
T-Morph: Revealing Buggy Behaviors of TinyOS
Applications via Rule Mining and Visualization

Yangfan Zhou∗† Xinyu Chen∗ Michael R. Lyu†‡ Jiangchuan Liu§

∗Shenzhen Research Institute, The Chinese Univ. of Hong Kong, Shenzhen, China
†Dept. of Computer Sci. & Eng., The Chinese Univ. of Hong Kong, Hong Kong, China

‡School of Computers, National Univ. of Defense Technology, Changsha, China
§School of Computing Science, Simon Fraser Univ., Burnaby, BC, Canada

ABSTRACT
TinyOS applications for Wireless Sensor Networks (WSNs)
typically run in a complicated concurrency model. It is dif-
ficult for developers to precisely predict the dynamic exe-
cution process of a TinyOS application by its static source
codes. Such a conceptual gap frequently incurs software
bugs, due to unexpected system behaviors caused by un-
known execution patterns. This paper presents T-Morph

(TinyOS application tomography), a novel tool to mine, vi-
sualize, and verify the execution patterns of TinyOS appli-
cations. T-Morph abstracts the dynamic execution process
of a TinyOS application into simple, structured application
behavior models, which well reflect how the static source
codes are executed. Furthermore, T-Morph visualizes them
in a user-friendly manner. Therefore, WSN developers can
readily see if their source codes run as intended by simply
verifying the correctness of the models. Finally, the verified
models allow T-Morph to automatically check the applica-
tion behaviors during a long-term testing execution. The
suggested model violations can unveil potential bugs and
direct developers to suspicious locations in the source codes.
We have implemented T-Morph and applied it to verify a se-
ries of representative real-life TinyOS applications and find
several bugs, including a new bug in the latest release of
TinyOS. It shows T-Morph can provide substantial help to
verify TinyOS applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
TinyOS, Dynamic Analysis, Sensor Networks

1. INTRODUCTION
For over a decade, Wireless Sensor Networks (WSNs) [11]

have yet to be realized as a practical, prevalent bridge be-
tween the physical world and the cyberspace. One of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$10.00.

major obstacles to extensively deploy such networks is their
low reliability [17]. Various software bugs have frequently
brought troubles and even failures to existing WSN appli-
cations [2, 17, 31]. Towards the wide applications of WSNs,
how to effectively eliminate software bugs is still a critical
concern to WSN developers [17] as well as potential indus-
trial customers [23]. Unfortunately, we are still lacking con-
venient tools to fight against WSN software bugs.

TinyOS [29] is a prevailing operating system for WSNs,
which provides a typical event-driven programming paradigm
for network-embedded sensors. In TinyOS applications, an
event procedure (i.e., event-handling logic) is triggered by
its corresponding event (i.e., a hardware interrupt). Events
may occur at any time [19, 29]. This consequently intro-
duces complicated interleaving executions of source codes.
Such interleaving executions can make the dynamic execu-
tion process of a TinyOS application difficult to be pre-
cisely predicted based on the static source codes. The non-
deterministic execution patterns of the TinyOS codes may
cause unexpected system behaviors, leading to system fail-
ures. Software bugs are therefore inevitable.

Testing is an important means to cope with software bugs.
It is well-known that a long-term testing run is necessary
to trigger potential TinyOS bugs [16, 24]. Unfortunately,
we lack an automatic mechanism to verify the pass/fail of
such a testing run. Manual inspection of the tremendous
execution trace generated in the testing run is, however,
extremely labor-intensive, not to mention correlating a bug
with a source code defect [35].

Mining a behavior model (i.e., a specification) from pro-
gram execution traces sheds light on manual verifications.
However, existing techniques (e.g., [1, 21, 22]) generally fo-
cus on mining sequential programs, where functions call one
another in a sequential manner. Mining the interleaving
executions of general concurrent programs remains difficult
[15], for the number of possible interleaving scenarios is of-
ten huge. These pose a great challenge to employ behavior
mining approaches in verifying TinyOS applications.

We find that unlike general concurrent programs [3, 10],
TinyOS applications possess more tractable interleaving sce-
narios and execution processes, due to its specific program-
ming paradigm. The concurrent execution of TinyOS appli-
cations can be narrowed down into sequential event proce-
dures together with their interleaving models. Specifically,
we observe that by tracking the interrupts and two system
calls, the complicated execution process can be anatomized
into a set of event procedures. More importantly, TinyOS
applications are implemented in a job-oriented manner: A

developer writes a segment of source codes for a specific job.
TinyOS implements the codes as many event procedures of
different types, and executes them in sequence to jointly ac-
complish the intended job. Driven by recurrent events (e.g.,
timer timeouts or packet arrivals), the intended jobs are per-
formed iteratively, which results in a repetition of a series of
event procedures in the execution process. This allows us to
specifically tailor a set of rule mining algorithms to abstract
the execution process into simple, structured application be-
havior models. Such semantic models closely capture how
the static source codes are executed, and thus can be em-
ployed to verify the applications.
Hence, this paper proposes T-Morph (TinyOS application

tomography), a novel tool to mine, visualize, and verify the
execution patterns of TinyOS applications. T-Morph takes a
two-step approach. First, it executes a baseline testing run,
which produces the initial behavior models. They are visu-
alized in a user-friendly manner. Developers can readily see
if their source codes run as intended by simply checking the
correctness of the models. Then the verifiedmodels reinforce
the knowledge of T-Morph to the target application. This al-
lows T-Morph to automatically troubleshoot the application
in a long-term testing run by checking its behaviors against
the verified models. The violation of the models can unveil
potential bugs to the developers and direct them to suspi-
cious locations in the source codes. This can greatly reduce
human efforts in troubleshooting TinyOS applications.
We have implemented T-Morph and successfully applied it

