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A Unified Point-of-Interest Recommendation Framework
in Location-Based Social Networks

CHEN CHENG, HAIQIN YANG, IRWIN KING, and MICHAEL R. LYU, The Chinese University
of Hong Kong

Location-based social networks (LBSNs), such as Gowalla, Facebook, Foursquare, Brightkite, and so on,
have attracted millions of users to share their social friendship and their locations via check-ins in the past
few years. Plenty of valuable information is accumulated based on the check-in behaviors, which makes
it possible to learn users’ moving patterns as well as their preferences. In LBSNs, point-of-interest (POI)
recommendation is one of the most significant tasks because it can help targeted users explore their sur-
roundings as well as help third-party developers provide personalized services. Matrix factorization is a
promising method for this task because it can capture users’ preferences to locations and is widely adopted
in traditional recommender systems such as movie recommendation. However, the sparsity of the check-in
data makes it difficult to capture users’ preferences accurately. Geographical influence can help alleviate this
problem and have a large impact on the final recommendation result. By studying users’ moving patterns, we
find that users tend to check in around several centers and different users have different numbers of centers.
Based on this, we propose a Multi-center Gaussian Model (MGM) to capture this pattern via modeling the
probability of a user’s check-in on a location. Moreover, users are usually more interested in the top 20 or even
top 10 recommended POIs, which makes personalized ranking important in this task. From previous work,
directly optimizing for pairwise ranking like Bayesian Personalized Ranking (BPR) achieves better perfor-
mance in the top-k recommendation than directly using matrix matrix factorization that aims to minimize
the point-wise rating error. To consider users’ preferences, geographical influence and personalized ranking,
we propose a unified POI recommendation framework, which unifies all of them together. Specifically, we
first fuse MGM with matrix factorization methods and further with BPR using two different approaches.
We conduct experiments on Gowalla and Foursquare datasets, which are two large-scale real-world LBSN
datasets publicly available online. The results on both datasets show that our unified POI recommendation
framework can produce better performance.
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1. INTRODUCTION

Recently, with the rapid development of mobile devices and ubiquitous Internet ac-
cess, location-based social services become prevalent. Online LBSNs such as Gowalla,
Foursquare, and so on, have attracted millions of users to share their social friendship,
experiences and tips of POIs via check-in behaviors. These information pieces embed
abundant hints of users’ preferences on locations. The information not only can be uti-
lized to help a specific user explore new places of the city but also can facilitate third-
parties such as advertisers to provide specific advertisements for the recommended
positions. Hence, POI recommendation becomes a significant task in LBSNs.

To solve the POI recommendation task in LBSNs, matrix factorization is a promising
tool because it is a widely adopted method in traditional recommender systems such as
movie recommendation [Salakhutdinov and Mnih 2007]. We first construct the user-
location matrix, whose entry is the visiting frequency of a user to a location. Then we
can obtain the user’s preference on locations by performing matrix factorization on the
user-location matrix. However, the extreme sparsity of the user-location matrix makes
it difficult to capture the user’s preference accurately. In our crawled Gowalla dataset,
for example, the density of the user-location matrix is only 2.08 × 10−4.

Fortunately, due to the availability of geographical information (i.e., latitude and
longitude) of POIs, researchers can study users’ moving patterns and leverage this
geographical influence to help improve POI recommendation. In Ye et al. [2011], ge-
ographical influence is considered by assuming a power-law distribution between the
check-in probability and the distance along the whole check-in history. The parameters
of the power-law distribution are learned based on all users’ histories; thus, they are
not personalized. In this article, we carefully study each user’s movement and find
that users tend to check in around several centers and different users have different
number of centers. We refer to this as multi-center check-in behavior. Based on this
finding, we propose a Multi-center Gaussian Model (MGM) to capture this movement
pattern. For each user, we will extract the centers based on his or her check-ins. Then
for a new location to the user, we define the probability based on the user’s centers.

Moreover, in real mobile app recommendation scenarios, users are usually more
interested in the top 20 or even top 10 recommended POIs, which makes personalized
ranking important in this task. Most of previous work on POI recommendation was
mainly based on matrix factorization that minimized the point-wise prediction error
for each entry in the user-location matrix. From previous work [Rendle et al. 2009],
directly optimizing for pairwise ranking like Bayesian Personalized Ranking (BPR)
produces better performance in the top-k recommendation than directly using matrix
factorization. To address the top-k ranking as well as the geographical influence, we
propose two methods based on BPR, a state-of-the-art personalized ranking method,
with different integration approaches.

To our best knowledge, this is the first article to combine the MGM with matrix
factorization and BPR into a unified framework in LBSNs, which explores users’ pref-
erences, geographical influence and personalized ranking in POI recommendation. Our
contributions are threefold. First, we mine a large-scale dataset crawled from Gowalla
and extract the characteristics to find out the multi-center check-in behavior. Second,
based on the data properties, we model the probability of a user’s check-in on a location
as an MGM. This is different from the early POI recommendation work in LBSNs [Ye
et al. 2011], which assumed a power-law distribution of the check-in probability with
respect to the distance within the whole check-in history. Third, we propose a unified
POI recommendation framework to fuse users’ preferences, geographical influence,
and personalized ranking together. Our experimental results on two large-scale real-
world online LBSN datasets show that the unified POI recommendation framework
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presented in this article can achieve significantly better performance than other state-
of-the-art methods.

2. RELATED WORK

The work in this paper is closely related to POI recommendation and ranking-oriented
collaborative filtering (CF). In the following, we briefly review the related work.

2.1. Point-of-Interest Recommendation

Location-based service (LBS) research became prevalent due to a wide range of poten-
tial applications, for example, personalized marketing strategy analysis [Yang et al.
2011a], personalized behavior study [Lu et al. 2011], and POI recommendation [Zheng
et al. 2011]. In particular, POI recommendation has attracted much research inter-
est in recent years [Kang et al. 2006; Horozov et al. 2006; Zheng et al. 2009, 2010b;
Leung et al. 2011]. In the following, we review several main approaches in collaborative
filtering community.

