
National Research Council of Italy
l a b o r a t o r y

QuickScorer: a fast algorithm to rank
documents with additive ensembles of

regression trees

Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto
HPC Lab, ISTI-CNR, Pisa, Italy & Tiscali SpA

Salvatore Orlando
Università Ca’ Foscari, Venice, Italy

Rossano Venturini
Università di Pisa, Pisa, Italy

National Research Council of Italy
l a b o r a t o r y

Ranking (in web search) is computationally
expensive and requires trade-offs between
efficiency and efficacy to be devised

National Research Council of Italy
l a b o r a t o r y

Document
Index

Base Ranker Top Ranker

Features
Learning to

Rank Algorithm

Query

First step Second step

N docs K docs
1. …………
2. …………
3. …………

K. …………

…
…

Results Page(s)

Additive ensembles of regression trees

QuickScore: from 2.0X to
6.5X faster scoring

Additive ensem
bles of regression trees

Additive ensem
bles of regression trees

Yahoo! Learning to Rank Challenge
The winner proposal used a linear
combination of 12 ranking models, 8
of which were LambdaMART boosted
tree models, having each up to 3,000
trees

About 24,000 regression trees in total!

[C. Burges, K. Svore, O. Dekel, Q. Wu, P. Bennett,
A. Pastusiak and J. Platt, Microsoft Research]

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

Process of Query-Docum
ent Scoring

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

Process of Query-Docum
ent Scoring

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

Process of Query-Docum
ent Scoring

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

Process of Query-Docum
ent Scoring

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

Process of Query-Docum
ent Scoring

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

Process of Query-Docum
ent Scoring

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

Process of Query-Docum
ent Scoring

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2 2.0

Process of Query-Docum
ent Scoring

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2 2.0
Exit leaf

Process of Query-Docum
ent Scoring

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature set
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2 2.0
Exit leaf

Process of Query-Docum
ent Scoring

Score += 2.0

Additive ensem
bles of regression trees

- number of trees = 1K–20K
- number of leaves = 4–64
- number of docs = 3K-10K
- number of features = 100–1000

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document feature sets
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

Naïve baseline

Each tree node is represented
by a C++ object containing
the feature id, the associated
threshold and the left and
right pointers.

2.0
Exit leaf

SoA: Struct+

National Research Council of Italy
l a b o r a t o r y

if (x[4] <= 50.1) {
// recurses on the left subtree
…

} else {
// recurses on the right subtree
if(x[3] <= -3.0)

result = 0.4;
else

result = -1.4;
}

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

SoA: If-then-else

Query-Document feature sets

National Research Council of Italy
l a b o r a t o r y

if (x[4] <= 50.1) {
// recurses on the left subtree
…

} else {
// recurses on the right subtree
if(x[3] <= -3.0)

result = 0.4;
else

result = -1.4;
}

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

SoA: If-then-else

Need to store the structure
of the tree

High branch misprediction
rate

Low cache hit ratio

Query-Document feature sets

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

SoA: VPred [Asadi et Al. TKDE 2014]
16

 d
oc

s

Query-Document feature sets double depth4(float* x, Node* nodes) {
int nodeId = 0;
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
nodeId = nodes->children[x[nodes[nodeId].fid] > nodes[nodeId].theta];
return scores[nodeId];
}

QuickScore, a new efficient algorithm for
the interleaved traversal of additive
ensembles of regression trees by means of
simple logical bitwise operations

National Research Council of Italy
l a b o r a t o r y

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

QuickScore: false and true nodes

0

1 2

3

4 5

6 7

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

National Research Council of Italy
l a b o r a t o r y

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

QuickScore: false and true nodes

0

1 2

3

4 5

6 7

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8 True Node

False Node

Given the feature set,
each node of a tree
can be classified as
True or False

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1

BITVECTOR ?

? ?

QuickScore: Single Tree Traversal

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1

BITVECTOR ?

? ?

QuickScore: Single Tree Traversal

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1

BITVECTOR ?

? ?
1 1 1 1 1 1 0 0

QuickScore: Single Tree Traversal

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1

BITVECTOR ?

? ?
1 1 1 1 1 1 0 0

QuickScore: Single Tree Traversal

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1

BITVECTOR ?

? ?
1 1 1 1 1 1 0 00 0 0 1 1 1 0 0

QuickScore: Single Tree Traversal

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1

BITVECTOR ?

? ?
1 1 1 1 1 1 0 00 0 0 1 1 1 0 0

QuickScore: Single Tree Traversal

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1

BITVECTOR ?

? ?
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0

QuickScore: Single Tree Traversal

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

1 1 1 1 1 1 1 1

BITVECTOR ?

