Logging Practice Study:

An Overview

The Chinese University of Hong Kong

Presented by J]em]ng Zhu
Jieming Zhu Oct. 15, 2013

jmzhu@cse.cuhk.edu.hk

Outline

-1 Background
-1 Related Work

-1 Logging Practices In Industry

-1 Logging Suggestion

1 Conclusion

Background

~ Importance of logs
Production failures are hard to reproduce

m Privacy concerns for input
m Hard to recreate the production setting

Logs are the only data available for troubleshooting failures

=1 The use of logs
Commercial acceptance
m Vendors actively collect logs: Microsoft, VMware, EMC, etc.

Various log analysis tasks

m Anomaly detection, error debugging, performance diagnosing,
security monitoring, workload modeling, etc.

Background

7 What is logging?
A log function
Static text messages
Optional variable values

Verbosity levels
= E.g., fatal/error/info/debug

Log (level, “logging message %s ", variable):

elog (FATAL, “out of memory™); /*PostgreSQL*/

ap_log_error (ERR, “could not open charset \

conversion config file %s”, confname); f* Apache */

logit (INFO, “Authentication refused: %s”, line); [* OpenSSH */

elog(DEBUG1, “archived transaction log file %s”, xlog); /"PostgreSQL*/

- Logging utilities/frameworks

General-purpose function: e.g., printf

Logging interface: log4j (Apache), syslog (Unix)

Logging frameworks: Event Tracing for Windows (ETW)

Background

- Hardness of logging
Logging too little

m Miss valuable runtime information for postmortem analysis
m Increase the difficulty for debugging

User:
“Apache httpd cannot start.
No log message printed.”

Logging too much

= Runtime overhead: e.g., CPU consumption, |/O operations

m Storage overhead: e.g., 2G of logs per machine per day

= Produce a lot of trivial logs: redundant/useless

® Incur additional cost of code development and maintenance

Background

- Optimal logging
Effective logging

» High coverage of useful information needed for postmortem
analysis

Efficient logging

» Low overhead and cost
m Not producing much trivial information

-1 Research problem

Where to log?
m Where to add logging statement?

What to log?
= Which variables to record

Related Work

Related Work

7 Ding Yuan

AP, University of Toronto

Phd, 2012. Advisor: Yuanyuan Zhou

- Thesis: Improving failure diagnosis via
better design and analysis of log messages
SherLog [ASPLOS’10]
LogEnhancer [ASPLOS’11]
ErrLog [OSDI'12]

Characteristic study [ICSE'12]

Related Work

~ Yuanyuan Zhou

o1 Professor, UCSD

o1 Opera: Operating Systems Research on Energy, Reliability
and Autonomy

http://opera.cs.uiuc.edu/opera-people.jpg

Related Work

1 Publications

o 2013
SOSP, NSDI, MiddleWare

0 2012
OSDI, ICSE

o 2011
SOSP, MICRO, FSE, ICSE, ASPLOS
o 2010
OSDI, OOPSLA, ASPLOS
o 2009
SOSP, EuroSys, ICSE, ASPLOS(2), FAST
o 2008
DSN(2), ASPLOS(2), ICDCS, FAST

o 2007
SOSP(3), FSE, EuroSys, SIGMETRICS, HPCA

10

Related Work

- How to find an idea?

-1 Elegant idea: Simple and effective!

11

Related Work

-1 SherLog [ASPLOS’10]

SherLog: Error Diagnosis by Connecting Clues from Run-
time Logs

Subtasks of debugging
m Infer the failure-inducing execution path
m Infer the conditions along the failure-inducing execution path

Idea: Manual inspection = Automatic inference

A tool:
m Inputs: run-time logs and source code
m Outputs: all possible failure-inducing execution path; the

evolution of value on certain variables
12

Related Work

-1 SherLog [ASPLOS’10]

Log

Source Location Control Flow Path Value
> Log Parser Path Inference
Values Constraints Inference
Source
Code

“ Queries /

Paths, Value-

Inputs Constrai of querled
variable

Log parsing
Path Inference

Value Inference

13

Related Work

- LogEnhancer [ASPLOS’11]

Improving Software Diagnosability via Log Enhancement

- ldea:

SherLog works bad (so many candidate paths) with poor
logs

Enhance the existing logging statements with more
variable values, reducing the uncertainty in path inference

— Challenges:
Uncertainty identification

Variable selection

14

Related Work

-1 ErrLog [OSDI’12]

Be Conservative: Enhancing Failure Diagnosis with
Proactive Logging

- ldea:

LogEnhancer only works for situations where logging
statements exist

However, many failures have no logs at all

Proactive logging: logging automatically before release

15

Related Work

-1 ErrLog [OSDI’12]

1 What are other obvious places to log?

» Classic Fault-Error-Failure model [Laprie.95]

Fault Error (exception) Failure
s >0 -0
Root cause, Start to misbehave, Affect service/result
e.g., s/'w bug, e.g., system-call Visible to user
h/w fault, error return
misconfiguration,
! s ~
s Log! . Exception
) Relevant to the failures) A
Log? Not too much overhead identification
Fault is hard to find! ~) /
4) .pe
Source Is it already Modified
code logeed? source code
L 7 N
i No
. - e] ~\
7. Failed memory . FL.‘_nC_“o;E);/ew' L] Insc..ert.lon.&
safety check (3%) error (30%) | optimization |

\ |

6.Abnormal | -1
exit (4%)

5. Resource leak (4%) /

2. Switch stmt.
y — fall-through to
‘default’ (14%)

e 3. Exception signals (13%)

4. Failed input validity check (9%) 16

Related Work

-1 A characteristic study [ICSE’12]

Characterizing Logging Practices in Open-Source Software

= Mining the revision histories of four open-source
projects

Verbosity levels modification
Modifications to variable logging
Modifications to static content

Logging location changes

17

Our Work:

Logging Practices In Industry

Thank youl