to identify bugs in several representative real-world TinyOS
applications covering typical usage of all WSN interrupts.
These bugs, caused by complicated execution scenarios, can
hardly be discovered by merely examining the source codes.
This shows T-Morph can bridge the conceptual gap between
the source codes and their execution process. Consequently,
bugs caused by such a gap can be effectively eliminated.
The rest of the paper is organized as follows. Section 2

presents the related work. We discuss the features of WSN
applications and the design considerations of T-Morph in Sec-
tion 3. Section 4 elaborates how T-Morphmines the behavior
models in the execution process. We show how these mod-
els can help troubleshoot WSN applications in Section 5.
Three case studies are discussed in Section 6. Sections 7
and 8 provide further discussions and conclude this paper.

2. RELATED WORK
Recent publications frequently reported that various soft-

ware bugs have brought failures to field-deployed WSNs,
posing a major barrier to their extensive applications [17][31].
To make WSNs more reliable, many troubleshooting tools,
debugging supports, bug-preventing approaches, and testing
methods have been proposed.
Dustminer [12] and Sentomist [35] are two recent trou-

bleshooting approaches to identify bugs in WSN applica-
tions. Relying on a function-level logging engine, Dustminer
checks the discriminative patterns from a function call se-
quence that causes some bad behaviors. It focuses on simple,
sequential executions of the target applications. In contrast,
T-Morph tackles their complicated interleaving executions,
which are generally involved due to the concurrency model
of WSN applications. Aiming to unveil transient bugs, Sen-
tomist [35] anatomizes a long term execution process into
event-procedure instances. It finds outliers among them and
considers them as bug symptoms. Sentomist can identify

when a transient bug manifests. But locating source code
defects still needs tedious manual efforts by understanding
the execution process represented in the instructions, i.e.,
the machine codes. T-Morph, on the other hand, aims at
helping WSN developers link the bug symptoms shown in
the execution process to the source codes. Moreover, unlike
Sentomist, T-Morph does not focus on transient bugs only.

Existing debugging tools (e.g., Marionette [32], Clairvoy-
ant [34], MDB [27]) can provide interactive remote debug-
ging interfaces for sensor nodes. These tools can to some
extent let WSN developers know how their source codes
are executed. However, inserting debugging activities (e.g.,
enabling breakpoints) generally affects the execution pro-
cess of the target application. Moreover, adding declara-
tive tracepoints [4] has also been suggested for extracting
program runtime information after observing abnormal be-
haviors. Nevertheless, mapping the runtime information to
source code defects still depends heavily on manual efforts.

Safe TinyOS [6] and Neutron [5] automatically enforce
run-time memory safety for TinyOS applications. NodeMD
extends compilers by inserting checking codes [14]. T-Check
[20] and KleeNet [26] find bugs by exploring program states
extensively via simulations. All these preventive tools focus
only on certain types of bugs (e.g., memory access violation).
They are still not adequate to eliminate faulty system be-
haviors caused by complicated interleaving executions due
to improper design.

Testing is an important means to verify the correctness of
an application. Unfortunately, conventional software test-
ing tools for testing sequential programs (e.g., [8]) and con-
current programs (e.g., [18, 33]) are inadequate in fighting
against bugs in WSN applications due to their specific con-
currency model. Regehr [24] is the first to point out that
testing a WSN application requires to schedule a lot of ran-
dom artificial interrupts, so as to allow the application to
explore more execution scenarios. Lai et al. [16] study the
test adequacy criteria for TinyOS applications. In general,
testing a TinyOS application will produce a long-term exe-
cution [16]. Human inspection of the testing results is labor-
intensive. There is no handy tools for TinyOS developers to
understand such a long term execution process, to locate
errors, and to correlate them with the source code defects.

Specification mining approaches (e.g., [1, 21, 22]) can in-
fer behavior models from program execution traces. In addi-
tion, PIP [25] abstracts the behaviors of distributed systems
and detects the unexpected. These approaches shed light
on the design of T-Morph. T-Morph moves a step further,
and focuses on mining the concurrent executions of TinyOS
applications, instead of sequential programs.

Kothari et al. [13] propose to abstract WSN application
source codes into finite state machines via static analysis.
But no work aims at visualizing the dynamic execution pro-
cess of a WSN application, which is however crucial for WSN
developers to verify the correctness of the application. T-

Morph closes this gap by properly abstracting the execution
process and visualizing the models.

3. TINYOS APPLICATION SPECIFICS
This section provides some preliminaries and our key ob-

servations of how TinyOS applications are executed on a
typically resource-constrained hardware platform. We will
first define event procedures (the building blocks of the ex-
ecution process of a TinyOS application) and their concur-

rency models. Finally we will show how a job intended by
developers is typically completed in runtime. These are the
basics for T-Morph to model TinyOS application behaviors.