One line of research is to solve POI recommendation based on the extracted stay
points from GPS trajectory logs of several hundred monitored users [Zheng et al.
2009, 2010a, 2010b; Leung et al. 2011; Zheng and Xie 2011; Cao et al. 2010]. In Zheng
et al. [2010b], three matrices (i.e., location-activity matrix, location-feature matrix and
activity-activity matrix) were constructed. Based on the three matrices, a collective
matrix factorization method was proposed to mine POIs and activities. Zheng et al.
[2010a] explored a tensor factorization on the user-location-activity tensor to provide
POI recommendation. In Leung et al. [2011], a memory-based method called the
Collaborative Location Model (CLM) was proposed to incorporate activity to facilitate
the recommendation.

The other line of work centers on POI recommendation based on the LBSN data [Ye
et al. 2010, 2011; Zhang and Chow 2013]. All of these work leverage the geographi-
cal influence when providing recommendations and different models were proposed.
A pioneer task of POI recommendation in LBSNs debuted in Ye et al. [2010]. The
work has been extended and further studied in Ye et al. [2011]. More specifically, ge-
ographical influence is considered by assuming a power-law distribution between the
check-in probability and the distance along the whole check-in history [Ye et al. 2011].
However, the paper ignored the user’s multi-center check-in behavior. Moreover, the
proposed method had to compute all pairwise distances of the whole visiting history,
which was very time-consuming. Temporal information has also been considered to
improve POI recommendation. Zhang and Chow [2013] proposed a kernel density esti-
mation approach, which used kernel function to estimate the distribution for each user.
Compared to our MGM model, the method assumed personalized distance distribution.
However, when generating recommendations, the complexity for generating the geo-
graphical influence value is O(n3), where n is the number of a user’s check-ins. It is not
efficient compared to our model whose computational complexity is O(1). Lian et al.
[2014] proposed a GeoMF model, which assumed that both users’ activity areas and
POIs’ influence area had effect on the check-in probability. In Gao et al. [2013], tempo-
ral non-uniformness and temporal consecutiveness were addressed to model temporal
cyclic patterns of check-ins. Geographical and temporal information were incorporated
together in Yuan et al. [2013]. Apart from temporal information, content information
has been studied as well. Liu and Xiong [2013] employed an aggregated LDA model to
study the effect of POI related tags. Gao et al. [2015] investigated three types of content
information and modeled them into a unified POI recommendation framework.
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2.2. Ranking-Oriented Collaborative Filtering

Top-k recommendation has been studied in collaborative filtering in the past few years.
CofiRank [Weimer et al. 2007] was the first proposed ranking-oriented CF approach,
which introduced structured ranking loss into the collaborative filtering framework.
Bayesian personalized ranking (BPR) [Rendle et al. 2009] was proposed as a state-
of-the-art recommendation algorithm for situations with binary relevance data. The
optimization criterion of BPR was essentially based on pairwise comparisons between
relevant and a sample of irrelevant items. Several methods were explored to optimize
directly the ranking metrics. In Shi et al. [2012b], the CF model directly maximized
the Mean Reciprocal Rank (MRR) and [Shi et al. 2012a] proposed a model that di-
rectly maximized Mean Average Precision (MAP) with the aim of creating an optimally
ranked list of items for individual users under a given context. Learning to rank tech-
niques have also been applied in ranking-oriented CF. In Balakrishnan and Chopra
[2012], the authors proposed to use user and item-latent vectors as the feature vector
in a learning-to-rank framework. Volkovs and Zemel [2012] further proposed an effi-
cient method to extract a good feature vector, which was used by the learning-to-rank
framework later with only 17 parameters.

2.3. Ranking-Oriented Method in POI Recommendation

Most recently, Li et al. [2015] developed a ranking-based geographical factorization
method called Rank-GeoFM in POI recommendation. In their work, they assumed that
the check-in probability is determined by a POI’s nearby locations as well as users’
preference. And they proposed to use a ranking-based loss to learn the model. The
score function is defined as:

Ful = U (1)
u

T
Ll + U (2)

u
T ∑

l�∈Nk(l)

wll� Ll� , (1)

where U (1),U (2) and L are latent matrices. Nk(l) is the k-nearest neighbors of POI l.
wll� = (0.5+d(l, l�))−1 is the influence weight of l� to l, which is related to their distance
d(l, l�).

In their method, one iteration takes O(k · #observations), where k is the neighbor
location number and is set to several hundred. Besides, the total training space is
O(|U ||L||Lu|), where |Lu| is the user’s average check-ins. As a result, it takes quite a
lot of time to update the parameters to converge (in our Foursquare dataset, it takes
around 2 days and it has not converged after 1 week on our Gowalla dataset). Moreover,
the geographical influence in Rank-GeoFM is determined by the weight w, which is
simply measure by the distance making it is not very precise. When there are few
check-ins, both of the user preference score and geographical score in Rank-GeoFM
is not accurate. Different from their work, our proposed two ranking methods in this
article are more efficient and more effective when users’ check-ins is few, which is
verified in our experimental part.

In summary, the GPS dataset is usually in small scale with about 100 or 200 users,
but the data are very dense. Contrarily, the LBSN’s dataset is in large scale with thou-
sands of users, but the data are very sparse [Noulas et al. 2011; Scellato et al. 2011].
To solve large-scale recommendation problems, matrix factorization is a promising
tool due to its success in Netflix competition [Bell et al. 2007; Koren 2009]. However,
the data sparsity of LBSN data makes the results of matrix factorization inaccurate.
Moreover, traditional matrix factorization approaches do not consider the geographical
influence, which has a great effect on POI recommendation. Besides, the final purpose
of POI applications is to recommend a few top locations, where the ranking perfor-
mance is important in this task, while previous work does not emphasize personalized
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Table I. Basic Statistics of the Gowalla and Foursquare Dataset

(a) Gowalla

#U #L #E
53,944 367,149 306,958

#Ũ #L̃ #Ẽ
51.33 7.54 11.38

#max. U #max. L #max. E
2,145 3,581 2,366

(b) Foursquare

#U #L
6,084 37,976

#Ũ #L̃
35.98 5.76

#max. U #max. L
182 985

Fig. 1. User-location check-in frequency matrix.

ranking in POI recommendation. In this article, we propose a unified POI recommen-
dation framework that incorporates user preference, geographical influence, as well as
personalized ranking together.

