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Abstract This paper proposes a novel method that can predict
protein interaction sites in heterocomplexes using residue spatial
sequence profile and evolution rate approaches. The former rep-
resents the information of multiple sequence alignments while the
latter corresponds to a residue�s evolutionary conservation score
based on a phylogenetic tree. Three predictors using a support
vector machines algorithm are constructed to predict whether a
surface residue is a part of a protein–protein interface. The effi-
ciency and the effectiveness of our proposed approach is verified
by its better prediction performance compared with other mod-
els. The study is based on a non-redundant data set of heterodi-
mers consisting of 69 protein chains.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Protein–protein interactions play a critical role in live bio-

logical cells by controlling the functions that proteins perform,

such as regulation of metabolic and signaling pathways, immu-

nological recognition, DNA replication and gene translation,

as well as protein synthesis [1]. Localization of such interac-

tions to so-called ‘‘functional sites’’ or ‘‘interaction sites’’ will

allow us to understand how the protein recognizes other mol-

ecules, to gain clues about its likely function at the level of the

cell and the organism, and to identify important binding sites

that may serve as useful targets for pharmaceutical design [2].

This is stimulating researchers to seek potential computational

approaches for identifying the roles of function residues, espe-

cially those at protein–protein interaction sites.

Recently, a series of computational efforts to identify inter-

action sites or interfaces in proteins have been undertaken;

these have addressed various aspects of protein structure and

behavior, such as detecting the presence of ‘‘proline brackets’’

[3], solvent-accessible surface area buried upon association [4],

free energy changes upon alanine-scanning mutations [5], in
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silico two hybrid systems [6], and sequence hydrophobicity dis-

tribution [7]. Jones and Thornton [8,9] successfully predicted

protein interfaces by analyzing six parameters of surface patch.

Also, in recent years, several studies have attempted to predict

protein–protein interaction sites from sequence or structure

conservation information [10–16].

These existing methods tackled the problem of protein–

protein interaction from different angles, and the development

of computational approaches to identify protein interaction

sites is still at its embryonic stage.

In this paper, we present a novel, efficient method, which

incorporates residue spatial sequence profile and evolution

rate, to identify protein–protein interaction sites on the protein

residue level. Amino acid sequence profile and evolution rate

represent the information about evolutionary conservation

base on multiple sequence alignments (MSAs) and the phylo-

genetic tree, respectively. Our purpose is to develop a general

approach that can capture the general properties of interface

residues, so we focus here on heterocomplexes for the reason

that interacting surfaces in homocomplexes are characterized

by hydrophobicity. To this end, a support vector machines

(SVMs) predictor has been constructed for identifying protein

interaction sites in protein chains. The results based on a non-

redundant set of protein heterodimers demonstrated that this

approach is effective and efficient; the model achieved a sensi-

tivity of 66.3%, a specificity of 49.7%, an accuracy of 0.654 and

a correlation coefficient of 0.297.
2. Materials and methods

2.1. Dataset preparation
To generate a predictor that can capture the general properties of

residues located on a protein interface, we extracted a data source from
a set of 113 pairs of interacting protein chains used in the study of
Fariselli et al. [12]. The dataset eliminates homocomplexes and prote-
ase-inhibitor complexes, whose interacting surfaces are characterized
by hydrophobicity and serine/histidine active site signatures, respec-
tively. The dataset also excludes chains labeled as �membrane peptides�,
�small proteins� or �coiled coils� in the SCOP classification [17]. After
removal of redundant chains, we obtained a data set of 69 protein
chains (sequence identity <30%); all the data are available upon re-
quest.
In this paper, a residue is considered to be a surface residue if its rel-

ative accessible surface area (ASA) is at least 16% of its nominal max-
imum area whose value as defined by Rost and Sander [18]. The ASA
is computed for each residue in each protein chain using the DSSP pro-
gram [19]. Here, we should emphasize that only the coordinates of the
blished by Elsevier B.V. All rights reserved.

mailto:dshuang@iim.ac.cn 


B. Wang et al. / FEBS Letters 580 (2006) 380–384 381
unbound chain were used in the calculation. If other chains present in
the complex were included, their influence would cause the ASA to be
incorrectly calculated. A residue is classified as an interface residue if
the spatial distance between its a-carbon (CA) atom and random
CA atoms in the other chains in the complex is less than 1.2 nm [12].
According to the above definitions, we obtain 10329 surface residues,
34.8% of which are interface residues.