3.1 Event procedures of TinyOS applications
TinyOS applications typically take an event-driven pro-

gramming paradigm. An event is essentially indicated by
a hardware interrupt, e.g., one denoting a timer timeout.
When an event occurs, the microcontroller unit (MCU) will
automatically invoke its corresponding handler, i.e., certain
application logic to process the event [29]. We call such
application logic an event procedure.
Usually in TinyOS applications, event procedures with

different functionalities may share the same entry due to
hardware design. In other words, different types of event
procedures may be triggered by the same hardware inter-
rupt, while different application logic will subsequently be
involved according to complicated system state information.
For example, all operations on the wireless interface chip
(e.g., CC1000 for Crossbow Mica2) are triggered by Serial
Peripheral Interface (SPI) interrupt [29]. There are, surpris-
ingly, tens of different functionalities (i.e., tens of event pro-
cedure types) that may be triggered by the SPI interrupt
for a typical TinyOS application, including those involved
in sending a data packet (e.g., transmitting the packet data,
receiving the corresponding acknowledgement) and those in-
volved in receiving a data packet.
Such“all-in-one”usage of a single hardware interrupt makes

it quite difficult to automatically distinguish among differ-
ent types of event procedures even when a particular hard-
ware interrupt is captured, posing a challenge for T-Morph

to model their functionalities.

3.2 TinyOS application concurrency model
An event procedure may not complete shortly. Hence, to

avoid the monopolization of the MCU resource, TinyOS [29]
typically implements an event procedure as two separated
parts: an asynchronous interrupt handler, which is immedi-
ately invoked when an event occurs, and some deferred syn-
chronous procedure calls, namely, tasks. Tasks are posted in
a global queue by interrupt handlers or other tasks and will
be executed in a first-in-first-out (FIFO) manner. Moreover,
an interrupt handler may preempt a task or even another
interrupt handler (e.g., for nodes with Atmel ATmega128L
MCUs such as MicaZ).
Such a concurrency model, though efficient for resource-

constrained WSNs, causes complicated executions of appli-
cations. As events may arrive at any time, the asynchronous
part of an event procedure (i.e., the interrupt handler) may
not start with a deterministic program context. It may pre-
empt another event-procedure instance. Moreover, event-
procedure instances may also post tasks in an interleaving
manner, leading to their own interleaving executions.
Figure 1 shows an example of how two interleaving event-

procedure instances may run. Event-procedure instance 1
starts with its corresponding interrupt handler I1, which
defers some application logic by posting a task T11 during
execution. Later, task T11 will be executed, during which
a new event arrives. Its corresponding interrupt handler
I2 preempts T11, which starts event-procedure instance 2.
I2 also posts a task T21 during execution. After I2 ends,
T11 resumes its execution. It posts another task T12 and
exits. Now the task queue contains T21 and T12. Since

Post task T12

Task T21

Duration of event procedure 1

Time

The execution of T11, which is
preempted by interrupt handler I2

Post task T21Post task T11

Interrupt
handler I1

Duration of event procedure 2

Interrupt handler I2

Task T12

Runtime of event procedure 1 Runtime of event procedure 2

Figure 1: Interleaving executions of two event-
procedure instances.

tasks are scheduled in a FIFO manner, T21 will be executed,
followed by T12. We can see that the preempting interrupt
handler and the interleaving tasks cause the executions of
the two event-procedure instances overlap in a complicated
manner. Furthermore, such interleaving execution patterns
are generally not deterministic during the coding phase. For
example, task T11 in another instance of event procedure 1
may not be interrupted by I2.

The concurrency model for supporting multitasking makes
it prohibitively hard for WSN developers to understand the
complicated interleaving executions of their source codes.
Tackling this difficult concurrency model is one of the ob-
jectives of T-Morph.

3.3 Job flows in execution process
An event procedure reflects what a TinyOS application

will do when a particular event occurs. Dividing the system
runtime into event-procedure instances and properly model-
ing their behaviors can help unveil the executions of source
codes. However, this is still far from enough.

We observe that WSN developers generally write source
codes in a job-oriented manner: A segment of source codes
is designed for a specific job at first. Then after the codes
are compiled, the operating system may implement them as
many event procedures of different types, and execute them
in sequence to jointly accomplish the intended job. Exam-
ining each one individually (e.g., as proposed in [35]) may
cause the developers to lose critical sequential information
to verify the correct execution of their codes. One important
notion of T-Morph is that the job-specific patterns of event
procedures are crucial for the developers to understand the
dynamic execution process of their static source codes.

We show this via an example in Figure 2(a). It provides
the nesC [9] source codes of function Read.readDone adapted
from the Oscilloscope application [29], which allows a node
to obtain, cache, and send its sensor readings. The func-
tion is invoked by an ADC (Analog-to-Digital Converter)
interrupt handler triggered by an event indicating a sensor
reading is ready on the ADC chip. By writing the codes,
the developers intend to read and cache every three sen-
sor readings, and then send them in one packet. The codes
look simple. However, a bug may be manifested here: If a
new ADC interrupt arrives with a new sensor reading before
the data of the previous packet (packet->content) has been
sent, it will invoke Read.readDone again. As a result, the
packet content is altered by this new sensor reading (line 5).

There are three types of event procedures (denoted by A,
B, and C) involved when the codes are executed, shown in
Figure 2(b). A obtains and saves a sensor reading; B obtains
a reading, puts it together with two previous readings, and

1: // The Read.readDone() function is invoked by the
2: // interrupt handler for the ADC data-ready interrupt.

 3: event void Read.readDone(error_t err, uint16_t reading)
 4: {
 5: packet->content[index] = reading;
 6: index ++;
 7: // After 3 sensor readings have been collected,
 8: // post a task which starts sending the readings.
 9: if(index == 3)
10: {
11: index == 0;
12: post sendDataPacket();
13: }
14: return;
15: }

...

...