3. CHECK-IN DATA CHARACTERISTICS

In this article, we conduct experiments on two publicly available online LBSN datasets:
Gowalla1 and Foursquare.2 Gowalla is an LBSN website created in 2009 for users to
check in to various locations through mobile devices. We collect a complete snapshot,
including users’ profile, users’ check-in locations, check-in timestamps, users’ friend
lists, and location details, from Gowalla during the period from February 2009 to
September 2011 via the provided public API. To reduce noise in data, we remove
users with less than 10 check-ins and locations with less than 20 visits. Foursquare is
another LBSN website similar to Gowalla. We use the 4-month Foursquare dataset,
which spans from May 2010 to August 2010 provided by Cheng et al. [2011]. Similarly,
in order to remove noise, we require that all users should have at least 10 check-ins.
But we do not have the social information in the provided Foursquare dataset. The
basic statistics of the datasets are summarized in Table I. In the table, we use a tilde
to denote the average count.

Details of the data are depicted in the following:

—The Gowalla dataset has 4,128,714 check-ins from 53,944 users on 367,149 locations
and a total of 306,958 edges are in the whole users’ social graph. The density of
the user-location matrix in the Gowalla dataset is about 2.08 × 10−4. Figure 1 is an
illustration of the user-location matrix. On the other hand, the Foursquare dataset
consists of 6, 084 users, 37, 976 locations with 218, 935 check-ins. The density of the
Foursquare dataset is about 9.48 × 10−4.

—The average number of visited locations of a user is 51.33 and 35.98 for the Gowalla
and Foursquare dataset, respectively. The average number of visiting users for a
location is 7.54 in the Gowalla dataset and 5.76 in the Foursquare dataset. The
average number of friends of a user is 11.38 in the Gowalla dataset.

1http://www.gowalla.com.
2http://www.foursquare.com.
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Fig. 2. Multi-center overview.

Fig. 3. A typical user’s multi-center check-in behavior.

—In the Gowalla dataset, the maximum number of locations for a user is 2,145; in the
Foursquare dataset, the maximum number is 182. The maximum number of visiting
users for a location is 3,581 for Gowalla and 985 for Foursquare. The maximum
number of friends of a user is 2,366.

In the following, we further study the location distribution, frequency distribution and
the social relationship among users’ check-ins. Because Gowalla and Foursquare share
similar characteristics, we only show the results from Gowalla.

3.1. Location Distribution

Figure 2 shows the longitude and latitude of a typical user’s check-in locations, where
the locations form four centers. The details of each center are further shown in
Figures 3(a) through 3(c). This observation reaches our assumption different from the
power-law distribution on users’ check-in histories in Ye et al. [2011]. In addition, our
statistics are also a little differently from the two states (“home” and “office”) check-in
behavior mentioned in Cho et al. [2011]. After examining the comments of locations, we
find that other than the centers of “home” and “office” (counting above half of a user’s
check-ins), other centers count at least 10% of the check-ins. These centers may be a
user’s usual business travel places, for example, an office of a branch of a large company
or vocation places, which provide abundant information that needs to be differentiated.
This means for each user, there may exist several centers around which the user would
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Fig. 4. Check-ins probability vs. distance, counts, top-k locations, common check-ins of friends.

like to conduct activities. Note that the POIs near these centers have a higher chance
to be checked in than the POIs that are far away. It reflects the fact that most of the
time human beings hang out around several familiar areas.

3.2. Frequency Distribution

Figure 4(b) plots the Complementary Cumulative Distribution Function (CCDF) for
each user’s check-in numbers at each location. It is shown that about 74% of locations
are only visited once and only about 3% of locations are visited more than 10 times.
This means that users usually visit several important places (e.g., home, office and
some stores) with very high frequency, while most other places are seldom visited.
Overall, these places are around several centers. Figure 4(c) further shows the CCDF
function of top-k frequently visited locations. The most visited location accounts for
about 18.8% of all users’ check-ins. The top 10 most visited locations account for 68%
of all check-ins and the ratio increases to 80.5% for the top-20 most visited locations,
followingthe Pareto principle (a.k.a. 80-20 rule) [Hafner 2001].

3.3. Social Influence

In the dataset, we find that the average overlap of a user’s check-ins to his or her
friends’ check-ins is only 9.6%. This indicates that less than 10% of a user’s check-ins
are also visited by the user’s friends, which is similar to the statistics reported in Cho
et al. [2011]. Figure 4(d) plots the CCDF of the fraction of a user’s check-ins that are
visited by his or her friends. It is known that for about 38% of users, their check-in
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locations are not checked in by their friends, while almost 90% of users contain less
than 20% of common check-ins with their friends. The statistics are a little different
from that in Cho et al. [2011], but the overall trend is similar. These observations imply
that social relationship has a limited effect on users’ check-ins, which also illustrated
in the experimental part.

4. UNIFIED POINT-OF-INTEREST RECOMMENDATION FRAMEWORK

The problem of personalized POI recommendation is defined as follows: given a par-
tially observed user-location check-in frequency matrix (users in U and locations in L),
the task is to recommend top-k locations to a user that the user does not visit before.
To solve this problem, we first propose a personalized MGM to capture the geograph-
ical influence on a user’s check-ins. Then we depict the matrix factorization method
and propose a fused MF framework to include geographical influence. Finally, we in-
troduce the unified framework, which incorporates geographical influence and matrix
factorization to directly optimize the ranking loss for POI recommendation.

4.1. Multi-Center Gaussian Model (MGM)

A significant characteristic of check-in locations is that they are usually located around
several centers as shown in Figure 3. The second characteristic of check-in locations is
that the probability of a user visiting a location is inversely proportional to the distance
from its nearest center (see Figure 4(a)).

These two characteristics indicate that geographical information plays a strong in-
fluence on the user’s check-in behavior. Based on the statistics from Figures 3 and 4(a),
we adopt Gaussian distribution to model the user’s check-in behavior and propose the
MGM. That is, the probability of a user u, visiting a POI l, given the multi-center set
Cu, is defined by:

P(l|Cu) =
|Cu|∑
cu=1

P(l ∈ cu)
f α
cu∑

i∈Cu
f α
i

N (l|μcu, �cu)∑
i∈Cu

N (l|μi, �i)
. (2)

Here, l denotes the longitude and latitude of a position, and Cu is the set of centers for
the user u. For each center, calculating Equation (2) consists of the multiplication of
three terms:

—P(l ∈ cu) ∝ 1/dist(l, cu) determines the probability of the location l, which belongs to
the center cu, which is inversely proportional to the distance between the location l
and the center cu.

