, CodeT5-small and CodeT5-base, respectively. Note that
prompt tuning under zero shot setting even outperforms prompt
tuning with 32 shots and fine-tuning with 64 shots. It indicates
that the knowledge of pre-trained model can be elicited by the
prompt without tuning the parameters.

For code search task, we randomly select 100, 200, 300,
500, and 1000 training instances from the original datasets of
six programming languages, and the results can be accessed in
Fig. 4. We can observe from the figure that prompt tuning
achieves obvious and consistent performance improvement over
fine-tuning. For instance, when 100 training instances are avail-
able, prompt tuning increases the MRR by 20.39% on average
compared with fine-tuning. We also observe that the improve-
ment becomes less stark with the growth of training shots. The
results demonstrate that prompt tuning is more advantageous
on a few training data than fine-tuning.

For the code summarization task, we choose 100, 200, 300,
500, and 1000 training shots as subsets. Fig. 5 shows com-
parison on BLEU-4 scores of prompt tuning and fine-tuning
CodeT5 models on different programming languages. We can
find that although the model performance drops significantly on
the subsets, prompt tuning consistently outperforms fine-tuning,
showing an average improvement at 28.08% and 26.86% for
CodeT5-small and CodeT5-base, respectively. The results con-
firm the prompt tuning’s capability in low resource scenarios.
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TABLE VII
CLASSIFICATION ACCURACY (%) ON DEFECT DETECTION IN LOW RESOURCE SCENARIOS.

‘-’ DENOTES THE MODEL FAILS TO CONVERGE DUE TO EXTREME LACK OF TRAINING DATA

Methods Zero Shot 16 Shots 32 Shots 64 Shots 128 Shots

CodeBERT
Fine-tuning 50.52 52.15 53.01 53.61 55.28

Prompt tuning 53.99 52.98 53.83 54.28 56.19

CodeT5-small
Fine-tuning - - 51.22 52.10 54.28

Prompt tuning - - 52.36 53.59 55.04

CodeT5-base
Fine-tuning - - 51.25 52.64 54.52

Prompt tuning - - 52.44 53.82 55.47

Fig. 4. Results of fine-tuning and prompt tuning on code search task in low resource scenarios. The horizontal axis indicates the number of training instances
while the vertical axis means the MRR. The experimented model is CodeBERT.

Fig. 5. Results of fine-tuning and prompt tuning on code summarization task in low resource scenarios. The horizontal axis indicates the number of training
instances while the vertical axis means the BLEU-4 score.

In addition, akin to the results of code search tasks, a similar
trend that prompt tuning performs better than fine-tuning on
fewer training data is also observed.

Performance in the cross-domain scenario. For some
programming languages, the training data are generally insuf-
ficient. As shown in Table I, the data sizes of languages such
as Java and Python are greatly larger than those of languages
including Java-script and Ruby. Cross-domain learning is a
popular solution, i.e., transferring the knowledge of similar
domains with sufficient data to the target domains with fewer
data. We use the code summarization task for evaluating the
performance of prompt tuning under cross-domain settings.
Considering the adequacy of training data and domain simi-
larity, we perform training on the programming language Java
or Python, and evaluate the language with less data such as
Ruby, JavaScript, and Go. Table VIII shows the cross-domain

BLEU-4 scores achieved by CodeT5. We can observe that
prompt tuning achieves better performance than fine-tuning
for most cross-domain settings, except for the adaption from
Python to JavaScript. With prompt tuning, the BLEU-4 scores
of CodeT5-small and CodeT5-base are increased by 2.53% and
5.18% on average, respectively.

Finding 2: Prompt tuning is more effective in low-
resource scenarios than fine-tuning. Specifically, prompt tun-
ing achieves an average of more than 20% improvement on
code search and code summarization tasks when 100 train-
ing instances are available. In addition, the fewer training
instances, the larger the improvement achieved by prompt
tuning. Besides, prompt tuning also outperforms fine-tuning
by 3.85% on average in cross-domain code intelligence
scenarios.
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TABLE VIII
EXPERIMENTAL RESULTS (BLEU-4 SCORE) ON