A AA B CC

Obtain the reading, cache it, and initialize the sending of the cached data

Obtain the reading and cache it

A B

(b) Three types of involved event procedures

(a) nesC source codes of a buggy function in handling sensor readings

(c) Event-procedure sequences of two executions

A

B

...

Perform the steps for sending a data packetC

A CA B C

A AA B CCA B ... A A B C

Case 1: Correct execution

Case 2: Incorrect execution

X

Figure 2: An example: a buggy function in an ADC
event procedure.

triggers a packet sending; C represents the process of send-
ing the data packet.1 A and B are triggered by the ADC
interrupt. They are directly resulted from the source codes.
If examined individually, the logic of each event procedure
appears to comply with the intention of the developers.
Let us further check the execution sequence of the event

procedures, as shown in Figure 2(c). The pattern AAB will
immediately shows this is the intended job of the source
codes: Read and cache the first two sensor readings (AA),
and after reading and caching the third one, initialize a
packet sending process to send the three cached readings
(B). If the pattern AAB always appears iteratively as in
case 1 in Figure 2(c), the developers can verify that the
codes run correctly in the execution process. But when the
bug manifests, the resulting sequence may be case 2 in Fig-
ure 2(c). The arrival of a new sensor reading triggers A
before the sending process of the previous packet is done.
Hence, the node will go on sending the previous packet after
A is done, resulting in a C lying in between two A’s. Obvi-
ously this is not the intention of the source codes. Thus, the
developers can quickly locate the defect of the source codes.
We can see from the above example that it will be criti-

cal to map the execution process into the jobs that the de-
velopers design their codes to accomplish. This can greatly
help the developers understand the execution process of their
source codes, so that they can consequently verify the cor-
rectness of their source codes and find potential defects. We
name a sequence of the event procedures that jointly ac-
complish a job intended by the developers a job flow. The
pattern AAB in the above example represents a job flow.
Job flows are obviously application-specific. Also, job flow

instances can interleave with each other in a complicated
manner as well. These are the major challenges faced by

1As we discussed in Section 3.1, sending a data packet will
involve many event procedures of different types. For the
convenience of our discussions, let C denote the event pro-
cedures triggered by the SPI interrupt.

Verified

models

Event procedures

User-friendly
 illustrations

Bugs

Program
runtime
trace

BA C

Job flows

Interleaving models

Application behavior models

Model violation

Visualize

Binary codes

Run test

Rule
mining

Manual
inspection

Execution
scenarios

Automatic Model
verification

Figure 3: Overview of the T-Morph framework.

T-Morph to identify and model job flows automatically, so
as to clearly describe to developers what a job is intended.

4. MINING TINYOS EXECUTION PROCESS
The key notion for T-Morph to bridge the conceptual gap

between the source codes and their complicated execution
process is that the system runtime should be mapped into
job flows of event procedures, reflecting the actual design
purpose of the source codes. To this end, T-Morph should
identify, model, and present a job flow in a generic way con-
venient for the developers to verify its functionality. Figure
3 provides an overview of the framework of T-Morph. Centric
to this framework is the rule mining approach that abstracts
the application behavior models, i.e., the models of the job
flows per se and how they are interleaved, together with the
models of their building blocks, i.e., event procedures.
T-Morph first identifies event-procedure instances from the

execution process of a TinyOS application. By properly fea-
turing these instances, it classifies them into different types,
where those in the same type bear similar functionalities.
The program runtime can hence be abstracted into a se-
quence of event-procedure models of different types (e.g., A,
B, and C in the example in Figure 2). T-Morph then ex-
tracts the patterns of the models out of the sequence (e.g.,
AAB in Figure 2), and forms the job flows of interest.

Finally, the resulting behavior models will be visualized
for the developers in a graphic manner. This user-friendly
illustration can allow the developers to verify whether the
execution process of their source codes follows their inten-
tions. If yes, the models can be saved for further verification
of the TinyOS application. Otherwise, the detected inconsis-
tency, whose cause is close-associated with the source codes,
can substantially help the developers locate potential defects
in the source codes.

4.1 Analyzing the execution process
Since a job flow is essentially a sequence of event proce-

dures, T-Morph first analyzes the program runtime and finds
the corresponding building blocks of job flows. As discussed
in Section 3.2, the concurrency model of TinyOS applica-
tions causes complicated interleaving executions of event
procedures. Fortunately, we have found that by tracking
the interrupts and the task posting/executing system calls
(i.e., the postTask and runTask functions), we can obtain the
runtime of each event-procedure instance, i.e., the runtime
of its corresponding interrupt handler and the runtime of

all the tasks that belong to event-procedure instances (see
Figure 1 for some examples).
To analyze the program runtime, we first summarize the

execution rules of TinyOS applications based on the concur-
rence models of TinyOS [35]:

• Rule 1: Interrupt handlers and tasks all run to com-
pletion unless preempted by other interrupt handlers;

• Rule 2: Tasks are scheduled in a queue by interrupt
handlers or other tasks with postTask system call, and
are executed in a FIFO manner with runTask system
call. Hence, the task scheduled via the ith postTask is
executed via the ith runTask in the execution process.