2.2. Predictor construction
In our experiment, predictors are generated using the SVM algo-

rithm to judge whether a residue is located on an interface or not.
SVMs frequently demonstrate high prediction accuracy whilst avoid-
ing over-fitting. They can also handle large feature spaces and con-
dense the information given by the training dataset using support
vectors [20]. Here, we consider only surface residues in the predictor
training, the target value of which is 1 (positive sample) if the target
residue is classified into the interface residue set and �1 (negative sam-
ple) otherwise. The SVM algorithm implemented here can be down-
loaded freely (http://www.cs.waikato.ac.nz/~ml/weka).
We constructed three SVM predictors using residue sequence pro-

file, evolution rate, or a combination of these two attributes. For the
predictor using residue sequence profile, the input vectors are ob-
tained from the HSSP database [21], where each amino acid is repre-
sented by elements whose values are based on multiple alignments of
protein sequences and their potential structural homologs. For the
evolutionary rate [22–24] based predictor, each input vector is as-
signed a conservation score to amino acid position. Following the
method used by Fariselli et al. [12], the input vector of these predic-
tors is fed with a window of 11 residues, centered on the target res-
idue and including the five spatially neighboring residues on each
side. So, each residue is represented by a 220-component vector in
the predictor based on the residue spatial sequence profile, and by
an 11-component vector in the evolutionary rate-based predictor.
For the predictor which combines residue sequence profile with evo-
lutionary rate information, a 231-component vector is required for
each amino acid residue.
A leave-one-out cross-validation strategy was employed to conduct

the related subsequent experiments. In this strategy, one protein from
our dataset was selected; then the SVMs were trained on the remaining
proteins and the interaction sites of the selected protein were predicted.
Here, 3 · 69 = 207 experiments are implemented, and the predictors
were trained using all of the positive samples and the same number
of negative samples extracted randomly from the training set in each
experiment. Owing to the stochastic method used for selecting negative
samples, the results could rarely be reproduced exactly for the same
protein with another cross-validation run. Therefore, the entire
cross-validation procedure was repeated five times, and the resulting
performances were used to evaluate our method.

2.3. Evaluation measures of predictor performance
Generally speaking, prediction accuracy, whose value is the ratio of

the number of correctly predicted residues to the total number of res-
idues in experiment, is the best index for evaluating the performance of
a predictor. However, only 34.8% of the data are interacting residues,
which leads a rather unbalanced distribution of positive and negative
samples. To assess our method objectively, another two indices are
introduced in this paper, namely specificity and sensitivity [14,25].
The specificity is generally defined as the ratio of the number of

matched residues between the predicted set and the actual set over
the total number of predicted residues. The sensitivity is defined as
the ratio of the number of matched interaction sites over the total
number of the interaction sites in the observed set. Let TP be the num-
ber of true positives, i.e., residues predicted to be interface residues that
actually are interface residues, and FP be the number of false positives,
Table 1
The overall performance of our experiments

Sensitivity Sp

Sequence profile 61.4% 45
Evolutionary rate 53.7% 47
Sequence profile + evolutionary rate 66.3% 49
i.e., residues predicted to be interface residues that are in fact not inter-
face residues. In addition, let TN be the number of true negatives, and
FN the number of false negatives. Then the evaluation measures can be
computed as follows:

Sensitivity ¼ TP

TPþ FN

Specificity ¼ TP

TPþ FP

Accuracy ¼ TPþ TN

TPþ FNþ TNþ FP

Correlation coefficient ðCCÞ

¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTPþ TPÞðTNþ FPÞðTNþ FNÞ

p

The correlation coefficient (CC) is a measure of how well the pre-
dicted class labels correlate with the actual class labels. Its range is
from �1 to 1, where a correlation coefficient of 1 corresponds to perfect
prediction and �1 to the worst possible prediction; a correlation coef-
ficient of 0 corresponds to random guessing.
3. Results

3.1. Performance of three SVM predictors

The general performances of the three SVM predictors are

shown in Table 1. The values of each measure are obtained

by comparing the results from the five experiments, such that

if a residue was predicted to be an interface residue no less than

three times, it was taken as a positive prediction, and treated as

a negative prediction otherwise. It can be seen that the differ-

ence in performance between the residue sequence profile-

based predictor and the evolutionary rate-based predictor is

very small. If judged by accuracy only, the evolutionary rate-

based predictor seems to slightly outperform (by 2%) the se-

quence profile-based predictor. However, the sensitivity

achieved by the sequence profile-based predictor is higher than

that of the evolutionary rate-based predictor (7.7% better sen-

sitivity), albeit with 1.7% lower specificity and an approxi-

mately equal correlation coefficient. The results indicate that

the residue evolutionary rate approach can distinguish protein

interaction sites from other positions on the protein surface,

and its capability is almost identical to the residue sequence

profile approach adopted by many previous studies to investi-

gate protein–protein interaction.