CROSS-LANGUAGE CODE SUMMARIZATION. THE MODELS

ARE TRAINED ON PYTHON OR JAVA DATASETS, AND TESTED

ON RUBY, JAVASCRIPT AND GO, RESPECTIVELY

Training Methods Ruby JavaScript Go

CodeT5-small

Python
Fine-tuning 12.75 12.37 11.57

Prompt tuning 13.01 12.35 12.15

Java
Fine-tuning 12.20 11.45 10.96

Prompt tuning 12.59 11.84 11.15

CodeT5-base

Python
Fine-tuning 13.06 12.81 12.89

Prompt tuning 13.37 13.11 14.27

Java
Fine-tuning 12.67 11.50 11.88

Prompt tuning 13.13 11.99 12.96

TABLE IX
CLASSIFICATION ACCURACY (%) OF COMPARING THE PERFORMANCE OF

CODEBERT MODEL ON DEFECT DETECTION TASK VIA DIFFERENT PROMPT

TEMPLATES. THE VERBALIZER IS FIXED AS +: “BAD”, “DEFECTIVE”; −:
“PERFECT”, “CLEAN”. THE UNDERLINED TEXTS ARE REPLACED BY

VIRTUAL TOKENS IN THE CORRESPONDING VANILLA SOFT PROMPT

Hard Prompt Vanilla Soft Prompt
Accuracy

Hard Soft

[X] The code is [Z] [X] [SOFT ] ∗ 3 [Z] 63.68 63.15

A [Z] code [X] [SOFT ] [X] [SOFT ] [Z] 63.36 62.95

[X] It is [Z] [X] [SOFT ][SOFT ] [Z] 63.92 63.39

The code [X] is [Z] [SOFT ] ∗ 2 [X] [SOFT ] [Z] 64.17 63.34

C. RQ3: Impact of Different Prompts

In this RQ, we explore the impact of different prompts on the
performance of prompt tuning. We focus on the following four
aspects: 1) hard prompt template; 2) hard prompt v.s. vanilla
soft prompt; 3) mixed prompt templates, and 4) length of prefix
soft prompt.

1) Different Hard Prompt Templates: There are two factors
that can impact the performance of hard prompts, including
the template design and verbalizer. Due to the space limit, we
present the evaluation results on the classification task, i.e.,
defect detection, and one generation task, i.e., the code summa-
rization. Note that we have the same observation for the code
translation task.

Template Design. The natural language tokens in hard
prompt templates are manually defined. To study the impact of
different tokens in the template, we conduct experiments with
fixed verbalizers. Tables IX and XII show the results of the
defect detection task and code summarization task, respectively.
Comparing the rows 2-5 in Table IX, we can find that the
template design impacts the model performance. For example,
when using the hard prompt “The code [X] is [Z]”, Code-
BERT outperforms the case when using “A [Z] code [X]”
by 1.39%. In addition, by changing “The code [X] is [Z]”
to “[X] The code is [Z]” in which only the token order is

TABLE X
CLASSIFICATION ACCURACY (%) OF DIFFERENT VERBALIZERS ON

THE DEFECT DETECT TASK, WHERE THE PRE-TRAINED MODEL IS

CODEBERT. THE TEMPLATE IS ‘‘THE CODE [X] IS [Z]”

Verbalizer Accuracy

+: “Yes” −: “No” 63.08

+ : “bad” − : “perfect” 63.71

+ : “bad”, “defective” − : “clean”, “perfect” 64.17

+ : “bad”, “defective”, “insecure”
63.26− : “clean”, “perfect”, “secure”

+ : “bad”, “defective”, “insecure”, “vulnerable”
63.10− : “clean”, “perfect”, “secure”, “invulnerable”

different, a drop in performance by 0.8% is observed. However,
comparing row 2 and 4 in Table XII, we can find that the model
performance is less affected by the template design for the
code summarization task. This may be attributed to that only
few prompt tokens in the templates can hardly provide helpful
guidance for the large solution space in the code summariza-
tion task. Thus, we achieve that the template design for hard
prompts is more important for the classification task than the
generation task.

Different Verbalizers: We fix the hard prompt template as
“The code [X] is [Z]” and analyze the impact of different
verbalizers on the model performance. Specifically, we choose
task-relevant label words for the verbalizers, with the results of
the defect prediction task shown in Table X. We can observe
that different verbalizers influence the performance of prompt
tuning. When choosing label words such as “yes” and “no”
(row 2) rather than adjectives to fill the answer slot [Z], the
result is 0.99% lower than that of using adjectives in the ver-
balizer (row 3). It indicates that constructing a verbalizer with
correct grammar is helpful for prediction. Comparing rows 3-6,
we can also find that increasing the number of label words is
not always beneficial for the model performance, which may be
because more label words could introduce bias to the prediction
results. When using two label words for indicating each class,
the model presents the highest performance.