Based on these rules, we can obtain the runtime of an
interrupt handler and that of a task as follows.
Runtime of an interrupt handler: For an interrupt n, its

interrupt handler starts from its entry int(n) and ends at
its exit reti. Since int(n) and reti are nested, we can then
locate the corresponding int(n) and reti for each interrupt
handler. Based on Rule 1, we know the runtime of an inter-
rupt handler is the time between its entry int(n) and its exit
reti, excluding the time during the preemptive executions of
other interrupt handlers, if any.
Runtime of a task: Tasks are executed by invoking the run-

Task system call. Hence, based again on Rule 1, the runtime
of a task is the time between the invocation of its corre-
sponding runTask and its return, excluding the preemptive
executions of interrupt handlers, if any.
An interrupt handler starts a new event-procedure in-

stance. Based on Rule 1, the tasks scheduled by the postTasks
during the runtime of the interrupt handler are the tasks of
the event-procedure instance. Based on Rule 2, T-Morph can
then locate their runTasks. Thus, the runtime of these tasks
can be obtained. Then again based on Rule 1, during the
runtime of these tasks, if there are any new tasks scheduled
by the postTasks, the new tasks also belong to the event-
procedure instance. Similarly T-Morph can locate their cor-
responding runTasks and obtain their runtime. This progress
continues iteratively till no new tasks are scheduled.
T-Morph thus gets the runtime of each event-procedure in-

stance. It is then convenient to record the TinyOS applica-
tion behaviors during the execution of each event procedure
instance, which will be described next.

4.2 Featuring behaviors of event procedures
After analyzing the execution process with a set of event-

procedure instances, the question now is what kind of run-
time data can best feature the behaviors of each instance.
As discussed in Section 3.1, event procedures of different
types may usually share the same interrupt entry in typ-
ical TinyOS applications. Hence, we cannot simply repre-
sent the behaviors of an event-procedure instance based only
on its triggering hardware interrupt. Another option is to
feature the behaviors by recording the instructions (i.e., bi-
nary machine codes) executed during the lifetime of the in-
stance [35]. In this approach, the involved instructions can
directly reflect the application behaviors. However, they are
not user-friendly for the WSN developers: It is hard, if not
impossible, for the developers to understand the execution
of the machine codes.
We observe that TinyOS applications are generally not

designed to perform complex data computation with many
looping and branching control flows due to hardware limita-
tion [29]. Hence, showing the involved function invocations

// code segment of the SPI

// interrupt handler

 a();

post b(); //post a task

 c();

void a()

{

 d();

}

void b()

{ //called by runTask

 e();

}

// Functions c(), d(), and e()

// do not call other functions

...

...

I18: SPI
Interrupt
Handler

Layer 2

runTask(b)

a postTask(b)

d

c e

Layer 1

Layer 3

...

Virtual root

The SPI interrupt triggers the execution of the following
functions in sequence: a, d, postTask(b), c, runTask(b), and e.
Therefore, the layered sequence is I18:1, a:2, d:3,
postTask(b):2, c:2, runTask (b):1, and e:2.

Figure 4: An example layered function sequence.

would be enough to indicate the control flows of the instance,
and thus well captures its behaviors. This is also noticed by
some existing approaches (e.g., [12]). However, they simply
consider to record a sequence of all function calls, which in-
evitably loses important information of function invocation
relations. Moreover, such approaches result in a long func-
tion sequence including many functions that may not be of
the developers’ interest. They introduce not only huge noise
for human inspection, but also much unnecessary complexity
for automatic algorithms (e.g., [12]) to analyze the sequence
efficiently. In contrast, T-Morph solves these deficiencies by
employing layered function sequence, instead of traditional
function sequence, to represent the application behaviors.

The item set in a layered function sequence contains the
functions called within the event-procedure instance, as well
as the interrupt entries and the task posting/executing func-
tions. We build an invocation tree describing the invocation
relations of the items for easy illustration of layered function
sequence. The tree has a virtual root (layer 0). Interrupt
entries and tasks are the children of the root, since they are
called by the operating system. They are hence in layer 1.
If a function is called by a node in layer n, it is a child of
the node and hence in layer n+1. By decorating each node
of the tree with its name (the name of a function, interrupt,
or task) and its layer number, a layered function sequence
is then the preorder traversal sequence of the tree.

Figure 4 shows an example of such a tree and its cor-
responding layered function sequence. Note that function
entries and returns are nested in an execution process. By
tracking function entries and function returns, it is easy to
employ a pushdown automaton to construct the invocation
tree and thus get the layered function sequence.

Encapsulating the function invocation relations, layered
function sequence describes more accurately the behaviors
of an event-procedure instance. It also equips T-Morph with
a flexible way to filter function calls. Unlike traditional func-
tion sequence that implies all functions are of equal impor-
tance, layered function sequence encodes the hierarchy of
the involved function calls. Due to the nature of invocation
tree, a function in a lower layer provides more control flow
information than that in a higher layer, and hence is more
important to describe the coarse-grained functionality. This
is the basic for T-Morph to model the functionalities of event-
procedure instances and classify them into different types.
The details will be elaborated in Section 4.3.

Moreover, layered function sequence is more suitable for

(a) receiving a
CRC byte

1

2

1 Virtual root

2 I18

3 HplCC1000SpiP.HplCC1000Spi.dataReady

4 CC1000SendReceiveP.HplCC1000Spi.dataReady

5 CC1000SendReceiveP.rxData

6 crcByte

7 CC1000SendReceiveP.packetReceived

8 CC1000SendReceiveP.getFooter

9 CC1000SendReceiveP.amAddress

10 CC1000SendReceiveP.enterAckState

3

1

2

3

5

6

5

44

7

8 9 10 ...

(b) signaling a
packet received

1

2

3

11

4

12 13

11 CC1000SendReceiveP.txData

12 CC1000SendReceiveP.sendNextByte

13 CC1000SendReceiveP.enterTxCrcState

(c) finishing sending data bytes
and changing state to TxCrc

Layer 3

Layer 4

Layer 5

Figure 5: Invocation trees of three example layered
function sequences.

