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Abstract

We discuss the framework of Transductive Support Vector Machine
(TSVM) from the perspective of the regularization strength induced by
the unlabeled data. In this framework, SVM and TSVM can be regarded
as a learning machine without regularization and one with full regular-
ization from the unlabeled data, respectively. Therefore, to supplement
this framework of the regularization strength, it is necessary to introduce
data-dependant partial regularization. To this end, we reformulate TSVM
into a form with controllable regularization strength, which includes SVM
and TSVM as special cases. Furthermore, we introduce a method of adap-
tive regularization that is data dependant and is based on the smooth-
ness assumption. Experiments on a set of benchmark data sets indicate
the promising results of the proposed work compared with state-of-the-art
TSVM algorithms.

1 Introduction

Semi-supervised learning has attracted a lot of research focus in recently years. Most of
the existing approaches can be roughly divided into two categories: (1) the clustering-based
methods [12, 4, 8, 17] assume that most of the data, including both the labeled ones and the
unlabeled ones, should be far away from the decision boundary of the target classes; (2) the
manifold-based methods make the assumption that most of data lie on a low-dimensional
manifold in the input space, which include Label Propagation [21], Graph Cuts [2], Spectral
Kernels [9, 22], Spectral Graph Transducer [11], and Manifold Regularization [1]. The
comprehensive study on semi-supervised learning techniques can be found in the recent
surveys [23, 3].

Although semi-supervised learning wins success in many real-world applications, there still
remains two major unsolved challenges. One is whether the unlabeled data can help the
classification, and the other is what is the relation between the clustering assumption and
the manifold assumption.

As for the first challenge, Singh et al. [16] provided a finite sample analysis on the usefulness
of unlabeled data based on the cluster assumption. They show that unlabeled data may



be useful for improving the error bounds of supervised learning methods when the margin
between different classes satisfies some conditions. However, in the real-world problems, it
is hard to identify the conditions that unlabeled data can help.

On the other hand, it is interesting to explore the relation between the low density assump-
tion and the manifold assumption. Narayanan et al. [14] implied that the cut-size of the
graph partition converges to the weighted volume of the boundary which separates the two
regions of the domain for a fixed partition. This makes a step forward for exploring the
connection between graph-based partitioning and the idea surrounding the low density as-
sumption. Unfortunately, this approach cannot be generalized uniformly over all partitions.
Lafferty and Wasserman [13] revisited the assumptions of semi-supervised learning from the
perspective of minimax theory, and suggested that the manifold assumption is stronger than
the smoothness assumption for regression. Till now, the underlying relationships between
the cluster assumption and the manifold assumption are still undisclosed. Specifically, it is
unclear that in what kind of situation the clustering assumption or the manifold assumption
should be adopted.

In this paper, we address these current limitations by a unified solution from the perspective
of the regularization strength of the unlabeled data. Taking Transductive Support Vector
Machine (TSVM) as an example, we suggest an framework that introduces the regularization
strength of the unlabeled data when estimating the decision boundary. Therefore, we can
obtain a spectrum of models by varying the regularization strength of unlabeled data which
corresponds to changing the models from supervised SVM to Transductive SVM. To select
the optimal model under the proposed framework, we employ the manifold regularization
assumption that enables the prediction function to be smooth over the data space. Further,
the optimal function is a linear combination of supervised models, weakly semi-supervised
models, and semi-supervised models. Additionally, it provides an effective approach towards
combining the cluster assumption and the manifold assumption in semi-supervised learning.

The rest of this paper is organized as follows. In Section 2, we review the background of
Transductive SVM. In Section 3, we first present a framework of models with different reg-
ularization strength, followed by an integrating approach based on manifold regularization.
In Section 4, we report the experimental results on a series of benchmark data sets. Section
5 concludes the paper.