It also can be found that the predictor whose feature vectors

combined residue sequence profile with evolutionary rate out-

performs the predictors based on either attribute alone. When

both types of attributes are combined, the improvement in per-

formance is impressive: at least 5% increase in sensitivity, 2%

increases in specificity and accuracy, and 7% increase in corre-

lation coefficient. These enhancements in all of the measures of

performance used here indicate that the information contained

within the residue sequence profile and the evolutionary rate

may be complementary, and that exploiting this complemen-

tarity is helpful for predicting interaction sites.
ecificity Accuracy Correlation coefficient

.8% 0.618 0.223

.5% 0.637 0.220

.7% 0.654 0.297

http://www.cs.waikato.ac.nz/~ml/weka


Table 2
The variances of different performance measures rooted from stochastic selection of negative samples across 69 proteins

Sequence profile Evolutionary rate Sequence profile + evolutionary rate

Sensitivity 0.0070 ± 0.0013 0.0008 ± 0.0008 0.0039 ± 0.0050
Specificity 0.0019 ± 0.0032 0.0004 ± 0.0013 0.0008 ± 0.0011
Accuracy 0.0015 ± 0.0018 0.0002 ± 0.0003 0.0008 ± 0.0010
Correlation coefficient 0.0068 ± 0.0082 0.0006 ± 0.0009 0.0023 ± 0.0032
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In each SVM training process, the negative sample was se-

lected stochastically, so it is important to infer the influence

of this randomness. This was studied by computing the vari-

ance of each performance measure through five repetitions

across the 69 protein chains. The resulting means and standard

deviations are shown in Table 2, and it can be seen that all the

variances are close to zero. This result indicates that all the dif-

ferent SVMs converge to similar vectors, and it means our sys-

tems can predict interface residues through learning.

The detailed results of our experiments are depicted in

Fig. 1. It can be seen that the predictor using both residue se-

quence profile and evolutionary rate as feature vectors outper-

forms that of the other predictors for all proteins, in almost all

of the performance measures. The statistical analysis of each

performance measure across all proteins also demonstrated

this point, i.e., the combined attributes-based predictor

achieves a higher mean and a lower standard deviation in al-

most all measures (Table 3). Unless otherwise noted, the fol-

lowing discussions in this section are based on the combined

attributes-based predictor (Fig. 2). It can be seen that the sen-

sitivity values were greater than 20% for all proteins, and at

least 50% residues that were correctly classified for over 82%
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Fig. 1. The detailed performance measures across 69 proteins. Blue
corresponds to sequence profile-based predictor; green denotes evolu-
tionary rate-based predictor, and red denotes the combined attributes-
based predictor. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 3
The statistical analysis of predictor performance across 69 proteins

Sensitivity Spe

Sequence profile 55.6% ± 0.194 43.5
Evolutionary rate 60.9% ± 0.172 47.4
Sequence profile + evolutionary rate 65.0% ± 0.167 50.4
(57 of 69) of the proteins. The distribution of specificity values

shows that this measure exceeds 50% in only 30 experiments

and is less than the corresponding sensitivity values, indicating

that there are relatively more false positives in our experi-

ments. In the cases of 61 proteins, the prediction results can

be regarded as credible if the cut-off of the accuracy is set at

0.5. Among the evaluation measures adopted here, the correla-

tion coefficient values can best show how well our predictor

worked. From Fig. 2, it can be found that for 96% of the pro-

teins the correlation coefficient is greater than 0, which suggests

that our predictor is indeed better than the random predictor

[25].

3.2. Location of interaction sites

To further illustrate the effectiveness of our approach, a test

on protein complex 1BRL (PDB code) [26] was taken as an

example. 1BRL is Luciferase, which is a class of enzymes that

generate light in the visible spectrum, found in luminous marine

bacteria. Its crystal structure has been determined to 2.4-Å res-

olution. It is an a–b heterodimer monooxygenase that cata-

lyzes the oxidation of FMNH2 and a long-chain aliphatic

aldehyde [27].