2) Hard Prompts vs. Vanilla Soft Prompts: As introduced
in Section II-B-2, the vanilla soft prompt replaces the natural
language tokens in the hard prompt with virtual tokens. The
comparison results on the defect detection task are illustrated
in Table IX. We experiment with different hard prompts, shown
in the first column, with the corresponding vanilla soft prompts
in the second column. From the results listed in the last two
columns, we can find that hard prompts present better prediction
accuracy than the corresponding vanilla soft prompts. For the
code search task, we append a natural language task prompt to
both the code snippet and description to construct a hard prompt
template, and we replace the hard tokens with learnable ones to
form vanilla soft prompts. The experiment results are presented
in Table XI. We can find that the average performance of hard
prompts (67.26) and vanilla soft prompts (67.94) is overall
close to that of fine-tuning (67.89). This may be attributed to
that several prompt tokens can only bring limited influence on
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TABLE XI
RESULTS (MRR) OF PROMPT TUNING WITH DIFFERENT PROMPT TEMPLATES ON THE CODE SEARCH TASK. THE FIRST TWO

ROWS DENOTE HARD PROMPTS, AND THE LAST TWO ROWS ARE CORRESPONDING TO VANILLA SOFT PROMPTS. THERE IS

NO ANSWER SLOT OR VERBALIZER FOR THE PROMPTS OF RETRIEVAL TASKS

fp(·) Ruby JavaScript Go Python Java PHP Overall

CodeBERT

The [LANG] code is [Xcode] 73.02 61.58 82.61 58.19 62.61 65.56 67.26
The description is [Xdescription]

[SOFT ] ∗ 4 [Xcode] 71.89 62.32 83.17 60.60 63.64 66.01 67.94
[SOFT ] ∗ 3 [Xdescription]

TABLE XII
RESULTS (BLEU-4 SCORES) OF PROMPT TUNING WITH DIFFERENT PROMPT TEMPLATES ON THE CODE SUMMARIZATION TASK. THERE

IS NO VERBALIZER FOR THE PROMPTS OF GENERATION TASKS

fp(·) Ruby JavaScript Go Python Java PHP Overall

CodeT5-small

Summarize [LANG] [X] [Z] 13.45 15.01 21.20 17.82 18.43 24.52 18.41
[SOFT ] ∗ 2 [X] [Z] 13.33 14.96 21.17 17.93 18.29 24.61 18.38

Generate comments for [LANG] [X] [Z] 13.44 14.96 21.24 17.90 18.52 24.46 18.42
[SOFT ] ∗ 4 [X] [Z] 13.49 14.87 21.29 17.92 18.34 24.68 18.44

CodeT5-base

Summarize [LANG] [X] [Z] 13.67 15.91 22.51 18.00 19.63 25.76 19.25
[SOFT ] ∗ 2 [X] [Z] 13.86 15.75 22.48 18.12 19.52 25.91 19.27

Generate comments for [LANG] [X] [Z] 13.68 15.84 22.49 18.03 19.59 25.88 19.25
[SOFT ] ∗ 4 [X] [Z] 13.74 15.82 22.63 18.06 19.60 25.83 19.28

TABLE XIII
CLASSIFICATION ACCURACY (%) OF COMPARING THE PERFORMANCE OF CODEBERT MODEL ON

DEFECT DETECTION TASK VIA DIFFERENT MIXED PROMPT TEMPLATES. THE VERBALIZER IS FIXED AS

+: “BAD”, “DEFECTIVE”; −: “PERFECT”, “CLEAN”. THE ‘‘TYPE’’ COLUMN DENOTES THE APPROACH

TO CONSTRUCT MIX TEMPLATE

Original Hard Prompt Mixed Prompt Type
Accuracy

Hard Mix

[X] The code is [Z]
[X] The code [SOFT ] [Z] replacement

63.68
64.19

[X] The [SOFT ] [SOFT ] [Z] replacement 63.96
[SOFT ] [X] The code is [Z] [SOFT ] insertion 64.55

