QuickScorer: a fast algorithm to rank documents with additive ensembles of regression trees

Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto

HPC Lab, ISTI-CNR, Pisa, Italy \& Tiscali SpA
Salvatore Orlando
Università Ca’ Foscari, Venice, Italy
Rossano Venturini
Università di Pisa, Pisa, Italy

Ranking (in web search) is computationally expensive and requires trade-offs between efficiency and efficacy to be devised

Additive ensembles of regression trees

Gu!ı03S quəunכog-Kıənð fo ssəวoıd
Query-Document feature set

F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$
13.3	0.12	-1.2	43.9	11	-0.4	7.98	2.55

Gu!ィ0כS quəunวog-Kıənð jo ssəวoıd
Query-Document feature set

Gu!ı03S quəunכog-Kıənð fo ssəวoıd
Query-Document feature set

F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$	$\mathrm{~F}_{8}$
13.3	0.12	-1.2	43.9	11	-0.4	7.98	2.55

Query-Document feature set

Gu!ィ0כS quəunวog-Kıənð jo ssəวoıd
Query-Document feature set

Бu!ı0כS ұuəunวog-Kıənð fo ssəวoıd
Query-Document feature set

Бu!ı0כS ұuəunวog-Kıənð fo ssəวoıd
Query-Document feature set

Бu!ı0כS ұuəunวog-Kıənð fo ssəวoıd
Query-Document feature set

Query-Document feature set

Query-Document feature set

- number of trees $=1 \mathrm{~K}-20 \mathrm{~K}$ F number of leayes $=4=64$
- number of docs $=3 \mathrm{~K}-10 \mathrm{~K}$ - number of features $=100-1000$

+qコnıłS: \forall OS

Query-Document feature sets

F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}
13.3	0.12	-1.2	43.9	11	-0.4	7.98	2.55
10.9	0.08	-1.1	42.9	15	-0.3	6.74	1.65
11.2	0.6	-0.2	54.1	13	-0.5	7.97	3

Naïve baseline

Each tree node is represented by a C++ object containing the feature id, the associated threshold and the left and right pointers.

Query-Document feature sets

| F_{1} | $\mathrm{~F}_{2}$ | $\mathrm{~F}_{3}$ | $\mathrm{~F}_{4}$ | $\mathrm{~F}_{5}$ | $\mathrm{~F}_{6}$ | $\mathrm{~F}_{7}$ | $\mathrm{~F}_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13.3 | 0.12 | -1.2 | 43.9 | 11 | -0.4 | 7.98 | 2.55 |
| 10.9 | 0.08 | -1.1 | 42.9 | 15 | -0.3 | 6.74 | 1.65 |
| 11.2 | 0.6 | -0.2 | 54.1 | 13 | -0.5 | 7.97 | 3 |

QuickScore, a new efficient algorithm for the interleaved traversal of additive ensembles of regression trees by means of simple logical bitwise operations

səpou әnıұ pue əsןef :əıoدsઋว!nð

QuickScore: Single Tree Traversal

QuickScore: Single Tree Traversal

QuickScore: Single Tree Traversal

QuickScore: Single Tree Traversal

QuickScore: Single Tree Traversal

QuickScore: data structures

Query-Document Features sets

F_{0}	F_{1}	F_{2}	F_{3}	${ }_{4}$	${ }_{\text {F5 }}$	${ }_{6}$	
13.3	0.12	-1.2	43.9	11	-0.4	7.98	2.5
10.9	0.08	-1.1	42.9	15	-0.3	6.74	1.65
1.2	0.6	-0.2\|	54.1	13	-0.5	7	

Query-Document Features sets

F_{0}	F_{1}	F_{2}	F_{3}	${ }_{4}$	${ }_{\text {F5 }}$	${ }_{6}$	
13.3	0.12	-1.2	43.9	11	-0.4	7.98	2.5
10.9	0.08	-1.1	42.9	15	-0.3	6.74	1.65
1.2	0.6	-0.2\|	54.1	13	-0.5	7	

Query-Document Features sets

${ }_{\text {Fo }}$	${ }_{\text {F }}^{1}$	F_{2}	F_{3}	${ }_{4}$	F_{5}	F6	
13.3	0.12	-1.2	43.9	11	-0.4	7.98	2.55
10.9	0.08	-1.1	42.9	15	-0.3	6.74	1.6
1.2	0.6	-0.2	54.1	13	-0.	7.97	

Query-Document Features sets

13.3	0.12	-1.2	43.9	11	-0.4	7.98	2.5
10.9	0.08	-1.1	42.9	15	-0.3	6.74	1.65
1.2	0.6	-0.2	54.1	13	-0.5	7.97	

Low branch misprediction rate

High cache hit ratio

Experimental Settings

Lambda-MART ranking models optimizing
NDCGQ10 learned with RankLib from MSN and Yahoo LETOR datasets

Ensembles with $1 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}$, or 20 K regression trees, each with up to $8,16,32$, or 64 leaves

