From Compressed Sensing to Matrix Completion and Beyond

Benjamin Recht
Department of Computer Sciences
University of Wisconsin-Madison

Abstract Setup: Matrix Completion

$M_{i j}$ known for black cells
$M_{i j}$ unknown for white cells
Rows index movies
Columns index users

- How do you fill in the missing data?

Recommender Systems

amazon.com

NETFIXX match.com chemistry

Rank of: \(\begin{gathered}Data
Matrix\end{gathered}\)

Euclidean
Embedding

Multitask
 Learning

a\&adandadaakáaqa

 - araqmaadadadaaaa
 4ataqAaddaadeaaaa

Matrix of Classifiers

Constraints involving the rank of the Hankel Operator, Matrix, or Singular Values

Affine Rank Minimization

- PROBLEM: Find the matrix of lowest rank that satisfies/approximates the underdetermined linear system

$$
\begin{array}{cl}
\Phi(X)=y \quad \Phi: \mathbb{R}^{k \times n} \rightarrow \mathbb{R}^{m} \\
\text { minimize } & \operatorname{rank}(X) \\
\text { subject to } & \Phi(X)=y
\end{array}
$$

- NP-HARD:
- Reduce to MAXCUT
- Hard to approximate
- Exact algorithms are awful

Heuristic: Gradient Descent

minimize $\sum_{i=1}^{k} \sum_{a=1}^{r} L_{i a}^{2}+\sum_{j=1}^{n} \sum_{a=1}^{r} R_{j a}^{2}+\lambda \sum_{i, j}\left(\sum_{k} L_{i k} R_{j k}-M_{i j}\right)^{2}$

- Just run gradient descent
- λ determines tradeoff between satisfying constraints and the size of the factors

Gradient descent on low-rank parameterization

Low-rank Matrix Completion

- PROBLEM: Find the matrix of lowest rank has the specified entries

```
minimize rank(\mathbf{X})
subject to }\quad\mp@subsup{X}{ij}{}=\mp@subsup{M}{ij}{}\quad\forall(i,j)\in
```

- When is this problem easy?
- Which algorithms?
- Which sampling sets?
- Which low-rank matrices?

Compressed Sensing

- Model: most of the energy is in few wavelet coefficients
- Use the fact that the image is sparse in wavelet basis to reduce number of measurements required for signal acquisition.
- decode using I_{1} minimization

Cardinality Minimization

- PROBLEM: Find the vector of lowest cardinality that satisfies/approximates the underdetermined linear system

$$
\Phi x=y \quad \Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

- NP-HARD:
- Reduce to EXACT-COVER [Natarajan 1995]
- Hard to approximate
- Known exact algorithms require enumeration
- HEURISTIC: Replace cardinality with I_{1} norm
- Compressed Sensing

Sparsity

- 1-sparse vectors of Euclidean norm 1

- Convex hull is the unit ball of the I_{1} norm $\left\{x:\|x\|_{1} \leq 1\right\}$

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

minimize $\quad\|x\|_{1}$
 subject to $\quad \Phi x=y$

Compressed Sensing: Candes, Romberg, Tao, Donoho, Tanner, Etc...

Rank

- 2×2 matrices
- plotted in 3d

$$
\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right]
$$

$$
\|X\|_{*}=\sum_{i} \sigma_{i}(X)
$$

Which Algorithm?

Affine Rank Minimization: minimize $\operatorname{rank}(X)$ subject to $\Phi(X)=y$

Convex Relaxation:

 minimize $\quad\|X\|_{*}=\sum_{i=1}^{k} \sigma_{i}(X)$ subject to $\quad \Phi(X)=y$- Nuclear Norm Heursistic. Proposed by Fazel (2002).
- Nuclear norm is the "numerical rank" in numerical analysis
- The "trace heuristic" from controls if \mathbf{X} is p.s.d.
- 2×2 matrices
- plotted in 3d

$$
\begin{aligned}
& \left\|\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right]\right\|_{*} \leq 1 \\
& \|X\|_{*}=\sum_{i} \sigma_{i}(X)
\end{aligned}
$$