The prediction results are presented in Fig. 3, using the Ra-

sTop tool [28]. They showed that most interface residues and

non-interface residues can be predicted correctly. Only 6.7%

of the surface residues (24 false negative residues from a total

of 365 surface residues) cannot be classified correctly into

interface residues. Although 71 non-interface residues were

predicted to be interface residues, we can remove most of them

with the help of three-dimensional structure visualization of

the target complex.
4. Discussions

This paper addresses the problem of distinguishing interface

residues from other surface residues in heterocomplexes of

known structure using SVMs. The results reported here dem-

onstrate that residue sequence profile and evolutionary rate

approaches can not only predict interface residues, but can

also improve prediction performance by combining these two

attributes. Interestingly, the prediction performances are

nearly the same whichever of the two attributes was used as in-

put vectors for the SVMs.
cificity Accuracy Correlation coefficient

% ± 0.225 0.593 ± 0.117 0.142 ± 0.185
% ± 0.220 0.626 ± 0.112 0.218 ± 0.168
% ± 0.220 0.650 ± 0.116 0.274 ± 0.161
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Fig. 2. The distributions of prediction performance measure values of the combined attributes-based predictor for 69 proteins.

Fig. 3. Visualization of prediction results on heterocomplex PDB:1BRL. The 3D structure of the complex is shown by a smooth spline between
consecutive alpha carbon positions; white and black represent chains A and B, respectively. The residues related to the prediction are displayed as
spheres and the corresponding colors are coded as follows: green denotes true positive predictions (TP); blue denotes the missing interface residues in
the predictor (FN); red and yellow denote false positive predictions (FP), of which the yellow residues can be excluded by visualization of the
complex�s 3D structure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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There are several methods using neural network or SVM to

identify interface residues based on spatially or sequentially

neighboring residue profiles [10–16]. We repeated the training

processes using back-propagation neural networks [29] on the

same dataset, and the performances demonstrated the effec-

tiveness of the proposed SVM algorithm in tackling this prob-

lem (Fig. 4). Some previous studies [13–15] have adopted an

SVM algorithm to study protein interaction sites from primary

structure. A direct comparison with these studies is difficult

due to the differences in choice of dataset and definitions of

surface or interface residue. But it is clear that predicting pro-

tein–protein interaction sites from sequentially neighboring

residues is harder than from spatially neighboring sequences

in the absence of structure information; this is important be-

cause there is biological importance in revealing the function

of proteins whose structure are known.

A relatively high false positive ratio in protein–protein inter-

action sites prediction is a troublesome problem. Some investi-

gators reduce the false positive ratio by eliminating isolated

raw positive predictions [11,15]. For structure-known proteins,
we can exclude false positive predictions by considering their

three-dimensional structure. On the other hand, these false po-

sitive predictions might comprise other functionally important

sites which do not correlate directly with protein–protein inter-

actions in our selected complexes, but rather imply potential

interactions between the target protein and other proteins in

a specific environment.

The results obtained in this paper show that our proposed

method is a promising approach for studying protein–pro-

tein interaction. The protein–protein interaction residues

are more likely to remain unchanged during evolution.

Though this study only includes 69 protein chains, as a

methodology based on evolutionary conservation, the pre-

dictor can be well generalized for new structure-known pro-

teins. Predictions generated here should facilitate

experimental investigators to validate the roles of specific

residues in protein complexes. Incorporation of our ap-

proach with physicochemical or geometric properties and

other attributes of interaction regions will yield progress

for studying protein–protein interactions.
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harveyi at 2.4 Å resolution. Biochemistry 34 (20), 6581–6586.

[28] RasTop-Molecular Visualization Software. Available from:
<http://www.geneinfinity.org/rastop>.

[29] Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986)
Learning representations by back-propagating errors. Nature
323, 533–536.

http://www.geneinfinity.org/rastop

	Predicting protein interaction sites from residue spatial sequence profile and evolution rate
	Introduction
	Materials and methods
	Dataset preparation
	Predictor construction
	Evaluation measures of predictor performance

	Results
	Performance of three SVM predictors
	Location of interaction sites

	Discussions
	Acknowledgments
	References