2 Related Work on TSVM

Before presenting the formulation of TSVM, we first describe the notations used in this
paper. Let X = (x1, . . . ,xn) denote the entire data set, including both the labeled examples
and the unlabeled ones. We assume that the first l examples within X are labeled and the
next n − l examples are unlabeled. We denote the unknown labels by yu = (yu

l+1
, . . . , yu

n).

TSVM [12] maximizes the margin in the presence of unlabeled data and keeps the boundary
traversing through low density regions while respecting labels in the input space. Under
the maximum-margin framework, TSVM aims to find the classification model with the
maximum classification margin for both labeled and unlabeled examples, which amounts to
solve the following optimization problem:

min
w∈Rn,yu∈Rn−`,ξ∈Rn

1

2
‖w‖K + C

l
∑

i=1

ξi + C∗

n
∑

i=l+1

ξi (1)

s. t. yiw
>φ(xi) ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ l,

yu
i w>φ(xi) ≥ 1 − ξi, ξi ≥ 0, l + 1 ≤ i ≤ n,

where C and C∗ are the trade-off parameters between the complexity of the function w and
the margin errors. Moreover, the prediction function can be formulated as f(x) = w>φ(x).
Note that we remove the bias term in the above formulation, since it can be taken into
account by introducing a constant element into the input pattern alternatively.



As in [19] and [20], we can rewrite (1) into the following optimization problem:

min
f ,ξ

1

2
f>K−1f + C

l
∑

i=1

ξi + C∗

n
∑

i=l+1

ξi (2)

s. t. yifi ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ l,

|fi| ≥ 1 − ξi, ξi ≥ 0, l + 1 ≤ i ≤ n.

The optimization problem held in TSVM is a non-linear non-convex optimization [6]. During
past several years, researchers have devoted a significant amount of research efforts to solving
this critical problem. A branch-and-bound method [5] was developed to search for the
optimal solution, which is only limited to solve the problem with a small number of examples
due to involving the heavy computational cost. To apply TSVM for large-scale problems,
Joachims [12] proposed a label-switching-retraining procedure to speed up the optimization
procedure. Later, the hinge loss in TSVM is replaced by a smooth loss function, and a
gradient descent method is used to find the decision boundary in a region of low density [4].
In addition, there are some iterative methods, such as deterministic annealing [15], concave-
convex procedure (CCCP) [8], and convex relaxation method [19, 18]. Despite the success
of TSVM, the unlabeled data not necessarily improve classification accuracy.

To better utilize the unlabeled data, unlike existing TSVM approaches, we propose a frame-
work that tries to control the regularization strength of the unlabeled data. To do this, we
intend to learn the optimal regularization strength configuration from the combination of a
spectrum of models: supervised, weakly-supervised, and semi-supervised.

3 TSVM: A Regularization View

For the sake of illustration, we first study a model that does not penalize on the classification
errors of unlabeled data. Note that the penalization on the margin errors of unlabeled data
can be included if needed. Therefore, we have the following form of TSVM that can be
derived through the duality:

min
f ,ξ

1

2
f>K−1f + C

l
∑

i=1

ξi (3)

s. t. yifi ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ l,

f2
i ≥ 1, l + 1 ≤ i ≤ n.

3.1 Full Regularization of Unlabeled Data

In order to adjust the strength of the regularization raised from the unlabeled examples, we
introduce a coefficient ρ ≥ 0, and modify the above problem (3) as below:

min
f ,ξ

1

2
f>K−1f + C

l
∑

i=1

ξi (4)

s. t. yifi ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ l,

f2
i ≥ ρ, l + 1 ≤ i ≤ n.

Obviously, it is the standard TSVM for ρ = 1. In particular, the larger the ρ is, the stronger
the regularization of unlabeled data is. It is also important to note that we only take into
account the classification errors on the labeled examples in the above equation. Namely, we
only denote ξi for each labeled example.

