Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	000000	00000	00000000	00

Exploitation of Phase and Vocal Excitation Modulation Features for Robust Speaker Recognition

Ning Wang

12 September, 2011

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Outline

1 Introduction

- 2 Exploration of excitation modulation features
- 3 Phase information derivation
- 4 Performance evaluation of modulation features
- 5 Extraction of robust speaker features

6 Summary

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Outline

1 Introduction

2 Exploration of excitation modulation features

3 Phase information derivation

4 Performance evaluation of modulation features

5 Extraction of robust speaker features

6 Summary

Introduction Excitation Modulation Featur	es Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	000000	00000	00000000	00

Speaker recognition

Aim

Speaker recognition (SR) refers to the process of automatically determining or verifying the identity of a person based on his or her voice.

Including: Speaker identification (SID), speaker verification (SV).

- Application
 - Sole medium for identity authentication, e.g., telephony banking, ...

イロト イポト イヨト イヨト

• One modality in multi-modal biometric system, ...

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
0000000	00000000	000000	00000	00000000	00
Chall	ongoo and dif	figulting			

Challenges and difficulties

The SR system in practical applications has to handle

- Sparsity of available data set.
- Inconsistence of data quality.
- Variabilities in application scenarios.
 - Background noise.

. . .

- Transmission channels.
- Emotional, healthy states of speakers.

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Robust speaker recognition

Ning Wang 6 / 50

Introduction Excitation	Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	00	0000000	00000	00000000	00

Speech feature overview

- Cepstral coefficients
 - Conventional one: Mel-frequency cepstral coefficients (MFCCs).
 - Most commonly used in both speech recognition and speaker recognition systems.
 - Primarily characterize the spectral envelope of a quasi-stationary speech segment.

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	00000000	000000	00000	00000000	00

Speech feature overview

- Exploration of alternative properties e.g.,
 - Vocal source (Prasanna, 2006; Zheng, 2007; Gudnason, 2008).
 - Phase information (Ambikairajah, 2007; Grimaldi, 2008).
 - Prosodic characteristics (Atal, 1972; Shriberg, 2005; Adami, 2007).
 - High-level features (Doddington, 2001; Andrews, 2002; Leung, 2006).
- Employment of other parameterization methods e.g.,
 - Wavelet transform (Zheng, 2007).
 - Time-frequency principal component analysis (Magrin-Chagnolleau, 2002).
 - Modulation analysis (Dimitriadis, 2005; Thiruvaran, 2008).

イロト イポト イヨト イヨト

Modulation properties in speech

Formant AM-FM modeling

- Formant frequency and bandwidth tracking (Potamianos, 1996).
- Modulation features for robust SR
 - Average log-envelope (Wang, 2003).
 - Dynamic spectral subband centroid (Chen, 2004).
 - Amplitude weighted instantaneous frequency (Dimitriadis, 2005).

FM features (Ambikairajah, 2007).

Sinusoidal representation

- Pitch tracking (Mcaulay, 1990; Stylianou, 1996).
- Vocoder (Mcaulay, 1986; Potamianos, 1999).

An AM-FM signal

carrier frequency arbitrary phase offset

$$x(n) = A(n) \times \cos\left[\Theta(n)\right] = A(n) \times \cos\left[\Omega_c n + \Omega_m \sum_{r=1}^n q(r) + \phi\right]$$
time - varying amplitude frequency deviation constant

Time-varying angular frequency:

$$\Omega(n) = \Theta(n) - \Theta(n-1) = \Omega_c + \Omega_m q(n) = \frac{2\pi}{fs} fc + \Omega_m q(n) \longrightarrow \text{FM component}$$

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

AM-FM signal representation

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Motivation of work

- Modulation phenomena in vocal excitation carries speaker-distinctive characteristics.
- Phase related information in speech is important but absent from the magnitude based features.
- Complementary information source helps in improving the performance of MFCCs predominant SR systems.
- Speaker discrimination in practical applications desires robust parameters.

A 3 >

Introduction	Excitation	n Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
0000000	000000	000	000000	00000	00000000	00
-		<i>c</i>				

Research focus

- Exploration: how are the speaker-distinctive properties carried by the modulation parameters?
- Investigation: how can we parameterize the modulation parameters into speaker features?
- Evaluation: how complementary are the parameterized features with MFCC features in SR experiments?
- Refinement: how to enhance robustness of modulation features under various application scenarios?