? ?
1 1 1 1 1 1 0 00 0 0 1 1 1 0 00 0 0 1 0 0 0 0

3

QuickScore: Single Tree Traversal

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

?

? ?
0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

QuickScore: use of false nodes’ m
asks

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

?

? ?
0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1
AND

1 1 1 1 1 1 0 1
AND

=
0 0 0 1 1 1 0 1

QuickScore: use of false nodes’ m
asks

BITVECTOR

National Research Council of Italy
l a b o r a t o r y

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55
F1 F2 F3 F4 F5 F6 F7 F8

0.4 -1.4

1.5 3.2

2.0

0.5 -3.1

7.1

50.1:F4

10.1:F1 -3.0:F3

-1.0:F3

3.0:F8

0.1:F6

0.2:F2

0

1 2

3

4 5

6 7

?

? ?
0 0 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 0 1 1 1 10 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1
AND

1 1 1 1 1 1 0 1
AND

=
0 0 0 1 1 1 0 1

Few operations,
insensitive to nodes’

processing order!

3

QuickScore: use of false nodes’ m
asks

BITVECTOR

National Research Council of Italy
l a b o r a t o r y

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

offsets

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

|F|
QuickScore: data structures

Re
ad

-o
nl

y,
se

qu
en

tia
l

da
ta

 a
cc

es
s

R/W, random access

Read-only, sequential
access

bitmasks

National Research Council of Italy
l a b o r a t o r y

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document Features sets
F0 F1 F2 F3 F4 F5 F6 F7

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

offsets

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

|F|
QuickScore: interleaved tree traversals

National Research Council of Italy
l a b o r a t o r y

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document Features sets
F0 F1 F2 F3 F4 F5 F6 F7

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

offsets

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

|F|
QuickScore: interleaved tree traversals

National Research Council of Italy
l a b o r a t o r y

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document Features sets
F0 F1 F2 F3 F4 F5 F6 F7

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

offsets

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

|F|
QuickScore: interleaved tree traversals

National Research Council of Italy
l a b o r a t o r y

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

13.3 0.12 -1.2 43.9 11 -0.4 7.98 2.55

Query-Document Features sets
F0 F1 F2 F3 F4 F5 F6 F7

10.9 0.08 -1.1 42.9 15 -0.3 6.74 1.65
11.2 0.6 -0.2 54.1 13 -0.5 7.97 3

…

Low branch
misprediction rate

High cache hit ratio

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

offsets

f1f0

increasing values

offsets

f|F|�1

|F| + 1

num. leaves

num. leaves

leaves

num. leaves num. leaves num. leaves

num.leaves � num. trees

bitvectors

v

|F|
QuickScore: interleaved tree traversals

Lambda-MART ranking models optimizing
NDCG@10 learned with RankLib from MSN and
Yahoo LETOR datasets

Ensembles with 1K, 5K, 10K, or 20K regression
trees, each with up to 8, 16, 32, or 64 leaves

Intel Core i7-4770K @ 3.50Ghz CPU, with 32GB
RAM, Ubuntu Linux 3.13.0

Experimental Settings

Experimental Results

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method ⇤

Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

same trivially holds for Struct+. This means that the in-
terleaved traversal strategy ofQS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more e�cient
than If-Then-Else and Struct+ with this respect. QS

has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with ⇤ = 64 and 1, 000 trees QS

scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This e↵ect is observable only when the
number of leaves ⇤ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that
the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with ⇤ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the

number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
e�ciency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size ⌧ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the e�ciency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on ⌧ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.
The temporal locality of this approach can be improved by

allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of �
documents in a single run we have to replicate in � copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents �
and the number of trees ⌧ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).
This algorithm is called BlockWise-QS (BWQS) and its

e�ciency is discussed in the remaining part of this section.
Table 4 reports average per-document scoring time in µs

of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying ⇤ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred

instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best

Per-document scoring time in microsecs and speedups

National Research Council of Italy
l a b o r a t o r y

Table 3: Per-tree per-document low-level statistics

on MSN-1 with 64-leaves �-MART models.