Further, we write f = (fl; fu) where fl = (f1, . . . , fl) and fu = (fl+1, . . . , fn) represent the
prediction for the labeled and the unlabeled examples, respectively. According to the inverse
lemma of the block matrix, we can write K−1 as follows:

K−1 =

(

M−1

l −K−1

l,l Kl,uM
−1
u

−M−1
u Ku,lK

−1

l,l M−1
u

)

,



where

Ml = Kl,l − Kl,uK
−1
u,uKu,l,

Mu = Ku,u − Ku,lK
−1

l,l Kl,u.

Thus, the term f>K−1f is computed as

f>K−1f = f>l M−1

l fl + f>u M−1
u fu − 2f>l K−1

l,l Kl,uM
−1
u fu.

When the unlabeled data are loosely correlated to the labeled data, namely when most of
the elements within Ku,l are small, this leads to Mu ≈ Ku. We refer to this case as “weakly
unsupervised learning”. Using the above equations, we rewrite TSVM as follows:

min
fl,fu,ξ

1

2
f>l M−1

l fl + C

l
∑

i=1

ξi + ω(fl, ρ) (5)

s. t. yifi ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ l,

where ω(fl, ρ) is a regularization function for fl and it is the result of the following optimiza-
tion problem:

min
fu

1

2
f>u M−1

u fu − f>l K−1

l,l Kl,uM
−1
u fu (6)

s. t. [fu
i ]2 ≥ ρ, l + 1 ≤ i ≤ n.

To understand the regularization function ω(fl, ρ), we first compute the dual of the problem
(6) by the Lagrangian function:

L =
1

2
f>u M−1

u fu − f>l K−1

l,l Kl,uM
−1
u fu −

nu
∑

i=1

1

2
λi([f

u
i ]2 − ρ)

=
1

2
f>u (M−1

u − D(λ))fu − f>l K−1

l,l Kl,uM
−1
u fu +

ρ

2
λ>e,

where D(λ) = diag(λ1, . . . , λn−l) and e denotes a vector with all elements being one. As
the derivatives vanish for optimality, we have

fu = (M−1
u − D(λ))−1M−1

u Ku,lK
−1

l,l fl

= (I − MuD(λ))−1Ku,lK
−1

l,l fl,

where I is an identity matrix.

Replacing fu in (6) with the above equation, we have the following dual problem:

max
λ

−
1

2
f>l K−1

l,l Kl,u(Mu − MuD(λ)Mu)−1Ku,lK
−1

l,l fl + ρλ>e (7)

s. t. M−1
u � D(λ), λi ≥ 0, i = 1, . . . , n − l.

The above formulation allows us to understand how the parameter ρ controls the strength
of regularization from the unlabeled data. In the following, we will show that a series of
learning models can be derived through assigning various values for the coefficient ρ.

3.2 No Regularization from Unlabeled Data

First, we study the case of ρ = 0. We have the following theorem to illustrate the relationship
between the dual problem (7) and the supervised SVM.

Theorem 1 When ρ = 0, the optimization problem is reduced to the standard supervised
SVM.



Proof 1 It is not difficult to see that the optimal solution to (7) is λ = 0. As a result,
ω(fl, ρ) becomes

ω(fl, ρ = 0) = −
1

2
flK

−1

l,l Kl,uM
−1
u Ku,lK

−1

l,l fl

Substituting ω(fl, ρ) in (5) with the formulation above, the overall optimization problem
becomes

min
fl,ξ

1

2
f>l (M−1

l − K−1

l,l Kl,uM
−1
u Ku,lK

−1

l,l )fl + C

l
∑

i=1

ξi

s. t. yifi ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ l.

According to the matrix inverse lemma, we calculate M−1

l as below:

M−1

l = (Kl,l − Kl,uK
−1
u,uKu,l)

−1

= K−1

l,l + K−1

l,l Kl,u(Ku,u − Ku,lK
−1

l,l Kl,u)−1Ku,lK
−1

l,l

= K−1

l,l + K−1

l,l Kl,uM
−1
u Ku,lK

−1

l,l .