Nuclear Norm Heuristic

- 2×2 matrices
- plotted in 3d

- Projection onto x-z plane is I_{1} ball

Nuclear Norm minimization

minimize $\quad\|X\|_{*}=\sum_{i=1}^{k} \sigma_{i}(X)$
subject to $\quad \Phi(X)=y$

Low-rank parameterization

$X=U \Sigma V^{*}$
minimize $\quad \frac{1}{2}\left(\|L\|_{F}^{2}+\|R\|_{F}^{2}\right)$

Method of Multipliers
subject to $\Phi\left(L R^{*}\right)=y$

$$
\begin{aligned}
& L=U \Sigma^{1 / 2} \\
& R=V \Sigma^{1 / 2}
\end{aligned}
$$

"The Blog Heuristic"

$$
\operatorname{minimize} \sum_{i=1}^{k} \sum_{a=1}^{r} L_{i a}^{2}+\sum_{j=1}^{n} \sum_{a=1}^{r} R_{j a}^{2}+\lambda\left\|\Phi\left(L R^{*}\right)-y\right\|_{2}^{2}
$$

$$
\begin{aligned}
& \text { First theory result } \\
& \Phi(X)=y \quad \Phi: \mathbb{R}^{k \times n} \rightarrow \mathbb{R}^{m}
\end{aligned}
$$

- If $m>c_{0} r(k+n-r) \log (k n)$, the heuristic succeeds for most maps Φ.

$$
\text { Recht, Fazel, and Parrilo. } 2007 .
$$

- Number of measurements $c_{0} r(k+n-r) \log (k n)$

- Approach: Show that a random Φ is nearly an isometry on the manifold of low-rank matrices.
- Stable to noise in measurement vector y and returns as good an answer as a truncated SVD of the true X.

Low-rank Matrix Completion

M_{ij} known for black cells
$M_{i j}$ unknown for white cells

- How do you fill in the missing data?

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{rank}(\mathbf{X}) \\
\text { subject to } & X_{i j}=M_{i j} \quad \forall(i, j) \in \Omega
\end{array}
$$

Which Sampling Sets?

$$
\Omega=\left[\begin{array}{llll}
0 & * & 0 & 0 \\
* & 0 & 0 & * \\
0 & 0 & * & * \\
* & * & 0 & 0
\end{array}\right]
$$

- Row-column graph
- Vertices: indexed by rows and columns
- Edge if that entry is in Ω

Which Sampling Sets?

$$
\Omega=\left[\begin{array}{llll}
0 & * & 0 & 0 \\
* & 0 & 0 & * \\
0 & 0 & * & * \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- Row-column graph: all vertices must be observed
- $M=x y^{*}$. If you miss row 4 , cannot determine x_{4}.

Which Sampling Sets?

$$
\Omega=\left[\begin{array}{llll}
* & * & 0 & 0 \\
* & * & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right]
$$

- Row-column graph: must be connected
- If $M=x y^{*}$, cannot distinguish between

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
-x_{3} \\
-x_{4}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
-y_{3} \\
-y_{4}
\end{array}\right]
$$

Which Sampling Sets?

$$
\mathbf{X}=\left[\begin{array}{llll}
0 & * & 0 & 0 \\
* & 0 & 0 & * \\
0 & 0 & * & * \\
* & * & 0 & 0
\end{array}\right]
$$

- Row-column graph: must have at least $r(n+k-r)$ edges
- The dimension of the manifold of rank $r, k \times n$ matrices is $r(n+k-r)$

If we can choose the samples...

- Generically, first r rows and r columns are sufficient:

$$
M=\left[\begin{array}{cc}
A & B \\
C & C A^{-1} B
\end{array}\right]
$$

- [Frieze, Kannan, Vempala 1998, Drineas, Kannan, Mahoney 2003, etc.]: sample proportional to norms of columns. Low-rank matrix approximations.