4 E b

ntroduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Outline

1 Introduction

- 2 Exploration of excitation modulation features
- 3 Phase information derivation
- 4 Performance evaluation of modulation features

Ning Wang

5 Extraction of robust speaker features

6 Summary

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	000000	0000000	00000	00000000	00

Excitation signal modeling for SR

For excitation signals,

- spectral analysis mostly concerns pitch-periodicity or harmonic structure properties.
- signal decomposition provides spectro-temporal parameters. e.g., in sinusoidal modeling, harmonic plus noise modeling, AM-FM modeling, etc.

Facilitating extraction of speaker-specific characteristics, we need to

- **1** select proper source model to use.
- 2 parameterize model parameters into feature vectors.
- **3** inspect feature vectors in expressing typical vocal properties.

3 N 4 3 N

AM-FM excitation representation

Multicomponent AM-FM excitation signal modeling:

Represents inclusive monocomponent signals in terms of time-varying envelope (amplitude) and frequency: A(n)cos[Θ(n)].

Ning Wang 16 / 50

Excitation modulation feature derivation

- K: Subband number (center frequency in kth subband is $f_c(k)$).
- RAIEF: Combination of RAIE and RAIF vectors.

4 E b

Image: A matrix

Introduction Excitation Modulation Features Phase Information Derivation Modulation Feature Evaluation Robust Feature Extraction Summary

Excitation modulation features

Speech production:

Air flow, vocal fold open and close, vibration activity.

- Vocal excitation properties concerned:
 - Pitch period (F0) and harmonics;
 - Pitch epoch shape;
 - Details embedded between adjacent pitch epochs.

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary 00
Feature analysis				

• Artificially generated pulse trains: $e_1(n)$, $e_2(n)$, $e_3(n)$ and $e_4(n)$.

_				
		F0 (Hz)	Epoch shape	Details?
	$e_1(n)$	86.2	Impulse	No
	$e_2(n)$	172.4	Impulse	No
	e ₃ (n)	172.4	Triangular pulse	No
	$e_4(n)$	172.4	Triangular pulse	Yes

Approximate vocal excitation signals.

F0 values and center frequencies in some bands specially settled.

 $f_c(18) = F0 = 172.4Hz$ $f_c(15) = 2.1F0$ $f_c(13) = 3.2F0$

イロト イポト イヨト イヨト

Observation 1: pitch variation

AIE and FM for artificial excitation signals with different F0: $e_1(n)$ and $e_2(n)$.

Ning Wang 20 / 50

Observation 2: pitch epoch shape

AIE and FM for artificial excitation signals with different epoch shapes: $e_2(n)$ and $e_3(n)$.

Same F0.

Observations:

- Amplitude at F0 harmonics.
- Energy distribution across bands.

Observation 3: details between epochs

AIE and FM for artificial excitation signals with and without details between adjacent epochs: $e_3(n)$ and $e_4(n)$.

Ning Wang 22

22 / 50

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Outline

1 Introduction

- 2 Exploration of excitation modulation features
- 3 Phase information derivation
- 4 Performance evaluation of modulation features

Ning Wang

5 Extraction of robust speaker features

6 Summary

Introduction Excitation Modulation Features Phase Information Derivation Modulation Feature Evaluation Robust Feature Extraction Summary •••••••

Formant-related modulation properties

- Formant AM-FM modeling
 - Frequency and bandwidth tracking (Potamianos, 1996).
 - FM features (Ambikairajah, 2007).
- A bandlimited signal that describes a formant

$$F_k(n) = A_k(n) \exp\left\{j\left[\Theta_k(n)\right]\right\},\$$

- is characterized by two sequences:
 - $A_k(n)$ Amplitude of formant;
 - $\Theta_k(n)$ Phase of formant.

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	00000000	000000	00000	00000000	00

Primary speech components

- A speech signal may contain:
 - Formants and pitch harmonics: formulated as mono-component AM-FM terms $A(n)cos[\Theta(n)].$
 - Other components, e.g., transitions between formants, interferences among harmonics and interactions within the vocal tract system, etc.