Method

Number of Trees

1, 000 5, 000 10, 000 15, 000 20, 000

Instruction Count

QS 58 75 86 91 97

VPred 580 599 594 588 516

If-Then-Else 142 139 133 130 116

Struct+ 341 332 315 308 272

Num. branch mis-predictions (above)

Num. branches (below)

QS

0.162 0.035 0.017 0.011 0.009

6.04 7.13 8.23 8.63 9.3

VPred

0.013 0.042 0.045 0.049 0.049

0.2 0.21 0.18 0.21 0.21

If-Then-Else

1.541 1.608 1.615 1.627 1.748

42.61 41.31 39.16 38.04 33.65

Struct+

4.498 5.082 5.864 6.339 5.535

89.9 88.91 85.55 83.83 74.69

L3 cache misses (above)

L3 cache references (below)

QS

0.004 0.001 0.121 0.323 0.51

1.78 1.47 1.52 2.14 2.33

VPred

0.005 0.166 0.326 0.363 0.356

12.55 12.6 13.74 15.04 12.77

If-Then-Else

0.001 17.772 30.331 29.615 29.577

27.66 38.14 40.25 40.76 36.47

Struct+

0.039 12.791 17.147 15.923 13.971

7.37 18.64 20.52 19.87 18.38

Num. Visited Nodes (above)

Visited Nodes/Total Nodes (below)

QS

9.71 13.40 15.79 16.65 18.00

15% 21% 25% 26% 29%

VPred

54.38 56.23 55.79 55.23 48.45

86% 89% 89% 88% 77%

Struct+ 40.61 39.29 37.16 36.15 31.75

If-Then-Else 64% 62% 59% 57% 50%

execution times, along with the values of � and ⌧ for which
BWQS obtained such results.

The blocking strategy can improve the performance of QS

when large tree ensembles are involved. Indeed, the largest
improvements are measured in the tests conducted on mod-
els having 64 leaves. For example, to score a document of
MSN-1, BWQS with blocks of 3, 000 trees and a single docu-
ment takes 274.7 µs in average, against the 425.1 µs required
by QS with an improvement of 4.77x.

The reason of the improvements highlighted in the ta-
ble are apparent from the two plots reported in Figure 4.
These plots report for MSN-1 and Y!S1 the per-document
and per-tree average scoring time of BWQS and its cache
misses ratio. As already mentioned, the plot shows that
the average per-document per-tree scoring time of QS is
strongly correlated to the cache misses measured. The more
the cache misses, the larger the per-tree per-document time
needed to apply the model. On the other hand, the BWQS

cache misses curve shows that the block-wise implementa-
tion incurs in a negligible number of cache misses. This
cache-friendliness is directly reflected in the per-document

Table 4: Per-document scoring time in µs of BWQS,

QS and VPred algorithms on MSN-1.

MSN-1 Y!S1
⇤ Method

Block

Time

Block

Time

� ⌧ � ⌧

8

BWQS 8 20,000 33.5 (–) 8 20,000 40.5 (–)

QS 1 20,000 40.5 (1.21x) 1 20,000 48.1 (1.19x)

VPred 16 20,000 161.4 (4.82x) 16 20,000 164.8 (4.07x)

16

BWQS 8 5,000 59.6 (–) 8 10,000 72.34 (–)

QS 1 20,000 67.8 (1.14x) 1 20,000 81.0 (1.12x)

VPred 16 20,000 336.4 (5.64x) 16 20,000 336.1 (4.65x)

32

BWQS 2 5,000 135.5 (–) 8 5,000 141.2 (–)

QS 1 20,000 155.8 (1.15x) 1 20,000 160.1 (1.13x)

VPred 16 20,000 711.9 (5.25x) 16 20,000 694.8 (4.92x)

64

BWQS 1 3,000 274.7 (–) 1 4,000 236.0 (–)

QS 1 20,000 425.1 (1.55x) 1 20,000 343.7 (1.46x)

VPred 16 20,000 1309.7 (4.77x) 16 20,000 1420.7 (6.02x)

per-tree scoring time, which is only slightly influenced by
the number of trees of the ensemble.

5. CONCLUSIONS
We presented a novel algorithm to e�ciently score docu-

ments by using a machine-learned ranking function modeled
by an additive ensemble of regression trees. Our main con-
tribution is a new representation of the tree ensemble based
on bitvectors, where the tree traversal, aimed to detect the
leaves that contribute to the final scoring of a document,
is performed through e�cient logical bitwise operations. In
addition, the traversal is not performed one tree after an-
other, as one would expect, but it is interleaved, feature by
feature, over the whole tree ensemble. Our tests conducted
on publicly available LtR datasets confirm unprecedented
speedups (up to 6.5x) over the best state-of-the-art com-
petitor. The motivations of the very good performance fig-
ures of our QS algorithm are diverse. First, linear arrays are
used to store the tree ensemble, while the algorithm exploits
cache-friendly access patterns (mainly sequential patterns)
to these data structures. Second, the interleaved tree traver-
sal counts on an e↵ective oracle that, with a few branch
mis-predictions, is able to detect and return only the in-
ternal node in the tree whose conditions evaluate to False.
Third, the number of internal nodes visited by QS is in most
cases consistently lower than in traditional methods, which
recursively visits the small and unbalanced trees of the en-
semble from the root to the exit leaf. All these remarks are
confirmed by the deep performance assessment conducted
by also analyzing low-level CPU hardware counters. This
analysis shows that QS exhibits very low cache misses and
branch mis-prediction rates, while the instruction count is
consistently smaller than the counterparts. When the size of
the data structures implementing the tree ensemble becomes
larger the last level of the cache (L3 in our experimental set-
ting), we observed a slight degradation of performance. To
show that our method can be made scalable, we also present
BWQS, a block-wise version of QS that splits the sets of fea-
ture vectors and trees in disjoint blocks that entirely fit in
the cache and can be processed separately. Our experiments
show that BWQS performs up to 1.55 times better than the
original QS on large tree ensembles.
As future work, we plan to apply the same devised algo-