Finally, the optimization problem is simplified as

min
fl,ξ

1

2
f>l K−1

l,l fl + C

l
∑

i=1

ξi (8)

s. t. yifi ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ l.

Clearly, the above optimization is identical to the standard supervised SVM. Hence, the
unlabeled data are not employed to regularize the decision boundary when ρ = 0.

3.3 Partial Regularization of Unlabeled Data

Second, we consider the case when ρ is small. According to (7), we expect λ to be small
when ρ is small. As a result, we can approximate (Mu − MuD(λ)Mu)−1 as follows:

(Mu − MuD(λ)Mu)−1 ≈ M−1
u + D(λ).

Consequently, we can write ω(fl, ρ) as follows:

ω(fl, ρ) = −
1

2
f>l K−1

l,l Kl,uM
−1
u Ku,lK

−1

l,l fl + φ(fl, ρ), (9)

where φ(fl, ρ) is the output of the following optimization problem

max
λ

ρλ>e−
1

2
f>l K−1

l,l Kl,uD(λ)Ku,lK
−1

l,l fl

s. t. M−1
u � D(λ), λi ≥ 0, i = 1, . . . , n − l.

We can simplify the above problem by approximating M−1
u � D(λ) as λi ≤ [σ1(Mu)]−1,

i = 1, . . . , n − l, where σ1(Mu) represents the maximum eigenvalue of matrix Mu. The
resulting simplified problem becomes

max
λ

ρ

2
λ>e−

1

2
f>l K−1

l,l Kl,uD(λ)Ku,lK
−1

l,l fl

s. t. 0 ≤ λi ≤ [σ1(Mu)]−1, 1 ≤ i ≤ n − l.

As the above problem is a linear programming problem, the solution for λ can be computed
as:

λi =

{

0 [Ku,lK
−1

l,l fl]
2
i > ρ,

σ(Mu)−1 [Ku,lK
−1

l,l fl]
2
i ≤ ρ.

From the above formulation, we find that ρ plays the role of a threshold of selecting the
unlabeled examples. Since [Ku,lK

−1

l,l fl]i can be regarded as the approximation for the ith



unlabeled example, the above formulation can be interpreted in the way that only the unla-
beled examples with low prediction confidence will be selected for regularizing the decision
boundary. Moreover, all the unlabeled examples with high prediction confidence will be
ignored. From the above discussions, we can conclude that ρ determines the regularization
strength of unlabeled examples.

Then, we rewrite the overall optimization problem as below:

min
fl,ξ

max
λ

1

2
f>l K−1

l,l fl + C

l
∑

i=1

ξi −
1

2
f>l K−1

l,l Kl,uD(λ)Ku,lK
−1

l,l fl (10)

s. t. yifi ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ l,

0 ≤ λi ≤ [σ1(Mu)]−1, 1 ≤ i ≤ n − l.

This is a min-max optimization problem and thus the global optimal solution can be guar-
anteed. To obtain the optimal solution, we employ an alternating optimization procedure,
which iteratively computes the values of fl and λ. To account for the penalty on the margin
error from the unlabeled data, we just need to add an extra constraint of λi ≤ 2C for
i = 1, . . . , n − l.

By varying the parameter ρ from 0 to 1, we can indeed obtain a series of transductive models
for SVM. When ρ is small, we call the corresponding optimization problem as weakly semi-
supervised learning. Therefore, it is important to find an appropriate ρ which adapts for the
input data. However, as the data distribution is usually unknown, it is very challenging to
directly estimate an optimal regularization strength parameter ρ. Instead, we try to explore
an alternative approach to select an appropriate ρ by combining the prediction functions.
Due to the large cost in calculating the inverse of kernel matrices, one can solve the dual
problems according to the Representer theorem.