—The second term denotes the normalized effect of check-in frequency fcu, on the
center cu. The parameter α ∈ (0, 1] is introduced to maintain the frequency aversion
property, where very high check-in frequency does not play too significant effect.

—The third term denotes the normalized probability of a location belonging to the
center cu, where N (l|μcu, �cu) is the probability density function of the Gaussian
distribution, and μcu and �cu correspond to the mean and covariance matrices of
regions around the center cu.

Next we introduce how to find the centers for each individual user. We propose a
greedy clustering algorithm among the check-ins due to the Pareto principle [Hafner
2001], which is very efficient. The computational complexity is linear to the number of
observations in the user-location matrix. This property can be observed from Figures 3
and 4(c). There are several more advanced techniques to calculate data similarity,
which can be referred to Yang et al. [2011b].

In our proposed MGM model, we are able to capture the personalized geographical
influence for each user. Compared to iGSLR method in Zhang and Chow [2013], our
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ALGORITHM 1: Multi-Center Discovering Algorithm
1: for all user i in the user set U do
2: Rank all check-in locations in |L| according to visiting frequency
3: ∀lk ∈ L, set lk.center = −1;
4: Center list = ∅; center no = 0;
5: for i = 1 → |L| do
6: if li .center == −1 then
7: center no++; Center = ∅; Center.total freq = 0;
8: Center.add(li); Center.total freq += li .freq;
9: for j = i + 1 → |L| do
10: if lj .center == −1 and dist(li, lj) ≤ d then
11: lj .center = center no; Center.add(lj);
12: Center.total freq += lj .freq;
13: end if
14: end for
15: if Center.total freq ≥ |ui|.total freq * θ then
16: Center list.add(Center);
17: end if
18: end if
19: end for
20: RETURN Center list for user i;
21: end for

method is much more efficient when providing recommendations. The time complexity
of our method is O(1) for computing one new POI, because we can store the center
information beforehand. While in iGSLR, the time complexity is O(n3), where n is
a user’s check-in number. Because we try to recommend top-k POIs, the total time
complexity for recommend top-k POIs in iGSLR is O(|L|n3. When n is larger than 100,
it costs more than an hour. As a result, we do not compare it with our MGM.

In our greedy algorithm, we first scan from the most visited POIs and combine all
other visited check-in locations, whose distance is less than d kilometers from the
selected POI, into a region. If the ratio of the total check-in number of this region to
the user’s total check-in amount is greater than a threshold θ , we set these check-in
positions as a region and determine its center. Algorithm 1 shows the procedure of
discovering multiple centers. In our experiments, by trial on the training dataset, we
set θ to 0.02, the the distance threshold d to 15 and the frequency control parameter α
to 0.2.

4.2. Matrix Factorization

Matrix Factorization (MF) is one of the most popular methods for recommender sys-
tems [Salakhutdinov and Mnih 2007, 2008; Bell et al. 2007; Koren 2009]. It has been
shown to be particularly effective in recommender systems as well as in the well-known
Netflix prize competitions3 [Bell and Koren 2007]. Given the partially observed entries
in a |U | × |L| frequency matrix F, the goal of MF is to find two low-rank matrices
U ∈ R

K×|U | and L ∈ R
K×|L| such that F ≈ U T L. The predicted probability of a user u

who is likely to visit a location l is determined by

P(Ful) ∝ U T
u Ll. (3)

4.2.1. Probabilistic Matrix Factorization (PMF). PMF is one of the most famous MF models
in collaborative filtering, which is proposed in Salakhutdinov and Mnih [2007]. It

3http://www.netflixprize.com.
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assumes that the conditional distribution over the observed rating is:

p
(
F|U, L, σ 2

R

) =
|U |∏
i=1

|L|∏
j=1

[
N

(
Fij |U T

i Lj, σ
2
R

)]IR
ij , (4)

where N (x|μ, σ 2) is the probability density function of the Gaussian distribution with
mean μ and variance σ 2. IR

ij is the indicator function that equals to 1 if user ui has
visited location lj and equals to 0 otherwise. The zero-mean spherical Gaussian priors
are also placed on user and location latent feature vectors:

p
(
U |σ 2

U

) =
|U |∏
i=1

N
(
Ui|0, σ 2

U I
)
, p

(
L|σ 2

V

) =
|L|∏
j=1

N
(
Lj |0, σ 2

V I
)
. (5)

Through Bayesian inference, we have the following objective function:

min
U,L

1
2

|U |∑
i=1

|L|∑
j=1

IR
ij

(
Fij − U T

i Lj
)2 + λ1‖U‖2

F + λ2‖L‖2
F , (6)

where ‖ · ‖F denotes the Frobenius norm. In practice, we can use the sigmoid function
g(x) = 1/(1 + exp(−x)) to convert the rating into (0, 1). Now the objective functions
becomes:

min
U,L

|U |∑
i=1

|L|∑
j=1

Iij
(
g(Fij) − g(U T

i Lj)
)2 + λ1‖U‖2

F + λ2‖L‖2
F . (7)

Note: The observed frequency data are all positive, which makes the data biased.
Consequently, it is a standard one-class collaborative filtering problem [Pan et al. 2008;
Pan and Scholz 2009; Hu et al. 2008]. We sample the same number of unobserved data
from the rest matrix and deem their frequency as 0.

4.2.2. PMF with Social Regularization (PMFSR). Social information is available in our
Gowalla dataset. The social information has been shown to be useful in recommender
systems [Ma et al. 2008; Zhou et al. 2009; Ma et al. 2011a, 2011b]. Although we illus-
trate in Section 3.3 that social information has limited influence, here we adopt one of
the existing method to verify it.

We adopt the PMF with Social Regularization (PMFSR) [Ma et al. 2011a], where the
Individual-based Regularization Model proposed to impose constraints between one
user and his or her friends individually. The objective function is defined as follows:

min
U,L

�(U, L) =
|U |∑
i=1

|L|∑
j=1

Iij
(
g(Fij) − g

(
U T

i Lj
))2

+β

|U |∑
i=1

∑
f ∈F(i)

Sim(i, f )‖Ui − U f ‖2
F

+ λ1‖U‖2
F + λ2‖L‖2

F , (8)

where F(i) is the set of friends for user ui, and Sim(i, f ) is the similarity between user
ui and his or her friend uf . The similarity between a user and the user’s friends can be
computed by measuring the check-ins of them.
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4.2.3. Probabilistic Factor Models (PFM). The PMF model makes assumption on the Gaus-
sian distribution, which may not be appropriate when applied to the frequency data.
This is demonstrated in our later experiment results. Because the check-in data in
LBSNs are naturally frequency, we turn to Probabilistic Factor Models (PFM) [Chen
et al. 2009; Ma et al. 2011], which can model the frequency data directly.