If we can't choose the samples...

- Most sets with more than $2 r n \beta \log (n)$ entries have at least one entry for every row and column, the rowcolumn graph is connected.
- [Achloptas, McSherry 2004]: random sampling sufficient to obtain an additive error approximation to

Which matrices?

- Any subset of entries that $\left(=e_{1} e_{1}^{*}\right) \quad$ misses the $(1,1)$ component tells you nothing!

- Still need to see the entire first row
- Want each entry to provide nearly the same amount of information

Incoherence

- Let U be a subspace of \mathbb{R}^{n} of dimension r and \mathbf{P}_{U} be the orthogonal projection onto U. Then the coherence of U (with respect to the standard basis \mathbf{e}_{i}) is defined to be

$$
\mu(U) \equiv \frac{n}{r} \max _{1 \leq i \leq n}\left\|\mathbf{P}_{U} \mathbf{e}_{i}\right\|^{2}
$$

- $\mu(U) \geq 1$
- e.g., span of r columns of the Fourier transform
- $\mu(U) \leq n / r$
- e.g., any subspace that contains a standard basis element
- $\mu(U)=O(1)$
- sampled from the uniform distribution with $r>\log n$

Incoherence

- Let U be a subspace of \mathbb{R}^{n} of dimension r and \mathbf{P}_{U} be the orthogonal projection onto U. Then the coherence of U (with respect to the standard basis \mathbf{e}_{i}) is defined to be

$$
\mu(U) \equiv \frac{n}{r} \max _{1 \leq i \leq n}\left\|\mathbf{P}_{U} \mathbf{e}_{i}\right\|^{2} .
$$

$\mu(U)$ small means leverage scores are uniform.

$$
p_{i}=\left\|\mathbf{P}_{U} \mathbf{e}_{i}\right\|^{2}
$$

[Drineas, Mahoney, Muthukrishnan 2006]: uniform row/column sampling gives exact reconstruction.

Bounds for Matrix Completion

- Suppose \mathbf{X} is $k \times n(k \leq n)$ has rank r and has row and column spaces with incoherence bounded above by μ. Then the nuclear norm heuristic recovers \mathbf{X} from most subsets of entries Ω with cardinality at least

$$
|\Omega| \geq C \mu n^{6 / 5} r \log (n)
$$

Candès and Recht. 2008
special case extensions:

$$
|\Omega| \geq C \mu^{2} n r \log ^{6}(n)
$$

[Candès and Tao 2009]
stronger assumptions

$$
|\Omega|>C^{\prime} n \log (n)
$$

[Keshavan et al, 2009] rank $=o(1), \sigma_{1} / \sigma_{r}$ bounded

> | [Gross et al 2009, |
| :--- |
| Recht 2009, |
| Gross2009] |

Recent Extensions

- Noise robustness
- Candes-Plan, Keshavan et al 2009, Lounici et al, Neghaban and Wainwright 2010
- Deconvolving Sparse and Low-rank matrices
- Chandrasekaran et al 2009, Wright et al 2009
- Fast algorithms
- First order methods - Cai et al, Ma et al, Toh et al, Ji et al, etc...
- "Generalized Blog Heuristic" - Lee et al, Recht and Re

Linear Inverse Problems

- Find me a solution of

$$
y=\Phi x
$$

- $\Phi \mathrm{m} \times \mathrm{n}, \mathrm{m}<\mathrm{n}$
- Of the infinite collection of solutions, which one should we pick?
- Leverage structure:
- How do we design algorithms to solve underdetermined systems problems with priors?

Parsimonious Models

- Search for best linear combination of fewest atoms
- "rank" = fewest atoms needed to describe the model

Model Based Compressive Sensing

- X has structured sparsity: linear combination of elements from a set of subspaces $\left\{U_{g}\right\}$.
- Atomic set: unit norm vectors living in one of the U_{g}

$$
\|x\|_{\mathcal{G}}=\inf \left\{\sum_{g \in G}\left\|w_{g}\right\|: x=\sum_{g \in G} w_{g}, w_{g} \in U_{g}\right\}
$$

- Proposed by Jacob, Obozinski and Vert (2009).