3.4 Adaptive Regularization

As stated in previous sections, ρ determines the regularization strength of the unlabeled
data. We now try to adapt the parameter ρ according to the unlabeled data information.
Specifically, we intend to implicitly select the best ρ from a given list, i.e., Υ = {ρ1, . . . , ρm}
where ρ1 = 0 and ρm = 1. This is equivalent to selecting the optimal f from a list of
prediction functions, i.e., F = {f1, . . . , fm}. Motivated from the ensemble technique for
semi-supervised learning [7], we assume that the optimal f comes from a linear combination
of the base functions {fi}. We then have:

f =

m
∑

i=1

θifi,

m
∑

i=1

θi = 1, θi ≥ 0, i = 1, . . . , m.

where θi is the weight of the prediction function fi and θ ∈ Rm. One can also involve a
priori to θi. For example, if we have more confidences on the semi-supervised classifier,
we can introduce a constraint like θm ≥ 0.5. It is important to note that the learning
functions in ensemble methods [7] are usually weak learners, while in our approach, the
learning functions are strong learners with different degrees of regularization.

In the following, we study how to set the regularization strength adaptive to data. Since
TSVM naturally follows the cluster assumption of semi-supervised learning, in order to
complement the cluster assumption, we adopt another principle in semi-supervised learning,
i.e., the manifold assumption. From the point of view of manifold assumption in semi-
supervised learning, the prediction function f should be smooth on unlabeled data. To
this end, the approach of manifold regularization is widely adopted as a smoothing term
in semi-supervised learning literatures, e.g., [1, 10]. In the following, we will employ the
manifold regularization principle for selecting the regularization strength.

The manifold regularization is mainly based on a graph G =< V , E > derived from the whole
data space X, where V = {xi}

n
i=1 is the vertex set, and E denotes the edges linking pairs of

nodes. In general, a graph is built in the following four steps: (1) constructing adjacency
graph; (2) calculating the weights on edges; (3) computing the adjacency matrix W; (4)



obtaining the graph Laplacian by L = diag(
∑n

j=1
Wij)−W. Then, we denote the manifold

regularization term as f>Lf .

For simplicity, we denote the predicted values of function fi on the data X as fi, such that
fi = ([fi]1, . . . , [fi]n). F = (f1, . . . , fm)> is used to represent the set of the prediction values
of all prediction functions. Finally, We have the following minimization problem:

min
θ

1

2
η(θ>F)L(F>θ) − y>

` (F>
` θ) (11)

s. t. θ>e = 1, θi ≥ 0, i = 1, . . . , m,

where the second term, y>
` (F>

` θ), is used to strengthen the confidence on the prediction over
the labeled data. η is a trade-off parameter. The above optimization problem is a simple
quadratic programming problem, which can be solved very efficiently. It is important to note
that the above optimization problem is less sensitive to the graph structure than Laplacian
SVM as used in [1], since the basic learning functions are all strong learners. It also saves
a huge amount of efforts in estimating the parameters compared with Laplacian SVM.

The above approach indeed provides a practical approach towards a combination of both
the cluster assumption and the manifold assumption. It is empirically suggested that com-
bining these two assumptions helps to improve the prediction accuracy of semi-supervised
learning according to the survey paper on semi-supervised SVM [6]. Moreover, when ρ = 0,
supervised models are incorporated in the framework. Thus the usefulness of unlabeled in
naturally considered by the regularization. This therefore provides a practical solution to
the problems described in Section 1.

4 Experiment

In this section, we give details of our implementation and discuss the results on several
benchmark data sets for our proposed approach. To conduct a comprehensive evaluation, we
employ several well-known datasets as the testbed. As summarized in Table 1, three image
data sets and five text data sets are selected from the recent book (www.kyb.tuebingen.
mpg.de/ssl-book/) and the literature (www.cs.uchicago.edu/~vikass/).

Table 1: Datasets used in our experiments. d represents the data dimensionality, and n
denotes the total number of examples.