Thus, it can be written as a linear combination of AM-FM components which we called the primary speech components,

$$s(n) = \sum_{k=1}^{K} A_k(n) \cos\left[\Theta_k(n)\right] + \eta(n)$$

=
$$\sum_{k=1}^{K} A_k(n) \cos\left\{\left[\Omega_c(k)n + \sum_{r=1}^{n} q_k(r)\right]\right\} + \eta(n).$$

I ∃ ▶

Frequency components in speech

Subband signals and their instantaneous frequency (IF) sequences.

Ning Wang 26 / 50

Instantaneous frequency-based features

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00
Feature analysis				

- Artificially generated speech sounds: $s_1(n)$ and $s_2(n)$.
 - F0 and formant frequencies are specially settled.

$f_c(36) = 172.4Hz = F0$	$f_c(30)=2.1F0$	$f_c(26) = 3.2F0$
$f_c(22) = 773.8Hz = F1$	$f_c(17) = 1161.8Hz = F2$	$f_c(7) = 2446.2Hz = F3$

- Formant bandwidth varies.
 - *s*₁(*n*): 10*Hz*
 - *s*₂(*n*): 200*Hz*

Observation 1: formants, harmonics and their interactions

Amplitude and frequency of primary speech components: $s_1(n)$.

Observations:

- Amplitude and frequency at formants and F0 harmonics.
- Harmonics noticeable in the lower frequency bands.
- Formants dominant in the higher frequency bands.

Observation 2: Formant bandwidth effect

Frequency of primary speech components: $s_1(n)$ and $s_2(n)$.

- FM around formants:
 - The one assuming larger bandwidth, less peaky formants, produces smaller FM components around the formants.

3 •

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Outline

1 Introduction

- 2 Exploration of excitation modulation features
- **3** Phase information derivation
- 4 Performance evaluation of modulation features
- 5 Extraction of robust speaker features
- 6 Summary

Feature evaluation: experimental set-up

- Feature:
 - MFCCs
 - Modulation features: RAIE, RAIF or SAIF
- Database: CU2C (Dual conditional speech corpus, 50 male speakers), NOISEX-92 (Noise database)
- Training data: Microphone speech (CU2C)
- Test data:

(

- Matched condition: Microphone speech (CU2C)
- Mismatched conditions:
 - **1** Microphone speech (CU2C) + additive noise (NOISEX-92)
 - 2 Telephone speech (CU2C)
- Modeling: 256 mixtures-GMM
- Score fusion of individual features:

$$score = w_M \times score_M + w_R \times score_R \quad (w_M + w_R = 1)$$

or
$$score = w_M \times score_M + w_S \times score_S \quad (w_M + w_S = 1)$$

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	0000	00000000	00

Evaluation 1: excitation modulation features

Feature configu	Feature configuration		
Baseline	Baseline MFCC		1.52
	RAIE_20	40.72	13.17
	RAIF_20	35.11	10.42
Effects of feature dimension	RAIE_40	27.28	9.46
	RAIF_40	19.67	8.01
	RAIEF_40	22.50	8.17
	MFCC+RAIE_20	2.39	1.49
	MFCC+RAIF_20	2.28	1.24
Combination with MFCC	MFCC+RAIE_40	2.44	1.44
	MFCC+RAIF_40	2.06	1.27
	MFCC+RAIEF_40	2.17	1.36

∃ ⊳

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	00000000	000000	00000	00000000	00

Evaluation 2: phase-related parameters

Feature configur	IDER (%)	EER (%)	
Baseline	MFCC	2.44	1.52
Effects of feature dimension	SAIF_20	6.33	3.72
	SAIF_40	4.78	2.70
Effects of from a longth	SAIF_bil_40	6.39	3.64
	SAIF_tril_40	9.22	4.54
	MFCC+SAIF_40	1.83	1.16
Supplementing cepstral features	MFCC+SAIF_bil_40	1.89	1.21
	MFCC+SAIF_tril_40	1.78	1.33
Combining with source features	RAIE_40+SAIF_40	5.33	2.69
	RAIF_40+SAIF_40	4.61	2.65

3 D

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	00000000	000000	00000	00000000	00

Analysis 1: on individual features

MFCCs vs. modulation features

- MFCC features perform much better than the modulation features.
- The best performed modulation feature has comparable dimension with MFCCs.
- Comparisons among modulation features
 - Dimension: High (40) > Low (20).
 - Configuration: AIF > AIE.
 - Information source: SAIF > RAIF.