PFM places Gamma distributions as priors on the latent matrices U and L, while
it defines a Poisson distribution on the frequency. This leads to seek U and L by
minimizing 
(U, L; F):


(·, ·; ·) =
|U |∑
i=1

K∑
k=1

((αk − 1) ln(Uik/βk) − Uik/βk)

+
|L|∑
j=1

K∑
k=1

((αk − 1) ln(Ljk/βk) − Ljk/βk)

+
|U |∑
i=1

|L|∑
j=1

(Fij ln(U T L)i j − (U T L)i j) + c, (9)

where c is a constant term.

4.3. A Fusion Framework with User Preference and Geographical Influence

We can observe that either PMF, PMFSR, or PFM only models users’ preferences on
locations. They do not explore the geographical influence. As observed from Figure 4(a),
users tend to check in locations around their centers. It can be very helpful for POI
recommendation, especially when we have very few check-ins, where matrix factor-
ization does not perform very well. Hence, we fuse users’ preferences on a POI and
the probability from MGM together to determine the probability of a user u visiting a
location l, which is defined as follows:

Pul = P(Ful) · P(l|Cu), (10)

where P(l|Cu) is calculated by Equation (2) via MGM, and P(Ful) encodes users’ prefer-
ences on a location determined by Equation (3). After we get the final predicted value
Pul, we can obtain a ranked list of recommended POIs for user u. Finally, we recommend
the top k locations to the user.

4.4. A Final Fusion Framework

Because our final goal is to recommend a ranking POI list to users, directly optimizing
the ranking loss is desirable. Bayesian Personalized Ranking (BPR) [Rendle et al. 2009]
is a state-of-the-art method that tries to minimize the pairwise ranking loss over user
rated items and unrated items. On the other hand, geographical influence has a great
effect on POI recommendation; therefore, we propose two methods to incorporate MGM
with BPR, which combine pairwise ranking with geographical effect together. In the
following, we describe the BPR model first, then we detail the two combined location
ranking methods.

4.4.1. Bayesian Personalized Ranking (BPR). In LBSNs, all the check-ins are implicit feed-
back data, which means we only observe the positive data. The unobserved data, that
is, the missing user-location pairs, are a mixture of real negative feedback (the user
is not interested in visiting the location) and missing values (the user might want to
check in the location but has not visited there).

In BPR, the task is to derive a personalized ranking >u over locations for each user u.
The basic assumption is that if user u checks in location i while not checking in location
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j, we say the user prefers location i over location j, denoted as i >u j. We assume that
there is an estimator f̂ : U × L → R, which is used to define the ranking:

i >u j ⇔ f̂ui > f̂uj . (11)

The estimator f̂ is usually calculated through matrix factorization:

f̂ui = U T
u Li. (12)

The Bayesian formulation of finding the correct personalized ranking for all locations
in L is to maximize the following posterior probability:

p(�| >u) ∝ p(>u |�)p(�), (13)

where � represents the parameters.
We further assume that all users are independent and the ordering of each location

pairs (i, j) for a specific user is also independent. Thus, the likelihood function for all
users can be defined as: ∏

u∈U
p(>u |�) =

∏
(u,i, j)∈S

p(i >u j|�), (14)

where S = {(u, i, j)|u ∈ U , i ∈ L+
u ∧ j ∈ L \ L+

u }, and L+
u is the set of locations visited by

user u.
The individual probability of user u preferring location i to location j is defined as:

p(i >u j|�) = σ ( f̂ui j(�)), (15)

where σ is the logistic sigmoid function σ (x) = 1/(1 + exp(−x)), and

f̂ui j = f̂ui − f̂uj . (16)

We further place a Gaussian prior over the parameters:

p(�) ∼ N (0, σ 2 I). (17)

We use maximum a posterior (MAP) to estimate the parameters:

arg max
�

ln
∏
u∈U

p(>u |�)p(�). (18)

Substituting Equations (15) and (16) into Equation (18), we have the final objective
function:

arg max
�

∑
(u,i, j)∈S

ln(σ ( f̂ui − f̂uj)) − λ�‖�‖2. (19)

Stochastic gradient descent (SGD) can be applied to learn the model parameters �.
We denote F as the objective function in Equation (19). The gradient of F with respect
to the model parameters is:

∂F
∂�

=
∑

(u,i, j)∈S

∂

∂�
ln( f̂ui − f̂uj) − λ�

∂

∂�
‖�‖2 (20)

∝
∑

(u,i, j)∈S

(1 − σ ( f̂ui j)) · ∂

∂�
( f̂ui − f̂uj) − λ�� (21)

=
∑

(u,i, j)∈S

(1 − σ ( f̂ui j)) · ∂

∂�

(
U T

u Li − U T
u Lj

) − λ��. (22)
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Here, � = {U, L}. Note that
∂

∂Uu

(
U T

u Li − U T
u Lj

) = Li − Lj, (23)

∂

∂Li

(
U T

u Li − U T
u Lj

) = Uu, (24)

∂

∂Lj

(
U T

u Li − U T
u Lj

) = −Uu. (25)

For each triple (u, i, j) we draw from S, the update rule is:

� ← � + α

(
(1 − σ ( f̂ui j)) · ∂

∂�
( f̂ui − f̂uj) − λ��

)
, (26)

where α is the step size.

4.4.2. Ranking in POI Recommendation. We propose two methods to incorporate BPR
with geographical influence. The first method is the same as the fuse framework in
Section 4.3. The final probability that user u visits a location l is consequently defined
as

Pul = f̂ul · P(l|Cu), (27)

where f̂ul is estimated from BPR. We refer to this method as BPR Location Recommen-
dation 1 (BPRLR1).

In the second method, we borrow the idea from Cheng et al. [2013]. Instead of
maximizing the difference between visited locations and all unvisited locations, we
focus on maximizing the difference between visited locations and unvisited locations
that are near users’ centers. This idea is very intuitive—because users tend to check in
locations near their activity centers, we do not consider the far away locations, which
may introduce noise otherwise.