Data set n d Data set n d

usps 1500 241 digit1 1500 241
coil 1500 241 ibm vs rest 1500 11960
pcmac 1946 7511 page 1051 3000
link 1051 1800 pagelink 1051 4800

For simplicity, our proposed adaptive regularization approach is denoted as ARTSVM.
To evaluate it, we conduct an extensive comparison with several state-of-the-art ap-
proaches, including the label-switching-retraining algorithm in SVM-Light [12], CCCP [8],
and ∇TSVM [4]. We employ SVM as the baseline method.

In our experiments, we repeat all the algorithms 20 times for each dataset. In each run,
10% of the data are randomly selected as the training data and the remaining data are used
as the unlabeled data. The value of C in all algorithms are selected from [1, 10, 100, 1000]
using cross-validation. The set of ρ is set to [0, 0.01, 0.05, 0.1, 1] and η is fixed to 0.001. As
stated in Section 3.4, ARTSVM is less sensitive to the graph structure. Thus, we adopt a
simple way to construct the graph: for each data, the number of neighbors is set to 20 and
binary weighting is employed. In ARTSVM, the supervised, weakly semi-supervised, and
semi-supervised algorithms are based on implementation in LibSVM (www.csie.ntu.edu.
tw/~cjlin/libsvm/), MOSEK (www.mosek.org), and ∇TSVM (www.kyb.tuebingen.mpg.
de/bs/people/chapelle/lds/), respectively. For the comparison algorithms, we adopt the
original authors’ own implementations.

Table 2 summarizes the classification accuracy and the standard deviations of the proposed
ARTSVM method and other competing methods. We can draw several observations from



the results. First of all, we can clearly see that our proposed algorithm performs signif-
icantly better than the baseline SVM method across all the data sets. Note that some
very large deviations in SVM are mainly because the labeled data and the unlabeled data
may have quite different distributions after the random sampling. On the other hand, the
unlabeled data capture the underlying distribution and help to correct such random error.
Comparing ARTSVM with other TSVM algorithms, we observe that ARTSVM achieves
the best performance in most cases. For example, for the digital image data sets, espe-
cially digit1, supervised learning usually works well and the advantages of TSVM are very
limited. However, the proposed ARTSVM outperforms both the supervised and other semi-
supervised algorithms. This indicates that the appropriate regularization from the unlabel
data improves the classification performance.

Table 2: The classification performance of Transductive SVMs on benchmark data sets.
Data Set ARTSVM ∇TSVM SVM CCCP SVM-light

usps 81.30±4.04 79.44±3.63 79.23±8.60 80.48±3.20 78.16±4.41
digit1 82.10±2.11 80.55±1.94 81.70±5.61 80.69±2.97 77.53±4.24
coil 81.70±2.10 79.84±1.88 78.98±8.07 80.15±2.90 79.03±2.84
ibm vs rest 78.04±1.44 76.83±2.11 72.90±2.32 77.52±1.51 73.99±5.18
pcmac 95.50±0.88 95.42±0.95 92.57±0.82 94.86±1.09 91.42±7.24
page 94.65±1.19 94.78±1.83 75.22±17.38 94.47±1.67 93.98±2.60
link 94.27±0.97 93.56±1.58 40.79±3.63 92.60±2.10 92.18±2.45
pagelink 97.31±0.68 96.53±1.84 89.41±3.12 95.97±2.22 94.89±1.81

5 Conclusion

This paper presents a novel framework for semi-supervised learning from the perspective of
the regularization strength from the unlabeled data. In particular, for Transductive SVM,
we show that SVM and TSVM can be incorporated as special cases within this framework.
In more detail, the loss on the unlabeled data can essentially be regarded as an additional
regularizer for the decision boundary in TSVM. To control the regularization strength, we
introduce an alternative method of data-dependant regularization based on the principle of
manifold regularization. Empirical studies on benchmark data sets demonstrate that the
proposed framework is more effective than the previous transductive algorithms and purely
supervised methods.

For future work, we plan to design a controlling strategy that is adaptive to data from
the perspective of low density assumption and manifold regularization of semi-supervised
learning. Finally, it is desirable to integrate the low density assumption and manifold
regularization into a unified framework.
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