Permutation Matrices

- X a sum of a few permutation matrices
- Examples: Multiobject Tracking (Huang et al), Ranked elections (Jagabathula, Shah)
- Convex hull of the permutation matrices: Birkhoff Polytope of doubly stochastic matrices
- Permutahedra: convex hull of permutations of a fixed vector.

$$
[1,2,3,4]
$$

Atomic Norms

- Given a basic set of atoms, \mathcal{A}, define the function

$$
\|x\|_{\mathcal{A}}=\inf \{t>0: x \in t \operatorname{conv}(\mathcal{A})\}
$$

- When \mathcal{A} is centrosymmetric, we get a norm

$$
\begin{aligned}
& \|x\|_{\mathcal{A}}=\inf \left\{\sum_{a \in \mathcal{A}}\left|c_{a}\right|: x=\sum_{a \in \mathcal{A}} c_{a} a\right\} \\
& \text { IDEA: } \begin{array}{l}
\text { minimize } \quad\|z\|_{\mathcal{A}} \\
\text { subject to } \quad \Phi z=y
\end{array}
\end{aligned}
$$

- When does this work?
- How do we solve the optimization problem?
- A: Chandrasekaran, Recht, Willsky, and Parrilo 2010

Atomic Norm Decompositions

- Propose a natural convex heuristic for enforcing prior information in inverse problems
- Bounds for the linear case: heuristic succeeds for most sufficiently large sets of measurements
- Stability without restricted isometries
- Standard program for computing these bounds: distance to normal cones
- Approximation schemes for computationally difficult priors

Extensions...

- Width Calculations for more general structures
- Recovery bounds for structured measurement matrices (application specific)
- Incorporating stochastic noise models
- Understanding of the loss due to convex relaxation and norm approximation
- Scaling generalized shrinkage algorithms to massive data sets

Acknowledgements

- See:
http://pages.cs.wisc.edu/~brecht/publications.html
for all references
- Results developed in collaboration with Venkat Chandrasekaran, Pablo Parrilo, and Alan Willsky (MIT), Jason Lee (Stanford), Ruslan Salakhutdinov (MIT), Nati Srebro (TTI), Joel A. Tropp (Caltech), and Christopher Re (UW-Madison).

Tangent Cones

- Set of directions that decrease the norm from x form a cone:

$$
\mathcal{T}_{\mathcal{A}}(x)=\left\{d:\|x+\alpha d\|_{\mathcal{A}} \leq\|x\|_{\mathcal{A}} \text { for some } \alpha>0\right\}
$$

- x is the unique minimizer if the intersection of this cone with the null space of Φ equals $\{0\}$

Gaussian Widths

- When does a random subspace, U, intersect a convex cone C at the origin?
- Gordon 88: with high probability if

$$
\operatorname{codim}(U) \geq w(C)^{2}
$$

- Where $w(C)=\mathbb{E}\left[\max _{x \in C \cap \mathbb{S}^{n-1}}\langle x, g\rangle\right]$ is the
Gaussian width (g is a normal Gaussian random vector.)
- Corollary: For inverse problems: if Φ is a random Gaussian matrix with m rows, need $m \geq w\left(\mathcal{T}_{\mathcal{A}}(x)\right)^{2}$ for recovery of x.