We denote Nu as the set of locations in the nearby activity area for user u. We define
Nu = {l|P(l|Cu) > 0}, which requires that location l has a chance to be checked in by the
MGM model. Then we define the trained pairwise location set S′ = {(u, i, j)|u ∈ U , i ∈
L+

u ∧ j ∈ Nu \ L+
u }. Now the objective function is:

arg max
�

∑
(u,i, j)∈S′

ln(σ (x̂ui − x̂uj)) − λ�‖�‖2. (28)

After we get the learned parameters, we employ the estimator x̂ui to obtain the ranking
list. We refer to this method as BPR Location Recommendation 2 (BPRLR2). The
learning algorithm is shown in Algorithm 2.

ALGORITHM 2: Learning Algorithm for BPRLR2

1: draw U ,L from N (0, σ 2)
2: repeat
3: draw (u, i, j) uniformly from S′

4: Calculate σ ( f̂ui j)
5: Update Uu, Li , Lj according to:
6: Uu = Uu + α

(
(1 − σ ( f̂ui j) · (Li − Lj) − λ�Uu

)
7: Li = Li + α

(
(1 − σ ( f̂ui j) · (Uu) − λ�Li

)
8: Lj = Lj + α

(
(1 − σ ( f̂ui j) · (−Uu) − λ�Lj

)
9: until convergence
10: return U ,L
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4.5. Complexity Analysis

The computation cost consists of the calculation of matrix factorization models and
calculating the probability of a user visiting a POI. The training time for the ma-
trix factorization models scales linearly with respect to the number of observations
[Salakhutdinov and Mnih 2007; Ma et al. 2011a]. For the probability computation, the
cost is to calculate the centers. This also scales linearly with respect to the number
of observations. Hence, the proposed fused framework in Section 4.3 is linear with
respect to the number of observations. We use SGD to learn parameters in BPRLR1
and BPRLR2. In each iteration, we update the parameters Uu, Li, and Lj . The cost of
the iteration is O(K), where K is the latent dimension and is usually very small. In
practice, the convergence iteration number is a few times of the observations. So both
BPRLR1 and BPRLR2 are efficient and can scale up to very-large-scale datasets.

5. EXPERIMENTS

The experiments address the following three questions:

(1) How do our approaches compare with the baseline and the state-of-the-art
algorithms?

(2) How do the geographical influence and ranking loss affect the performance?
(3) What is the performance on users with different check-in frequency? This is a

scenario for cold-start users whose check-ins are few.

5.1. Setup and Metrics

The experimental data include user-location check-in records, users’ friendship list,
and geographical information (longitude and latitude of check-in locations). We split
the crawled Gowalla dataset and Foursquare dataset into two non-overlapping sets: a
training set and a test set, where the proportion of training data and test data is 70%
and 80%, respectively. Here, 70%, for example, means we randomly select 70% of the
observed data for each user as the training data to predict the remaining 30% data. The
random selection was carried out five times independently, and we report the average
result. The hyper-parameters are tuned by cross-validation. For all experiments, we
set the regularization term λ to 0.1 and the step size α to 0.2.

POI recommendation is to recommend the top-N highest ranked positions to a tar-
geted user based on a ranking score from a recommendation algorithm. To evaluate the
model performance, we are interested in finding out how many locations in the test set
are recovered in the returned POI recommendation. Hence, we use the Precision@N
and Recall@N as the metrics to evaluate the returned ranking list against the check-in
locations where users actually visit. These two metrics are standard metrics to mea-
sure the performance of POI recommendation [Ye et al. 2011]. Precision@N defines the
ratio of recovered POIs to the N recommended POIs, while Recall@N defines the ratio
of recovered POIs to the size of the test set. In the experiments, N is set to 5 and 10,
respectively.

5.2. Comparison

In the experiments, the compared approaches include:

(1) Multi-center Gaussian Model (MGM): this method recommends a position
based on the probability calculated by Equation (2).

(2) PMF: this is a well-known method in matrix factorization [Salakhutdinov and
Mnih 2007]. We describe the details in Section 4.2.1. Its objective function is
shown in Equation (7).
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Table II. Performance Comparisons on the Gowalla Dataset with K = 20

Ratio Metrics
Dimension = 20

MGM PMF PMFSR PFM FMFMGM GeoMF BPR BPRLR1 BPRLR2

70%

P@5 0.0317 0.0140 0.0153 0.0173 0.0643 0.0660 0.0645
0.0791

0.0500
Improve 149.53% 465.00% 416.99% 357.23% 23.02% 19.85% 22.64% 58.20%

R@5 0.0113 0.0032 0.0035 0.0040 0.0202 0.0212 0.0187
0.0264

0.0168
Improve 133.63% 725.00% 654.29% 560.00% 30.69% 24.53% 41.18% 57.14%

P@10 0.0273 0.0166 0.0166 0.0172 0.0635 0.0638 0.0615
0.0682

0.0615
Improve 149.82% 310.84% 310.84% 296.51% 7.40% 6.90% 10.89% 10.89%

R@10 0.0194 0.0079 0.0078 0.0084 0.0395 0.0402 0.0355
0.0445

0.0396
Improve 129.38% 463.29% 470.51% 429.76% 12.66% 10.70% 25.35% 12.37%

80%

P@5 0.0263 0.0106 0.0107 0.0114 0.0464 0.0476 0.0462
0.0544

0.0334
Improve 106.84% 413.21% 408.41% 377.19% 17.24% 14.29% 17.75% 62.87%

R@5 0.0141 0.0034 0.0034 0.0039 0.0207 0.0216 0.0194
0.0258

0.0160
Improve 82.98% 658.82% 658.82% 561.54% 24.64% 19.44% 32.99% 61.25%

P@10 0.0226 0.0120 0.0121 0.0117 0.0452 0.0458 0.0427
0.0468

0.0412
Improve 107.08% 290.00% 286.78% 300.00% 3.54% 2.18% 9.60% 13.59%

R@10 0.0244 0.0082 0.0084 0.0083 0.0404 0.0409 0.0358
0.0442

0.0382
Improve 81.15% 439.02% 426.19% 432.53% 9.41% 8.07% 23.46% 15.71%

(3) PMF with Social Regularization (PMFSR): this method is proposed to in-
clude the social friendship under the PMF framework [Ma et al. 2011a], which
is introduced in Section 4.2.2. Its objective function is shown in Equation (8). We
only report the results on Gowalla data, as we do not have the social information
in our Foursquare data.