T-Morph to visualize the functionality of an event procedure.
First, via source code analysis, a function name can be linked
to its source codes, which provides a straightforward means
to understanding the purpose of an event procedure. Sec-
ond, the layered function sequence can be mapped to an
invocation tree conveniently. This property is pretty desir-
able, since a tree-like demonstration of function invocation
relations can greatly facilitate human reasoning. Finally,
the layered function sequence offers a flexible way to visual-
ize an instance. The developers can get the coarse-grained
information by simply examining the involved functions in
low layers. When more details are needed, the tree can be
expanded to show functions in deeper layers.

4.3 Modeling event procedure functionalities
A typical TinyOS application may involve various event

procedures of different functionalities during its runtime.
For example, tens of event procedures types (in terms of the
functions invoked) may run during a packet transmission
process. This poses a challenge to analyzing an execution
process into a small number of simple behavior models for
human inspection. T-Morph solves it by filtering the func-
tions in layered function sequences according to their layer
numbers. We discuss it via a motivating example in Fig-
ure 5, where the invocation trees of three event-procedure
instances triggered by the SPI interrupt are shown.
The first instance is for receiving a byte, the second for

signaling a packet received, while the third for sending a
data byte. Their functions in layer 3 are the same. By its
source codes we can know the instances are all for packet
transmissions. Based on their layer-4 functions, they can
be classified into two types, i.e., the left two instances for
receiving packets (denoted by R) and the last for sending
packets (denoted by S). By examining the layer-5 functions,
we know the first two instances can further be grouped into
two types (R1 and R2) denoting different states of packet
sending. It is easy to see that if we need a discrimination be-
tween packet sending and receiving, grouping the instances
into R and S is enough. This example shows that the func-
tions in a deeper layer determine more fine-grained details,
although it is less important in abstracting the functional-
ities of an event procedure instance. Based on this notion,

T-Morph can eliminate the trivial information (i.e., the func-
tion calls in high layers) of the execution process, so as to
classify event procedure instances into a much smaller num-
ber of types.

For two layered function sequences α and β, we define
they are the same in depth n (n is an integer ≥ 0), if their
functions and their orders in layers 0 to n are the same. For
example, the left two layered function sequences in Figure 5
are the same in depth 4, but they are not the same in depth
5. Moreover, if α and β are the same in depth n, but not
the same in depth n+1, it is possible that the functions in
layer n+1 of one sequence is a substring of those of another.
We consider two sequences with such a relationship are more
similar than two without. To describe such similarity, we say
α and β are the same in depth n+0.5 if they are the same
in depth n and the functions in layer n+1 of one sequence
is a substring of those of another.

Given a parameter m (m = 0.5, 1, ...), T-Morph can then
classify a set of event procedure instances into different types
so that in each type the layered function sequences of the
instances are the same in depth m. We say the instances in
the same type bear the same event-procedure model.

Thus, the instances with the sam event-procedure model
have a common part in their layered function sequences.
When m is a natural number, the common part can be ob-
tained by removing the functions in the layers deeper than
m. Otherwise (i.e., m = 0.5, 1.5, ...), the common part can
be obtained by removing functions in the layers deeper than
m, except those in layer m+0.5 that exist in all the layered
function sequences.

Such a common part describes the similarity of the be-
haviors among the instances in each type. T-Morph uses this
information as a model to summarize the functionalities of
the instances for each type, and depicts it in a tree-like man-
ner to the developers. Since function names can directly link
to source codes, such a model provides a favorable way for
human verification of the functionalities of each type.

Then, by substituting the event-procedure instances with
their corresponding models, the execution process of an ap-
plication can be abstracted as a sequence of event-procedure
models. We name it an event-procedure model sequence, or
in short, a model sequence. Since a model sequence describes
the execution process of a TinyOS application, the job in-
tended by the developers, i.e., a job flow, lies in the sequence.
Next we will discuss how to infer job flows in the sequence.

4.4 Mining job flows from model sequence
We observe that, running over simple hardware and driven

by recurrent events (e.g., timer timeouts or packet arrivals),
TinyOS applications are generally designed to perform cer-
tain functionalities (i.e., jobs) iteratively. This results in a
repetition of a series of event-procedure models in the model
sequence. Hence, job flows can be identified via mining the
frequent patterns from the model sequence.

However, a TinyOS application running on a sensor node
is usually designed to conduct several jobs simultaneously.
As a result, its model sequence may contain several job flows,
for example, those for sending a packet and those for obtain-
ing a sensor reading. The execution of different job flows
may overlap, disturbing the patterns of each other. It is a
challenge to mine the frequent patterns from the model se-
quence directly. We tackle this problem with a separation-
of-concern approach in the following two steps.