A [Z] code [X]
A [Z] [SOFT ] [X] replacement

63.36
63.45

[SOFT ] A [Z] code [X] [SOFT ] insertion 63.67

[X] It is [Z]
[X] It [SOFT ] [Z] replacement

63.92
63.89

[SOFT ] [X] It is [Z] [SOFT ] insertion 64.33

The code [X] is [Z]
[X] The code [X] [SOFT ] [Z] replacement

64.17
63.40

[X] The [SOFT ] [X] [SOFT ] [Z] replacement 63.30
[SOFT ] The code [X] is [Z] [SOFT ] insertion 63.97

computing embedding vectors of code snippets and correspond-
ing descriptions. In addition, we also compare hard prompts
and vanilla soft prompts in the code summarization task, and
the results are shown in Table XII. Comparing the performance
of hard prompts such as “Summarize [LANG] [X][Z]” and
“Generate comments for [LANG][X][Z]” with the correspond-
ing vanilla soft version, we can observe that the difference
is marginal, which may be due to the large generation space
of the task. Thus, we summarize that hard prompts may be
more effective than the corresponding vanilla soft prompts for
classification tasks, and the advantage tends to be weakened for
generation tasks.

Finding 3: Prompt templates have large impact on the per-
formance of prompt tuning. Specifically, the improvement on
the defect detection task of prompt tuning varies from 1.33%
to 3.30% in term of different prompt tamplates. It is crucial
to construct prompt templates with suitable template design
and verbalizers based on domain knowledge.

3) Different Mixed Prompt Templates: In this section,
we explore the influence of different mixed prompts by con-
structing mixed prompt templates via replacement and inser-
tion approaches as introduced in Section II-B-4. We construct
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Fig. 6. Comparing the performance of CodeBERT and CodeT5 on four tasks with different prefix lengths. The horizontal axis indicates the length of prefix.

mix template prompts based on experimented hard prompts in
Table IX on the defect detection task and the classification ac-
curacy is shown in Table XIII. From the results, we can observe
that the best performance of the mixed prompt is 64.55, which
is higher than the best hard prompt (64.17). The results indicate
that compared with hard prompts, delicately constructing mixed
prompt templates can obtain further improvement. In addition,
the insertion approach outperforms replacement consistently
on four hard prompt templates. Specifically, using insertion is
0.75% better than using replacement on average.

Finding 4: For mixed prompts, using the insertion approach
to construct mixed prompt templates can achieve 0.75%
higher accuracy than using the replacement approach.

4) Different Lengths of Prefix Soft Prompts: We also study
the impact of different lengths of prefix soft prompts. We il-
lustrate the performance under different prefix prompt lengths
for the four tasks in Fig. 6. As can be seen, too short or long
lengths of prefix prompts can degrade the model performance.
For all the tasks that CodeT5 models are applied to, prompt
tuning achieves the best or nearly the best performance when
the length of the prefix prompt is set to a value between 100 and
200. In our work, the prefix lengths are set as 200, 50, 200, and
100 for defect detection, code search, code summarization, and
code translation tasks, respectively. We notice that in Fig. 6(c)
CodeT5-small outperforms CodeT5-base on Java in the code
summarization task, which may be attributed to the noise when
observing the overall experiment results. For the CodeBERT
model on defect detection task, the highest classification accu-
racy is obtained when the prefix length is 50. It is worth noting
that the best accuracy is about 63, which is obviously lower than
those of hard and mixed prompts, indicating that prefix prompt
is not a good choice for CodeBERT on the classification tasks.

For code search tasks, a prefix with a length of 50 can also bring
the overall largest improvement.

Finding 5: When using the prefix prompts, the length of
prompts has an impact on the model performance. The op-
timal length of prefix prompt varies among different code
intelligence tasks and pre-trained models. Utilizing the prefix
length of 200, 50, 200, and 100 for defect detection, code
search, code summarization, and code translation can achieve
the highest empirical results.

D. RQ4: Parameter Efficient Prompt Tuning

In this RQ, we investigate the performance of parameter
efficient prompt tuning in low resource scenarios. Following
previous work [12], we focus on generation tasks (i.e., code
summarization in this article) to evaluate the performance of
prefix prompt by fixing the weights of pre-trained models and
only tuning the parameter of the learnable tokens in the soft
prompt. Similar to RQ2, we randomly select 100, 200, and 300
training instances from the training set. The prompt templates
used in this RQ are the same as those in RQ1. The results are
shown in Table XIV.