Robust Recovery

- Suppose we observe $y=\Phi x+w \quad\|w\|_{2} \leq \delta$

$$
\begin{array}{ll}
\operatorname{minimize} & \|z\|_{\mathcal{A}} \\
\text { subject to } & \|\Phi z-y\| \leq \delta
\end{array}
$$

- If \hat{x} is an optimal solution, then $\|x-\hat{x}\| \leq \frac{2 \delta}{\epsilon}$
provided that

$$
m \geq \frac{c_{0} w\left(\mathcal{T}_{\mathcal{A}}(x)\right)^{2}}{(1-\epsilon)^{2}}
$$

Duality

Re-derivations

- Hypercube:

$$
m \geq n / 2
$$

- Sparse Vectors, n vector, sparsity $\mathrm{s}<0.25 \mathrm{n}$

$$
m \geq 2 s\left(\log \left(\frac{n-s}{s}\right)+1\right)
$$

- Block sparse, M groups (possibly overlapping), maximum group size B, k active groups

$$
m \geq 2 k(\log (M-k)+B)+k
$$

- Low-rank matrices: $n_{1} \times n_{2},\left(n_{1}<n_{2}\right)$, rank r

$$
m \geq 3 r\left(n_{1}+n_{2}-r\right)
$$

General Cones

- Theorem: Let C be a nonempty cone with polar cone C^{*}. Suppose C^{*} subtends normalized solid angle μ. Then

$$
w(C) \leq 3 \sqrt{\log \left(\frac{4}{\mu}\right)}
$$

- Proof Idea: The expected distance to C^{*} can be bounded by the expected distance to a spherical cap
- Isoperimetry: Out of all subsets of the sphere with the same measure, the one with the smallest neighborhood is the spherical cap
- The rest is just integrals...

Symmetric Polytopes

- Corollary: For a vertex-transitive (i.e., "symmetric") polytope with p vertices, $\mathrm{O}(\log p)$ Gaussian measurements are sufficient to recover a vertex via convex optimization.
- For $n \times n$ permutation matrix: $m=O(n \log n)$
- For $n \times n$ cut matrix: $m=O(n)$
- (Semidefinite relaxation also gives $m=O(n)$)

Algorithms

$$
\operatorname{minimize}_{z} \quad\|\Phi z-y\|_{2}^{2}+\mu\|z\|_{\mathcal{A}}
$$

- Naturally amenable to projected gradient algorithm:

$$
z_{k+1}=\Pi_{\eta \mu}\left(z_{k}-\eta \Phi^{*} r_{k}\right)
$$

residual

$$
\begin{aligned}
r_{k} & =\Phi z_{k}-y \\
\Pi_{\tau}(z) & =\arg \min _{u} \frac{1}{2}\|z-u\|^{2}+\tau\|u\|_{\mathcal{A}}
\end{aligned}
$$

- Similar algorithm for atomic norm constraint
- Same basic ingredients for ALM, ADM, Bregman, Mirror Prox, etc... how to compute the shrinkage?

Relaxations

$$
\|v\|_{\mathcal{A}}^{*}=\max _{a \in \mathcal{A}}\langle v, a\rangle
$$

- Dual norm is efficiently computable if the set of atoms is polyhedral or semidefinite representable
$\mathcal{A}_{1} \subset \mathcal{A}_{2} \Longrightarrow\|x\|_{\mathcal{A}_{1}}^{*} \leq\|x\|_{\mathcal{A}_{2}}^{*}$ and $\|x\|_{\mathcal{A}_{2}} \leq\|x\|_{\mathcal{A}_{1}}$
- Convex relaxations of atoms yield approximations to the norm

NB! tangent cone gets wider

- Hierarchy of relaxations based on θ-Bodies yield progressively tighter bounds on the atomic norm

Theta Bodies

- Suppose \mathcal{A} is an algebraic variety

$$
\mathcal{A}=\{x: f(x)=0 \forall f \in I\}
$$

$$
\|v\|_{\mathcal{A}}^{*}=\max _{a \in \mathcal{A}}\langle v, a\rangle \leq \tau
$$

positive everywhere
vanishes on atoms

- Relaxation: restrict h to be sum of squares.
- Gives a lower bound on atomic norm
- Solvable by semidefinite programming (Gouveia, Parrilo, and Thomas, 2010)