rithm to other contexts, when a tree-based machine learned

Per-tree per-docum
ent low-level statistics on

M
SN-1 with 64-leaves λ-M

ART m
odels.

Table 3: Per-tree per-document low-level statistics

on MSN-1 with 64-leaves �-MART models.

Method

Number of Trees

1, 000 5, 000 10, 000 15, 000 20, 000

Instruction Count

QS 58 75 86 91 97

VPred 580 599 594 588 516

If-Then-Else 142 139 133 130 116

Struct+ 341 332 315 308 272

Num. branch mis-predictions (above)

Num. branches (below)

QS

0.162 0.035 0.017 0.011 0.009

6.04 7.13 8.23 8.63 9.3

VPred

0.013 0.042 0.045 0.049 0.049

0.2 0.21 0.18 0.21 0.21

If-Then-Else

1.541 1.608 1.615 1.627 1.748

42.61 41.31 39.16 38.04 33.65

Struct+

4.498 5.082 5.864 6.339 5.535

89.9 88.91 85.55 83.83 74.69

L3 cache misses (above)

L3 cache references (below)

QS

0.004 0.001 0.121 0.323 0.51

1.78 1.47 1.52 2.14 2.33

VPred

0.005 0.166 0.326 0.363 0.356

12.55 12.6 13.74 15.04 12.77

If-Then-Else

0.001 17.772 30.331 29.615 29.577

27.66 38.14 40.25 40.76 36.47

Struct+

0.039 12.791 17.147 15.923 13.971

7.37 18.64 20.52 19.87 18.38

Num. Visited Nodes (above)

Visited Nodes/Total Nodes (below)

QS

9.71 13.40 15.79 16.65 18.00

15% 21% 25% 26% 29%

VPred

54.38 56.23 55.79 55.23 48.45

86% 89% 89% 88% 77%

Struct+ 40.61 39.29 37.16 36.15 31.75

If-Then-Else 64% 62% 59% 57% 50%

execution times, along with the values of � and ⌧ for which
BWQS obtained such results.

The blocking strategy can improve the performance of QS

when large tree ensembles are involved. Indeed, the largest
improvements are measured in the tests conducted on mod-
els having 64 leaves. For example, to score a document of
MSN-1, BWQS with blocks of 3, 000 trees and a single docu-
ment takes 274.7 µs in average, against the 425.1 µs required
by QS with an improvement of 4.77x.

The reason of the improvements highlighted in the ta-
ble are apparent from the two plots reported in Figure 4.
These plots report for MSN-1 and Y!S1 the per-document
and per-tree average scoring time of BWQS and its cache
misses ratio. As already mentioned, the plot shows that
the average per-document per-tree scoring time of QS is
strongly correlated to the cache misses measured. The more
the cache misses, the larger the per-tree per-document time
needed to apply the model. On the other hand, the BWQS

cache misses curve shows that the block-wise implementa-
tion incurs in a negligible number of cache misses. This
cache-friendliness is directly reflected in the per-document

Table 4: Per-document scoring time in µs of BWQS,

QS and VPred algorithms on MSN-1.

