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Background

~ Importance of logs
Production failures are hard to reproduce

m Privacy concerns for input
m Hard to recreate the production setting

Logs are the only data available for troubleshooting failures

=1 The use of logs
Commercial acceptance
m Vendors actively collect logs: Microsoft, VMware, EMC, etc.

Various log analysis tasks

m Anomaly detection, error debugging, performance diagnosing,
security monitoring, workload modeling, etc.



Background

7 What is logging?
A log function
Static text messages
Optional variable values

Verbosity levels
= E.g., fatal/error/info/debug

Log (level, “logging message %s ", variable):

elog (FATAL, “out of memory™); /*PostgreSQL*/

ap_log_error (ERR, “could not open charset \

conversion config file %s”, confname); f* Apache */

logit (INFO, “Authentication refused: %s”, line); [* OpenSSH */

elog(DEBUG1, “archived transaction log file %s”, xlog); /"PostgreSQL*/

- Logging utilities/frameworks

General-purpose function: e.g., printf

Logging interface: log4j (Apache), syslog (Unix)

Logging frameworks: Event Tracing for Windows (ETW)




Background

- Hardness of logging
Logging too little

m Miss valuable runtime information for postmortem analysis
m Increase the difficulty for debugging

User:
“Apache httpd cannot start.
No log message printed.”

Logging too much

= Runtime overhead: e.g., CPU consumption, |/O operations

m Storage overhead: e.g., 2G of logs per machine per day

= Produce a lot of trivial logs: redundant/useless

® Incur additional cost of code development and maintenance



Background

- Optimal logging
Effective logging

» High coverage of useful information needed for postmortem
analysis

Efficient logging

» Low overhead and cost
m Not producing much trivial information

-1 Research problem

Where to log?
m Where to add logging statement?

What to log?
= Which variables to record
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Related Work

- How to find an idea?

-1 Elegant idea: Simple and effective!
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Related Work

-1 SherLog [ASPLOS’10]

SherLog: Error Diagnosis by Connecting Clues from Run-
time Logs

Subtasks of debugging
m Infer the failure-inducing execution path
m Infer the conditions along the failure-inducing execution path

Idea: Manual inspection = Automatic inference

A tool:
m Inputs: run-time logs and source code
m Outputs: all possible failure-inducing execution path; the

evolution of value on certain variables
12
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-1 SherLog [ASPLOS’10]
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Related Work

- LogEnhancer [ASPLOS’11]

Improving Software Diagnosability via Log Enhancement

- ldea:

SherLog works bad (so many candidate paths) with poor
logs

Enhance the existing logging statements with more
variable values, reducing the uncertainty in path inference

— Challenges:
Uncertainty identification

Variable selection
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Related Work

-1 ErrLog [OSDI’12]

Be Conservative: Enhancing Failure Diagnosis with
Proactive Logging

- ldea:

LogEnhancer only works for situations where logging
statements exist

However, many failures have no logs at all

Proactive logging: logging automatically before release
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Related Work

-1 ErrLog [OSDI’12]

1 What are other obvious places to log?

» Classic Fault-Error-Failure model [Laprie.95]
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-1 A characteristic study [ICSE’12]

Characterizing Logging Practices in Open-Source Software

= Mining the revision histories of four open-source
projects

Verbosity levels modification
Modifications to variable logging
Modifications to static content

Logging location changes
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