From the table, we can observe that parameter efficient
prompt tuning can achieve comparable performance as fine-
tuning. For instance, when the number of training instances
is 100, 200, and 300, the average BLEU-4 score of parame-
ter efficient prompt tuning is 17%, 9%, and 10% lower than
that of fine-tuning on CodeT5-small, respectively. Despite the
relatively lower performance, the parameter efficient prompt
tuning only needs to tune 0.25% of the parameters in fine-
tuning (150K v.s. 60M). However, when training on a larger
model, i.e., CodeT5-base, the overall performance of parame-
ter efficient prompt tuning is generally better than fine-tuning.
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TABLE XIV
RESULTS (BLEU-4 SCORES) OF COMPARING PARAMETER EFFICIENT PROMPT TUNING AND FINE-TUNING ON THE CODE

SUMMARIZATION TASK IN LOW RESOURCE SCENARIOS. THE NUMBER OF TUNED PARAMETERS OF PROMPT TUNING IS OBTAINED

BY 200 SOFT PROMPT TOKENS WITH 768 EMBEDDING DIMENSIONS

Methods #Tuned Parameters Ruby JavaScript Go

Training instances 100 200 300 100 200 300 100 200 300

CodeT5-small
Fine-tuning 60M 4.82 6.75 7.22 3.56 5.48 6.97 5.24 7.18 8.65

Prompt tuning 150K 3.91 5.95 6.23 2.63 4.59 5.48 4.93 7.31 7.95

CodeT5-base
Fine-tuning 220M 4.93 6.83 7.19 4.14 5.60 7.07 7.96 9.64 10.88

Prompt tuning 150K 5.22 7.18 7.87 5.13 6.19 7.30 8.81 10.61 12.10

Methods #Tuned parameters Python Java PHP

Training instances 100 200 300 100 200 300 100 200 300

CodeT5-small
Fine-tuning 60M 5.42 7.62 7.89 2.70 3.86 5.33 6.41 9.50 11.89

Prompt tuning 150K 4.98 7.58 8.24 2.99 3.82 5.45 5.76 8.81 11.45

CodeT5-base
Fine-tuning 220M 5.80 8.46 9.36 3.35 4.73 7.24 5.52 8.90 12.83

Prompt tuning 150K 5.87 7.99 9.63 3.72 4.78 6.97 5.58 9.46 13.27

Fig. 7. Case study on the code summarization task, where the pre-trained
model is CodeT5-small.

On average, parameter efficient prompt tuning (150K) outper-
forms fine-tuning (220M) by 14%, 8%, and 7% with 100, 200,
and 300 training instances available, respectively. The results
could be explained by the fact that the pre-trained models tend
to overfit on scarce data in low-resource scenarios, and tuning
partial parameters in the soft prompt is already enough for the
models to converge on downstream tasks.

Finding 6: In low resource scenarios, parameter efficient
prompt tuning is able to achieve comparable and even better
performance than fine-tuning when tuning significantly fewer
parameters. When 100 instances are used for training, param-
eter efficient prompt tuning outperforms fine-tuning by 14%
on the CodeT5-base model. In addition, parameter efficient
prompt tuning performs better on larger pre-trained models
such as CodeT5-base.

V. DISCUSSION

A. Case Study

In this section, we provide additional case studies to quali-
tatively compare prompt tuning with fine-tuning. The case in
Fig. 7 shows a Ruby code snippet with comments generated
by fine-tuning and prompt tuning models. From the case we

Fig. 8. An example for illustrating the quality of code snippets retrieved by
fine-tuning and prompt tuning in the code search task, respectively, where the
pre-trained model is CodeBERT.

can observe that the fine-tuning model is misled by the word
“modify” in the code snippet and fails to capture the main
functionality “update”. Quite the opposite, the prompt tuning
model accurately summarizes the code snippet.

Furthermore, we illustrate an example in the code search task
in Fig. 8. Given the code comment “Deassert a SPI select”
(Fig. 8a), fine-tuning only focuses on the keyword “SPI” and
ignores the most important action “deassert”. Thus, fine-tuning
retrieves a code snippet about SPI error as Fig. 8 shows and
ranks the correct code at 15. However, prompt tuning success-
fully captures the semantics in the given code comment and
retrieves the correct code snippet related to deasserting a SPI
select (in Fig. 8b).