Step 1: Different intended jobs involve different inter-
rupts. T-Morph divide the model sequence into several sub-
sequences. The items in each one is related to the same
interrupt i. We call it the model sequence of interrupt i.
Step 2: By controlling the parameter m when abstracting

the functionalities of event procedure instances, we can de-
rive event-procedure models of different levels of granularity.
Starting with a small m, T-Morph allows the developers to
check the derived models. If a model is not of interest, it
can be filtered out from the model sequence of interrupt i.
T-Morph then derives a new model sequence of interrupt i
with a larger m. This process repeats to let the developers
focus on more close-related event procedures until a job flow
capturing the developer’s intention is obtained. For exam-
ple, in Figure 5, when m = 4, a model sequence of interrupt
SPI containing R and S is obtained. If S (packet sending) is
not of interest, T-Morph removes its related event-procedure
instances and increases m to obtain a sequence containing
only R1 and R2.
A job flow can now be mined from the resulting sequence

with a frequent pattern mining approach, as described in
Figure 6. For a substring s of size ks in the sequence with
length l, it finds how many times s appears (denoted by
ts). The percentage Ps of the occurrences of s in the whole
sequence is:

Ps =
ks · ts

l
. (1)

T-Morph considers that the substring j which results in the
maximum Ps(∀s) is the job flow of interest. Formally,

j = argmax
∀s

Ps = argmax
∀s

ks · ts
l

. (2)

If there are many such substrings, we select the one with the
smallest size. For example, for a model sequence ABABAB
ABABAB with size being 12, PAB is 2×6

12
= 1, which is the

maximum among all substrings. Consequently, AB is the
resulting job flow. Note that although PABAB is also equal
to 1, the size of ABAB is larger than AB. So it is not the
resulting job flow. The complexity of the approach is O(l2).

4.5 Modeling job flow interleaving executions
Due to the concurrency model of TinyOS, the execution

of a job flow instance can be interleaved. Such interleaving
executions may cause problems if the design of the job flow
and its interleaving parties bear some implicit dependencies.
Hence, T-Morph should model the interleaving executions
and illustrate them to the developers.
The execution of a job flow instance can be interleaved

by event-procedure instances (which may belong to other
job flow instances) in two ways. First, the execution of the
event-procedure instances of the job flow can be interleaved
by other event-procedure instances. Second, a job flow in-
stance as a whole can be interleaved by the event-procedure
instances occurring in between two of its adjacent member
event-procedure instances, even if the executions of these
event-procedure instances do not overlap.
For the first case, as pointed out in Section 3.2, such in-

terleaving executions can be very complicated and diverse.
A straightforward approach is to consider the detailed inter-
leaving patterns, e.g., where the interrupt handlers of other
instances preempt their executions, and which tasks of other
instances have been executed during their lifetime. Unfor-
tunately, this will result in complicated interleaving models,

// INPUT: A model sequence S of interrupt i

// OUTPUT: A job flow j

 1: length the size of S

2: index 0

 3: j 0

 4: maxPs 0

5: ks 2

6: loop until ks is larger than a threshold

7: for each substring s of length ks in S

9: ts the times s appears in S

10: // Ps is the percentage of the occurrences

11: // of s in S

12: Ps (ks * ts)/length

13: if maxPs < Ps

14: maxPs Ps

15: // so far the current s is the most likely

16: // to be a job flow

17: j s

18: end if

19: end for

20: ks ks + 1

21: end loop

Figure 6: Job flow mining algorithm.

which provides no help for human verification. Hence, T-
Morph takes a more reasonable way: It considers only in the
abstracted event-procedure-model level as follows. For all
event-procedure instances belonging to a job flow model (say
J), T-Morph finds all the other interleaving event-procedure
instances and records their models (constructed as discussed
in Section 4.3) in a set M(J). M(J) is then used to de-
scribe how the event procedure instances in J is interleaved.
Similarly for the second case, T-Morph finds all the other
event-procedure instances occurring in between two adja-
cent event-procedure instances of J , and also includes their
models in M(J).

Hence, for each job flow J , the developers can be directed
to check if there is any unexpected dependency between J
and its interleaving event-procedure models M(J). Since
event-procedure models can be easily associated with their
corresponding source codes, this interleaving modeling ap-
proach brings better focus on the source codes for the devel-
opers to verify correct executions of their applications. After
all, details on how an event-procedure instance interleaves
the execution of a job flow instance can still be provided if
the developers need example cases.

5. TROUBLESHOOTING VIA VERIFIED
BEHAVIOR MODELS

Testing TinyOS applications generally requires a long-
term execution for exploring extensive program states so
that potential bugs can manifest themselves [16][24][35]. Bug
symptoms, however, are deeply hidden in the resulting long
execution process. Even if the symptoms are identified, it is
difficult to relate them to the source code defects due to the
conceptual gap between the source codes and the execution
process. This section discusses how T-Morph addresses this
challenge in troubleshooting TinyOS applications.

First, let us discuss a key observation that motivates the
automatic troubleshooting approach in T-Morph: Though it
is labor-intensive to analyze a long testing execution process
manually, it is generally an easy task for the developers to
check whether a TinyOS application executes as expected
with simple system settings. The developers can resort to
T-Morph to run such a simple testing scenario (as described
in Figure 3). T-Morph can mine the application behavior

Figure 7: An example workspace of T-Morph.

models from the execution process and visualize them. This
can substantially help manual verification. Sometimes, we
can even just check whether the outcome of the application
is correct. For example, to check a packet forwarding mech-
anism of a sensor node (say u), we can use two other nodes
(say v and w), v for sending a packet to u, and w for receiv-
ing the forwarded packet. If w can successfully receive the
packet, we then confirm the testing result is correct.
If the simple testing scenario is considered correct by the

developers, we call the model generated by T-Morph during
this preliminary testing run the verified models. T-Morph can
reinforce its knowledge of the target application with such
verified models. This allows T-Morph to troubleshoot poten-
tial bugs in a long term testing execution process automat-
ically, as also shown in Figure 3. With the same modeling
approaches, T-Morph can abstract the long execution process
into its behavior models (i.e., event-procedure models, job
flows, and how they are interleaved).
T-Morph then checks these behavior models against the