MSN-1 Y!S1
⇤ Method

Block

Time

Block

Time

� ⌧ � ⌧

8

BWQS 8 20,000 33.5 (–) 8 20,000 40.5 (–)

QS 1 20,000 40.5 (1.21x) 1 20,000 48.1 (1.19x)

VPred 16 20,000 161.4 (4.82x) 16 20,000 164.8 (4.07x)

16

BWQS 8 5,000 59.6 (–) 8 10,000 72.34 (–)

QS 1 20,000 67.8 (1.14x) 1 20,000 81.0 (1.12x)

VPred 16 20,000 336.4 (5.64x) 16 20,000 336.1 (4.65x)

32

BWQS 2 5,000 135.5 (–) 8 5,000 141.2 (–)

QS 1 20,000 155.8 (1.15x) 1 20,000 160.1 (1.13x)

VPred 16 20,000 711.9 (5.25x) 16 20,000 694.8 (4.92x)

64

BWQS 1 3,000 274.7 (–) 1 4,000 236.0 (–)

QS 1 20,000 425.1 (1.55x) 1 20,000 343.7 (1.46x)

VPred 16 20,000 1309.7 (4.77x) 16 20,000 1420.7 (6.02x)

per-tree scoring time, which is only slightly influenced by
the number of trees of the ensemble.

5. CONCLUSIONS
We presented a novel algorithm to e�ciently score docu-

ments by using a machine-learned ranking function modeled
by an additive ensemble of regression trees. Our main con-
tribution is a new representation of the tree ensemble based
on bitvectors, where the tree traversal, aimed to detect the
leaves that contribute to the final scoring of a document,
is performed through e�cient logical bitwise operations. In
addition, the traversal is not performed one tree after an-
other, as one would expect, but it is interleaved, feature by
feature, over the whole tree ensemble. Our tests conducted
on publicly available LtR datasets confirm unprecedented
speedups (up to 6.5x) over the best state-of-the-art com-
petitor. The motivations of the very good performance fig-
ures of our QS algorithm are diverse. First, linear arrays are
used to store the tree ensemble, while the algorithm exploits
cache-friendly access patterns (mainly sequential patterns)
to these data structures. Second, the interleaved tree traver-
sal counts on an e↵ective oracle that, with a few branch
mis-predictions, is able to detect and return only the in-
ternal node in the tree whose conditions evaluate to False.
Third, the number of internal nodes visited by QS is in most
cases consistently lower than in traditional methods, which
recursively visits the small and unbalanced trees of the en-
semble from the root to the exit leaf. All these remarks are
confirmed by the deep performance assessment conducted
by also analyzing low-level CPU hardware counters. This
analysis shows that QS exhibits very low cache misses and
branch mis-prediction rates, while the instruction count is
consistently smaller than the counterparts. When the size of
the data structures implementing the tree ensemble becomes
larger the last level of the cache (L3 in our experimental set-
ting), we observed a slight degradation of performance. To
show that our method can be made scalable, we also present
BWQS, a block-wise version of QS that splits the sets of fea-
ture vectors and trees in disjoint blocks that entirely fit in
the cache and can be processed separately. Our experiments
show that BWQS performs up to 1.55 times better than the
original QS on large tree ensembles.
As future work, we plan to apply the same devised algo-

rithm to other contexts, when a tree-based machine learned

National Research Council of Italy
l a b o r a t o r y

MSN-1

1000 5000 10000 15000 20000

Number of Trees (64 leaves)

0.000

0.005

0.010

0.015

0.020

0.025

S
co

ri
ng

ti
m

e
pe

r
do

cu
m

en
t

pe
r

tr
ee

(µ
s)

QS Scoring Time

QS Cache Misses

0

10

20

30

40

C
ac

he
M

is
se

s
(%

)

MSN-1: Scoring Time and Cache Misses

National Research Council of Italy
l a b o r a t o r y

MSN-1

1000 5000 10000 15000 20000

Number of Trees (64 leaves)

0.000

0.005

0.010

0.015

0.020

0.025

S
co

ri
ng

ti
m

e
pe

r
do

cu
m

en
t

pe
r

tr
ee

(µ
s)

QS Scoring Time

QS Cache Misses

0

10

20

30

40

C
ac

he
M

is
se

s
(%

)

MSN-1: Scoring Time and Cache Misses
We can split the
tree ensemble in
dis jo int blocks
p r o c e s s e d
s e p a r a t e l y i n
order to let the
c o r r e s p o n d i n g
data structures fit
into the faster
l e v e l s o f t h e
memory hierarchy.

National Research Council of Italy
l a b o r a t o r y

1000 5000 10000 15000 20000

Number of Trees (64 leaves)

0.000

0.005

0.010

0.015

0.020

0.025

S
co

ri
ng

ti
m

e
pe

r
do

cu
m

en
t

pe
r

tr
ee

(µ
s)

QS Scoring Time

BWQS Scoring Time

QS Cache Misses

BWQS Cache Misses

0

10

20

30

40

C
ac

he
M

is
se

s
(%

)

MSN-1: Scoring Time and Cache Misses

The block-wise version
outperforms QS up to 55%
(MSN, 20K trees, 64 leaves)

National Research Council of Italy
l a b o r a t o r y

Thank you!