We also give another case in code translation task in
Fig. 9. The original C# code (a) is to check whether object o
is contained. The code translated by fine-tuning model (c) only
returns the index of o but does not compare it with −1, where
the code semantic changes. However, the prompt tuning model
generates the identical Java code (d) with the ground truth
one (b).
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Fig. 9. Case study on the code translation task, where the pre-trained model
is CodeT5-small.

B. Implications of Findings

1) Implication on the Utilization of Pre-Trained Models:
Prompt tuning performs well in adapting pre-trained models
on code intelligence tasks. We observe that prompt tuning
can consistently outperform fine-tuning in our experiments
under full-data settings, data scarcity settings, and cross-
domain settings. The advantage of prompt tuning is especially
outstanding in data scarcity settings. In addition, parameter
efficient prompt tuning can achieve comparable performance
with fine-tuning with significantly fewer parameters tuned,
greatly reducing the training cost. These advantages suggest
that prompt tuning is a superior solution when there is a lack
of task-specific data.

2) Implication on the Utilization of Prompts: Our ex-
periments demonstrate that different templates and verbaliz-
ers influence the performance of code intelligence tasks. The
templates that have the same semantics but different prompt
tokens can lead to different performance results. Researchers
could try different combinations of the words in their templates
and evaluate the effectiveness through experiments. Besides,
although the vanilla soft prompt is helpful to reduce the manual
cost of prompt template designing, a better performance can
be achieved by a well-designed hard prompt. To obtain further
improvement, adding learnable tokens in existing hard prompt
templates to construct mix prompts is also worth adopting.
Furthermore, we find that the performance of prefix soft prompt
varies with its length. Determining the best length of the prompt
for a downstream task is difficult. Based on our experiments,
in general, promising results can be achieved by soft prompt
when the length is between 100 and 200 for generation tasks.
For CodeBERT model on code search task, a prefix with length
50 is a good choice. In addition, in low resource scenarios where
limited training data are available, parameter efficient prompt
tuning, which fixes the pre-trained model and merely tunes the
significantly less parameters in the soft prompt, can achieve
comparable performance with fine-tuning.

In addition, We suggest future research to consider more
characteristics of source code, like syntactic structures, in the
design of the template and the choices of verbalizer. Experiment
results demonstrate that domain knowledge plays an important
role in the design of prompts. As code structure information
has been demonstrated on the design of regular DL models for
code-related tasks [5], [34], [45], [46], [47], we believe that the
domain knowledge carried by them can also help the design
of prompts.

C. Prompt Template Selection

In this work, we empirically select the different prompt
templates based on the principles that the prompt templates
are supposed to be highly related to the corresponding task
and concise following previous work [2], [18]. For instance,
we use the template “Summarize [LANG] [X]” for the code
summarization task. For the classification tasks such as defect
detection, we use the prompt templates with SVP structure
where the input is the subject and the label word are predicative,
e.g., “The code [X] is [Z]”. In addition, the label words used
in the verbalizer are adjectives. This prompt design can achieve
the highest performance in our experiments.

D. Discussion on Catastrophic Forgetting

The previous work [48], [49] analyze the catastrophic for-
getting problem of fine-tuning, revealing that fine-tuning pre-
trained models via a large amount of data leads to forgetting the
knowledge learned in the pre-training stage and reducing the
generalization of the models. However, our paper is motivated
by the inconsistency of pre-trained models between the pre-
training stage and the downstream fine-tuning stage. Prompt
tuning is utilized to ameliorate the inconsistency and focuses
on improving the performance of pre-trained models in down-
stream tasks. Therefore, mitigating the catastrophic forgetting
issue is not within our paper’s scope.

In recent work, instruction tuning [50], [51] (tuning models
with well-designed task prompts) on large language models
(LLM) has emphasized the importance of prompting. High-
quality downstream data with detailed task prompts are able to
not only avoid LLMs from catastrophic forgetting but also gen-
eralize the model to unseen tasks. Therefore, utilizing prompt
tuning to relieve catastrophic forgetting and improve the gen-
eralization of LLMs is a valuable future direction.

E. Threats to Validity

We have identified the following major threats to validity:
Limited datasets. The experiment results are based on a

limited number of datasets for each code intelligence task.
The selection of data and datasets may bring bias to the re-
sults. To mitigate this issue, we choose the most widely-used
datasets for each code-related task, modify the seeds and run
the sampling multiple times. We also plan to collect more
datasets in the future to better evaluate the effectiveness of
prompt tuning.