A 3 >

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	00000000	000000	0000	00000000	00

Analysis 2: on fusion results

- Recognition accuracy
 - Modulation parameter sets when fusing with MFCCs can produce improved results.
 - Better performed modulation feature + MFCCs produce better fusion results.
- Complementary effects in fusion:

SAIF + MFCCs > RAIE/RAIF + MFCCs > SAIF + RAIE/RAIF.

Phase information in speech signals can help MFCC-based SR system to achieve higher performance.

ヨト イヨト

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Outline

1 Introduction

- 2 Exploration of excitation modulation features
- 3 Phase information derivation
- 4 Performance evaluation of modulation features
- 5 Extraction of robust speaker features

6 Summary

E ► < E ►</p>

< 🗇 🕨

Speaker discrimination under adverse conditions

Under clean and matched training-test conditions:

Under mismatched conditions:

Training data	Test data	MFCC	SAIF_40	MFCC + SAIF_40
Mic.: clean	Mic.: 10dB	17.41	23.47	15.93
Mic.: clean	Tel.	18.94	24.67	18.35

3 •

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	00000000	000000	00000	0000000	00

Effects of additive noise

- A noise signal contains a large number of narrow-band frequency components.
- Around a specific speech component, *e.g.*, the *k*th, there are several affecting noise bands exist.

The slowly varying noise components around Ω_{L}^{s} generally distort its distribution by moving its mean towards $\Omega_c(k)$ and reducing its variance.

< ∃→

Effects of convolutive noise

In telephone networks, a speech signal s(n) is transmitted through a channel with impulse response c(n).

For the *k*th subband:

Assumption: $c_k(n) = A_k^c \delta(n - n_k^c)$

Output signal:

Ning Wang 41 / 50

Brief introduction to feature mapping

Feature mapping for speaker verification

- Proposed by Jason Pelecanos and Sridha Sridharan ("Feature Warping for Robust Speaker Verification", 2001: A Speaker Odyssey).
- A post-processing method for robust feature extraction.
- Requires no noise statistics or channel models.

It is found that feature mapping method works well for cepstral features. Then, what is a proper mapping process for phase-related parameters?

Ning Wang

Mechanism of feature mapping

- **Frame windowing:** a sliding window to isolate N frames of speech features.
- Feature sorting: feature values in each stream sorted descendingly assuming rank 1 to N.
- Cumulative distribution matching: find the relative position for the feature in the target distribution

$$\int_1^u f_m(x)dx = \int_1^v f_t(y)dy,$$

u, v: ranks of the current feature in the measured and target distributions.

Feature re-valuing: find the absolute feature value of the mapped parameter.

• • • • • • • • • • •

4 E b

Feature-specific target distributions

MFCCs:

- Measured distribution: multi-modal in nature.
- All feature streams share the same target distribution: N(0, 1).

SAIF: Histograms

- Measured distribution: uni-modal.
- Individual target for each feature stream: $N(\mu, \sigma^2)$. For the *k*th parameter:

- μ: Ω_c(k)
- σ : bandwidth (ERB(k))/6

< ∃⇒

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	00000000	000000	00000	000000000	00

Experimental results

Benchmark results:

	MFCC	SAIF_40	MFCC+SAIF_40
(a)	17.41	23.47	15.93
(b)	18.94	24.67	18.35

- Two mismatched conditions: noise or channel mismatch.
- Four kinds of window size for feature mapping:

- 100 frame: 1s
- 200 frame: 2s

< 🗇 🕨

all frame: length of the utterance

3 N

< ∃⇒

(b). mismatched channel condition

Ning Wang

^{45 / 50}

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	00000000	000000	00000	00000000	00

Observations and analysis

Recognition performance

- Performance of individual MFCC and SAIF features improved.
- Combination of the magnitude-based and phase-related parameters demonstrate advantages.
- Feature mapping effectiveness
 - Under channel mismatch condition, feature mapping leads to larger improvement, especially for MFCCs.
 - For additive noise condition, SAIF features get more benefit from the mapping.