Intel Core 17-4770K @ 3.50Ghz CPU, with 32 CB RAM, Ubuntu Linux 3.13:0

Experimental Results

Per-document scoring time in microsecs and speedups

Method	Λ	Number of trees/dataset							
		1,000		5, 000		10,000		20, 000	
		MSN-1	Y!S1	MSN-1	Y!S1	MSN-1	Y!S1	MSN-1	Y!S1
QS		2.2 (-)	4.3 (-)	10.5 (-)	14.3 (-)	20.0 (-)	25.4 (-)	40.5 (-)	48.1 (-)
VPred	8	7.9 (3.6x)	8.5 (2.0x)	40.2 (3.8x)	41.6 (2.9x)	80.5 (4.0x)	82.7 (3.3)	161.4 (4.0x)	164.8 (3.4x)
If-Then-Else	8	8.2 (3.7x)	10.3 (2.4x)	81.0 (7.7x)	85.8 (6.0x)	185.1 (9.3x)	185.8 (7.3x)	709.0 (17.5x)	772.2 (16.0x)
Struct+		21.2 (9.6x)	23.1 (5.4x)	107.7 (10.3x)	112.6 (7.9x)	373.7 (18.7x)	390.8 (15.4x)	$1150.4(28.4 \mathrm{x})$	1141.6 (23.7x)
QS		2.9 (-)	6.1 (-)	16.2 (-)	22.2 (-)	32.4 (-)	41.2 (-)	67.8 (-)	81.0 (-)
VPred	16	16.0 (5.5x)	16.5 (2.7x)	82.4 (5.0x)	82.8 (3.7x)	165.5 (5.1x)	165.2 (4.0x)	336.4 (4.9x)	336.1 (4.1x)
If-Then-Else	16	18.0 (6.2x)	21.8 (3.6x)	126.9 (7.8x)	130.0 (5.8x)	617.8 (19.0x)	406.6 (9.9x)	1767.3 (26.0x)	1711.4 (21.1x)
Struct +		42.6 (14.7x)	41.0 (6.7x)	424.3 (26.2x)	403.9 (18.2x)	1218.6 (37.6x)	1191.3 (28.9x)	2590.8 (38.2x)	2621.2 (32.4x)
QS		5.2 (-)	9.7 (-)	27.1 (-)	34.3 (-)	59.6 (-)	70.3 (-)	155.8 (-)	160.1 (-)
VPred	32	31.9 (6.1x)	31.6 (3.2x)	165.2 (6.0x)	162.2 (4.7x)	343.4 (5.7x)	336.6 (4.8x)	711.9 (4.5x)	694.8 (4.3x)
If-Then-Else	32	34.5 (6.6x)	36.2 (3.7x)	300.9 (11.1x)	277.7 (8.0x)	1396.8 (23.4x)	1389.8 (19.8x)	3179.4 (20.4x)	3105.2 (19.4x)
Struct+		69.1 (13.3x)	67.4 (6.9x)	928.6 (34.2x)	834.6 (24.3x)	1806.7 (30.3x)	1774.3 (25.2x)	4610.8 (29.6x)	4332.3 (27.0x)
QS		9.5 (-)	15.1 (-)	56.3 (-)	66.9 (-)	157.5 (-)	159.4 (-)	425.1 (-)	343.7 (-)
VPred	64	62.2 (6.5x)	57.6 (3.8x)	355.2 (6.3x)	334.9 (5.0x)	734.4 (4.7x)	706.8 (4.4x)	1309.7 (3.0x)	1420.7 (4.1x)
If-Then-Else		55.9 (5.9x)	55.1 (3.6x)	933.1 (16.6x)	935.3 (14.0x)	2496.5 (15.9x)	2428.6 (15.2x)	4662.0 (11.0x)	4809.6 (14.0x)
Struct+		109.8 (11.6x)	116.8 (7.7x)	1661.7 (29.5x)	1554.6 (23.2x)	3040.7 (19.3x)	2937.3 (18.4x)	5437.0 (12.8x)	5456.4 (15.9x)

Method	Number of Trees				
	1,000	5,000	10,000	15,000	20,000
Instruction Count					
QS VPred If-Then-Else Struct+	58	75	86	91	97
	580	599	594	588	516
	142	139	133	130	116
	341	332	315	308	272
Num. Visited Nodes (above) Visited Nodes/Total Nodes (below)					
QS	9.71	13.40	15.79	16.65	18.00
	15\%	21\%	25\%	26\%	29\%
VPred	54.38	56.23	55.79	55.23	48.45
	86\%	89\%	89\%	88\%	77\%
Struct+	40.61	39.29	37.16	36.15	31.75
If-Then-Else	64%	62\%	59\%	57%	50\%

MSN-1 with 64-leaves λ-MART models
Per-tree per-document low-level statistics on

MSN-1: Scoring Time and Cache Misses

MSN-1: Scoring Time and Cache Misses

MSN-1: Scoring Time and Cache Misses

Thank you!
HPPC