(4) Probabilistic Factor Models (PFM): this method is a promising method to
model frequency data [Ma et al. 2011]. Its objective function is shown in Equa-
tion (9), and the details are in Section 4.2.3.

(5) FMF with MGM (FMFMGM): this is the Fused Matrix Factorization framework
with the Multi-center Gaussian Model (FMFMGM). The user’s preference on lo-
cations is calculated by the PFM model. Here, we select PFM because PFM can
model the frequency data better than PMF.

(6) BPR: this method is a ranking-oriented method for implicit data [Rendle et al.
2009]. We introduced the details in Section 4.4.1.

(7) GeoMF: this method is proposed in Lian et al. [2014]. which incorporated location
information into the weighted matrix factorization method. We report the results
of GeoMF on our large Gowalla dataset.

(8) Rank-GeoFM: this method is the state-of-the-art method proposed in Li et al.
[2015]. We briefly introduced the details in Section 2.3. We only report the results
on Foursquare, as our Gowalla data is too large. It take too long time to converge
in Gowalla data.

(9) BRPLR1: this method is the first scheme we proposed to incorporate BPR and
geographical influence.

(10) BPRLR2: this method is the second scheme we proposed to incorporate BPR and
geographical influence.

Tables II through V report the average of five-run results on the top 5 and top 10
recommendation by the competing models using 20 and 30 as the number of latent
feature dimensions, respectively. The results show that:

—FMFMGM outperforms PMF, PMFSR, and PFM significantly in all metrics. For
example, in Gowalla, FMFMGM attains 0.0643 in terms of P@5 when the latent
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Table III. Performance Comparisons on the Gowalla Dataset with K = 30

Ratio Metrics
Dimension = 30

MGM PMF PMFSR PFM FMFMGM GeoMF BPR BPRLR1 BPRLR2

70%

P@5 0.0317 0.0148 0.0158 0.0173 0.0672 0.0683 0.0674
0.0802

0.0517
Improve 153.00% 441.89% 407.59% 363.58% 19.35% 17.42% 18.99% 55.13%

R@5 0.0113 0.0033 0.0035 0.0040 0.0212 0.0219 0.0199
0.0270

0.0175
Improve 138.94% 718.18% 671.43% 575.00% 27.36% 23.29% 35.68% 54.29%

P@10 0.0273 0.0162 0.0174 0.0173 0.0656 0.0660 0.0643
0.0700

0.0628
Improve 156.41% 332.10% 302.30% 304.62% 6.71% 5.11% 8.86% 11.46%

R@10 0.0194 0.0075 0.0080 0.0084 0.0408 0.0415 0.0382
0.0465

0.0408
Improve 260.82% 833.33% 775.00% 733.33% 13.97% 12.05% 83.25% 13.97%

80%

P@5 0.0263 0.0106 0.011 0.0114 0.0486 0.0490 0.0488
0.0551

0.0348
Improve 109.51% 419.81% 400.91% 383.33% 13.37% 12.45% 12.91% 58.33%

R@5 0.0141 0.0035 0.0037 0.0039 0.0218 0.0222 0.0210
0.0263

0.0172
Improve 86.52% 651.43% 610.81% 574.36% 20.64% 18.47% 25.24% 52.91%

P@10 0.0226 0.0115 0.0117 0.0117 0.0472 0.0473 0.0450
0.0479

0.0432
Improve 111.95% 316.52% 309.40% 309.40% 1.48% 1.27% 6.44% 10.88%

R@10 0.0244 0.0079 0.0081 0.0085 0.0424 0.0430 0.0386
0.0456

0.0407
Improve 86.89% 477.22% 462.96% 436.47% 7.55% 6.05% 18.13% 12.04%

Table IV. Performance Comparisons on the Foursquare Dataset with K = 20

Ratio Metrics
Dimension = 20

MGM PMF PFM FMFMGM BPR BPRLR1 Rank-GeoFM BPRLR2

70%

P@5 0.0409 0.0591 0.0706 0.1190 0.1074 0.1447 0.1548
0.1734

Improve 323.96% 193.40% 145.61% 45.71% 61.45% 19.83% 12.01%
R@5 0.0306 0.0258 0.0308 0.0588 0.0513 0.0749 0.0718

0.0878
Improve 186.93% 240.31% 185.06% 49.32% 71.15% 17.22% 22.28%

P@10 0.0373 0.0610 0.0652 0.1157 0.1078 0.1501 0.1565
0.1671

Improve 347.99% 173.93% 156.29% 44.43% 55.01% 11.33% 6.77%
R@10 0.0531 0.0550 0.0608 0.1152 0.1032 0.1545 0.1452

0.1699
Improve 219.96% 208.91% 179.44% 47.48% 64.63% 9.97% 17.01%

80%

P@5 0.0288 0.0448 0.0486 0.0830 0.0771 0.1031 0.1161
0.1273

Improve 342.01% 184.15% 161.93% 53.37% 65.11% 23.47% 9.65%
R@5 0.0332 0.0311 0.0362 0.0645 0.0572 0.0826 0.0830

0.0969
Improve 191.87% 211.58% 167.68% 50.23% 69.41% 17.31% 16.75%

P@10 0.0265 0.0466 0.0504 0.0812 0.0766 0.1042 0.1177
0.1207

Improve 355.47% 159.01% 139.48% 48.65% 57.57% 15.83% 2.55%
R@10 0.0586 0.0647 0.0671 0.1245 0.1138 0.1648 0.1673

0.1859
Improve 217.24% 187.33% 177.05% 49.32% 63.36% 12.80% 11.11%

dimension is 20 and 70% of data are used for training, while PFM, the best current
model without considering location information, achieves 0.0173 for the counterpart.
This implies that geographical influence plays a significant role in POI recommen-
dation. By utilizing the geographical influence, we can provide much more accurate
POI recommendations to targeted users.