▲ ∃ →

Introduction E	xcitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	0000000	0000000	00000	00000000	00

Outline

1 Introduction

- 2 Exploration of excitation modulation features
- 3 Phase information derivation
- 4 Performance evaluation of modulation features
- 5 Extraction of robust speaker features

6 Summary

E ► < E ►</p>

< 🗇 🕨

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	000000000	000000	00000	00000000	•0
Sumr	nary				

- Speaker-specific characteristics are identified in primary amplitude and frequency components of decomposed speech signal.
- Modulation feature vectors are generated by extracting the most dominant components in multi-band time-varying modulation parameters.
- Complementary assistance of phase and vocal excitation modulation features to MFCCs are confirmed by improvements of SR performance.
- Robustness of speaker parameters in various scenarios are enhanced by feature-dependent mapping approach.

イロト イポト イヨト イヨト

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
0000000	00000000	000000	00000	00000000	00

Future directions

For robust speaker recognition,

- Producing flexible forms for higher efficient features.
 e.g., weighting scheme among streams in a vector, selection criterion.
- Generating features from unvoiced segments.

For others,

- Modeling source signal of speech.
- Learning to recognize/predict human emotional states.
 - Application scenarios: human-computer interaction (HCI), interactive learning system, intelligent robotics, emotional state monitoring, etc.
 - Fusion with other modalities: video, EEG & physiological signals, etc.

∃ ≥ >

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	000000	00000	00000000	00

Thank you very much!

000000000000000000000000000000000000000	00000	00000000	00

Histogram statistics of SAIF streams

(a). k = 1, ..., 4, (b). k = 10, ..., 13, (c). k = 20, ..., 23, and (d). k = 37, ..., 40. Target distribution

Original vs. mapped parameters

SAIF feature vectors:

Observations:

Before mapping:

Difference is obvious in the high frequency region.

After mapping:

Difference in the high frequency region is mitigated, while they are small among other regions.

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	000000	00000	00000000	00
Commenter of Change	l I			

Gammatone filter-bank

- Model the cochlea by a bank of overlapping bandpass filter.
- Filters are evenly-distributed on an ERB scale.
- The 4th filter among the 10: $f_c(4) = 1293.5Hz$, bw(4) = 164.4Hz.

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

IF in excitation signal

Table: Center frequencies and ERB bandwidths of a 10-channeled Gamma-tone filter bank spaced on [100Hz, 4k Hz] (in Hz).

k	1	2	3	4	5	6	7	8	9	10
$f_c(k)$	3046.8	2308.5	1736.5	1293.5	950.4	684.6	478.7	319.2	195.7	100
ERB(k)	353.8	274.0	212.2	164.4	127.3	98.6	76.4	59.2	45.8	35.5

instantaneous frequencies of residual signal

Ning Wang 54 / 50

Introduction	Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
00000000	00000000	000000	00000	00000000	00

Formant bandwidth effect: LP spectra

Ning Wang 55 / 50

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Vocal tract resonance

The complex conjugate poles correspond to a vocal tract resonance is

$$z_k, z_k^* = \exp\left(-\frac{\sigma_k}{f_s}\right)\exp\left(\pm j\frac{2\pi}{f_s}F_k\right).$$

In the z transform domain, the bandwidth is determined by the radius of the poles, i.e.,

$$r_k = |z_k| = \exp\left(-\frac{\sigma_k}{f_s}\right),$$

while, the angles of the conjugate poles from the origin are

$$\theta_k = \pm \frac{2\pi}{f_s} F_k.$$

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Voiced sound synthesis

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

Waveform of resonant signals

Ning Wang

^{58 / 50}

Instantaneous envelope and frequency of resonant signals

Ning Wang 59 / 50

Introduction Excitation Modulation Features	Phase Information Derivation	Modulation Feature Evaluation	Robust Feature Extraction	Summary
000000000000000000000000000000000000000	0000000	00000	00000000	00

SID & SV tests

- SID tests
 - Close-set.
 - 1800 tests for each speaker.
- SV tests
 - 36 claimant tests.
 - 1764 imposter tests for each speaker.