Limited downstream tasks. Our experiments are conducted
on four code intelligence tasks, including one classification
task, one retrieval task, and two generation tasks. Although
these tasks are the representative ones in code intelligence, there
are many other tasks, such as commit message generation [46]
and bug fixing [52], [53]. We believe that we could obtain
similar observations on these tasks since they can all be formu-
lated as either classification tasks or generation tasks for source
code. We will evaluate more tasks with prompt tuning in our
future work.

Suboptimal prompt design. We demonstrate that prompt
tuning can improve the performance of pre-trained models.
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However, the prompts we use in this article may not be the best
ones. It is challenging to design the best prompt templates and
verbalizers, which will be an interesting future work.

VI. RELATED WORK

A. Pre-training on Programming Languages

Code intelligence aims at learning the semantics of pro-
grams to facilitate various program comprehension tasks, such
as code search, code summarization, and bug detection [31],
[45], [54], [55], [56], [57], [58], [59]. Recently, inspired by the
huge success of pre-trained models in NLP, a boom of pre-
training models on programming languages arises. CuBERT
[4] and CodeBERT [1] are two pioneer works. CuBERT uti-
lizes the MLM pre-training objective in BERT [6] to obtain
better representation of source codes. CodeBERT is able to
learn NL-PL representation via replaced token detection task
[60]. Svyatkovskiy et al. [61] and Kim et al. [62] train GPT-
2 [63] on large scale programming languages for solving code
completion task. The work GraphCodeBERT [5] leverages data
flow graph (DFG) in model pre-training stage, making model
better understand the code structure.

Apart from aforementioned encoder or decoder only mod-
els, pre-trained models that utilize both encoder and decoder
are also proposed for programming languages. For example,
Ahmad et al. propose PLBART [3], which is able to support
both understanding and generation tasks. The work [53], [64]
utilizes text to text transfer transformer (T5) framework to solve
code-related tasks. Wang et al. modify the pre-training and fine-
tuning stages of T5 and propose CodeT5 [2]. The authors use
identifier-aware denoising pre-training and masked identifier
prediction tasks for pre-training and employ multi-task learning
for finetuning.

B. Prompt Tuning

The concept of prompt tuning is formed gradually. In the
work [65], the authors find that the pre-trained language
models have ability to learn the factual knowledge due to the
mask-and-predict pre-training approach. Therefore, pre-trained
language models can be regarded as a kind of knowledge base.
To measure the capability of pre-trained models to capture
factual information, they propose a language model analysis
dataset (LAMA). Later, Jiang et al. attempt to more accurately
estimate the knowledge constrained in the language model
[66]. They propose LPAQA to automatically discovery better
prompt templates. Schick et al. [13] propose Pattern-Exploiting
Training (PET) for few shot text classification. Although the
authors do not mention the word ”prompt”, they introduce the
concept of patterns (the prompt templates in this article) and
verbalizers. Several works focus on exploring good templates.
Yuan et al. [67] replace phases in the template via a thesaurus.
The work [68] utilizes a neural prompt rewriter to improve
the model performance. Aforementioned works explore the
manual templates or hard templates (meaning the words in
the template are fixed and not learnable). Researchers also
attempt to optimize the template in the training process (soft

prompt) [12], [24], [69]. For example, Li et al. add an additional
learnable matrix in front of the input embedding [12]. Min et al.
[70] combine prompt tuning with noisy channel [71], greatly
improving the performance of few shot text classification.
Zhong et al. propose to initialize these matrices by natural
language tokens for more effective optimization [69]. Recently,
a series of works also study prompts in pre-training stage. They
find that the behavior of language models can be manipulated
to predict desired outputs [72], [73], [74], [75], sometimes even
require no task specific training. In our work, we adapt prompt
tuning in code intelligence tasks to exploit knowledge about
both natural language and programming languages captured by
pre-trained models.

VII. CONCLUSION

In this article, we experimentally investigate the effectiveness
of prompt tuning on four code intelligence tasks and two pre-
trained models. Our study shows that prompt tuning can outper-
form fine-tuning under full-data settings, data scarcity settings,
and cross-domain settings. We summarize our findings and
discuss implications that can help researchers exploit prompt
tuning effectively in their code intelligence tasks. Our source
code and experimental data are publicly available at: https://
github.com/adf1178/PT4Code.
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