—FMFMGM achieves significantly better performance than MGM in both Gowalla and
Foursquare datasets. That is, for the case of the latent dimension being 30 and 80%
of data for training, the performance increases from 0.0141 for MGM to 0.0218 for
FMFMGM. This verifies that the probability of a user visiting a POI is controlled by
both the user’s personal preference and the personal check-in location constraints.
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Table V. Performance Comparisons on the Foursquare Dataset with K = 30

Ratio Metrics
Dimension = 30

MGM PMF PFM FMFMGM BPR BPRLR1 Rank-GeoFM BPRLR2

70%

P@5 0.0409 0.0621 0.0718 0.1201 0.1086 0.1484 0.1694
0.1783

Improve 335.94% 187.12% 148.33% 48.46% 64.18% 20.15% 5.25%
R@5 0.0306 0.0277 0.0312 0.0594 0.0528 0.0763 0.0797

0.0901
Improve 194.44% 225.27% 188.78% 51.68% 70.64% 18.09% 13.05%

P@10 0.0373 0.0638 0.0663 0.1166 0.1107 0.1522 0.1624
0.1698

Improve 355.23% 166.14% 156.11% 45.63% 53.39% 11.56% 4.56%
R@10 0.0531 0.0574 0.0622 0.1166 0.1070 0.1568 0.1607

0.1728
Improve 225.42% 201.05% 177.81% 48.20% 61.50% 10.20% 7.53%

80%

P@5 0.0288 0.0450 0.0482 0.0833 0.0820 0.1050 0.1220
0.1287

Improve 346.88% 186.00% 167.01% 54.50% 56.95% 22.57% 5.49%
R@5 0.0332 0.0306 0.0364 0.0640 0.0606 0.0834 0.0879

0.0998
Improve 200.60% 226.14% 174.18% 55.94% 64.69% 19.66% 13.54%

P@10 0.0265 0.0478 0.0512 0.0811 0.0796 0.1053 0.1168
0.1227

Improve 363.02% 156.69% 139.65% 51.29% 54.15% 16.52% 5.05%
R@10 0.0586 0.0657 0.0677 0.1242 0.1176 0.1658 0.1788

0.1898
Improve 223.89% 188.89% 180.35% 52.82% 61.39% 14.48% 6.15%

By utilizing users’ personalized tastes captured by MF models, we can attain more
accurate predictions.

—PMFSR attains a little better results than those of PMF. This shows that social
influence is not so important in POI recommendation and it also coincides the fact
that friends share very low, only 9.6%, common POIs.

—BPR almost achieves comparable performance with FMFMGM, which verifies our
assumption that ranking loss affects the final recommendation. An interesting re-
sult is that in Gowalla, BPRLR1 performs the best, while in Foursquare, BPRLR2
performs the best. The reason might be that the data in our Gowalla dataset are
sparser than the Foursquare dataset. Note when we use the second scheme, that is,
focusing on nearby POIs, it may not work well on Gowalla. We need to have sufficient
negative pairs to learn parameters. In Gowalla, the nearby POIs is not enough to
learn all parameters well. One scheme may be that we can further sample some far
not-visited POIs as well. It may also the reason that BPRLR1 is a little worse than
BPR in Gowalla.

—On the Gowalla dataset, GeoMF outperforms our FMFMGM sightly because GeoMF
benefits from modeling weighted matrix factorization and incorporates the geograph-
ical as a unified model. However, our BPRLR1 performs better than GeoMF. One rea-
son maybe that GeoMF fits both nonzero and zero check-ins with different weights,
which is less reasonable than the ranking method. Zero values may be missing values
or potential positive ratings just because the user has not noticed them yet.

—Our BPRLR2 is still outperforms Rank-GeoFM, which is the state-of-the-art method.
One possible reason is that our MGM model capture the geographical influence is
more precise that the simple scheme in Rank-GeoFM. Moreover, our method is much
more efficient than Rank-GeoFM. BPRLR2 only takes several minutes to converge,
while the time for Rank-GeoFM is around 2 days.

5.3. Performance on Different Users

One challenge of the POI recommendation is that it is difficult to recommend POIs
to those users who have very few check-ins. In order to compare our methods with
the other methods thoroughly, we first group all the users based on the frequency of
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Fig. 5. Distribution of user groups.

observed check-ins in the training set. Then we evaluate the model performances within
different user groups. Here, users are grouped into 6 types: “1–10”, “10–20”, “20–30”,
“30–60”,“60–150” and “>150” for Gowalla; “1–5”, “5–10”, “10–15”, “15–20”,“20–25” and
“>25” for Foursquare. The number denotes the frequency range of users’ check-ins in
the training data.

Figure 5 summarizes the distribution on different ranges of users’ check-in frequency
in 70% of the training data. From Figure 6, we observe that when users’ check-in fre-
quency is small, MGM outperforms PMF, PMFSR, and PFM. But when users’ check-in
frequency becomes larger, PMF, PMFSR, and PFM performs better than MGM. It is
reasonable because when users’ check-in frequency is small, especially for cold-start
users, it is difficult to learn users’ preferences. Thus, geographical information plays
more influence on the prediction. When more check-in information is available, both
users’ preferences and geographical influence can be learned more accurately, but users’
preferences dominate the geographical influence. From Figures 6(c) and 6(d), we can
observe that Rank-GeoFM performs poor when there are few check-ins. The reason may
be that the geographical influence in Rank-GeoFM is not accurate. When taking the
ranking loss into account with our MGM model, we achieve the best performance, es-
pecially when the dataset is denser, BPRLR2 consistently outperform other competing
methods.

6. CONCLUSION

In this article, we have investigated the characteristics of the large-scale check-in data
from two popular LBSNs websites, Gowalla and Foursquare. Based on the extracted
properties of the data, we proposed a novel MGM to model the geographical influ-
ence of users’ check-in behavior. We then propose a fused matrix factorization method
to include the geographical influence of users’ check-in locations. Furthermore, we
proposed to incorporate ranking-oriented CF with all the information together into
a unified framework. Results from extensive experiments showed that our proposed
methods outperformed other state-of-the-art approaches significantly.

There are several directions worthy of consideration for future study: (1) how to
model extremely sparse frequency data, for example, by designing more subtle sam-
pling techniques, to improve MF methods; (2) how to include other information, for ex-
ample, location category and activity, into our fused framework; (3) how to incorporate
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Fig. 6. Performance comparison on different user groups.

temporal effect on POI recommendation to capture the change of users’ preferences.
We will continue to explore these future directions.
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