verified models. If there are no violations found, T-Morph
considers the target application in the long term testing run
is correct. Otherwise, the model violations are considered
as bug symptoms. There are two cases. The first one is
that new event-procedure models or job flows have been
found. This means somehow the behaviors of the applica-
tion are changed. T-Morph will direct the developers to check
whether these newly-introduced models are consistent with
the design intention by visualizing them in a graphic man-
ner. Second, if T-Morph finds new event-procedure models
that interleave a job flow, this indicates the long term test-
ing run has explored some new unexpected program states.
T-Morph will also visualize these event-procedure models to-
gether with how they interleave the job flows for the devel-
opers to check whether they bear any unintended dependen-
cies. In this way, T-Morph can direct the developers to the
suspicious locations in the source codes that cause the in-
consistency, which can significantly reduce human efforts in
troubleshooting TinyOS applications.

6. CASE STUDIES
To show the power of T-Morph in modeling and verifying

TinyOS applications, this section provides three representa-
tive case studies. We will see how bugs in source codes can
be conveniently identified through verifying behavior mod-

els abstracted from the dynamic executions. All case studies
are based on real applications distributed with TinyOS [29].

We implement T-Morph in Java, which contains over 10, 000
lines of codes.2 Like work in [16][35], T-Morph relies on
Avrora, a widely-adopted WSN testing environment [30]. It
provides a cycle-accurate emulation of hardware functionali-
ties and their interactions, and executes an application in the
instruction level. It can thus achieve the required fidelity in
retrieving the application behaviors. Figure 7 demonstrates
an example user interface of T-Morph workspace.

6.1 Case study 1: data forwarding
We first investigate how T-Morph models and visualizes

wireless communication behaviors since wireless communica-
tion is a general functionality for every field-deployed sensor
node. We pick a lightweight multi-hop packet forwarding
protocol based on BlinkToRadio distributed with TinyOS
[29] as our target application, and focus on the SPI inter-
rupt since the wireless chip uses it to talk to the MCU.

Three nodes are deployed: node 0 as the sink, node 1 as
the relay, and node 2 as the source. To analyze the packet
forwarding mechanism, we examine how the application ex-
ecutes on the relay (i.e., node 1) only.

First we consider a simple 3-second testing scenario, where
the packet sending rate of node 2 is 1 packet/second. T-

Morph quickly generates the event sequence models, A18,
B18, and C18.

3 With T-Morph’s visualization support, the
functionality of these models can be instantly identified: A18

is for processing data during sending/receiving a packet, B18

is for signaling that a packet has been received and then for-
warded, while C18 is for informing that a packet has been
sent successfully, as shown in Figure 8. Based on the veri-
fied event procedure models, T-Morph mines a job flow with
a simple pattern A18A18B18A18A18C18.

4 It is easy to verify
this job flow is for receiving a packet, and then sending it. It
is exactly the intended job of the application in a nutshell.

After we confirm the correctness of the application in the
simple testing scenario, T-Morph takes the models gener-
ated in this testing run as the verified models. We then
run a more complicated testing scenario by randomizing
the packet sending rate of node 2, which results in random
packet arrivals at node 1. As illustrated in Figure 3, T-Morph
can automatically verify this new testing run by checking its
behavior models against the verified models.

Although no violation to the event-sequence models are
found, T-Morph finds one violation to the job flow model: a
sequence of event procedure instances A18A18B18A18A18B18

A18A18C18, as shown in Figure 9. Since A18A18B18 de-
notes the process of receiving a packet, the violated sequence
shows that node 1 has received two packets before sending
one. Via an in-depth inspection of model B18, we find that
when the node receives a packet, it calls Receive.receive.
Then, the first B18 instance forwards the packet directly,
while the second actively drops the packet in function AM-

Send.send due to a busy flag. By examining the source

2http://www.hkcloud.net/TMorph
3The subscript 18 denotes that the event procedures are
triggered by interrupt 18, i.e., the SPI interrupt. We use
similar notations for all event procedure models in the rest
of our discussions.
4For notation simplicity, two consecutive identical models,
e.g., A18A18, indicate there are two or more consecutive
identical event procedure models.

Time

...

... HplCC1000Spi.dataReady ...

... CC1000SendReceiveP.signalPacketReceived ... CC1000SendReceiveP.Send.send ...

... CC1000SendReceiveP.signalPacketSent ...

Job Flow Job Flow

A A

A

A A A A A AB

B

B

C

C C

Figure 8: Job flow of data forwarding application.

...

... CC1000SendReceiveP.signalPacketReceived ... AMQueueImplP.AMSend.send

... CC1000SendReceiveP.signalPacketReceived ... CC1000SendReceiveP.Send.send ...

Incorrect Job Flow

X
Time

B
2

A A A A CA AB
2

B
1

B
1

Figure 9: An anomalous job flow instance.

codes, it is easy to see that the flag is set because node 1 is
still in the process of sending the data packet. This means
before the packet by the first B18 instance has been sent, an-
other packet arrives unexpectedly, causing the application to
drop the new arrival packet.
This case study shows that via identifying the violation

to the job flow model, T-Morph can substantially help locate
the defect in the source codes that causes accidental packet
loss. Note that it is difficult for other approaches (e.g., [35])
to detect such a defect since they consider only event pro-
cedures, but not their sequences.

6.2 Case study 2: data collection
Even a simple TinyOS application may involve multiple

interrupts to accomplish its functionality. Consider an ap-
plication adapted from Oscilloscope [29], which is also the
motivating example discussed in Section 3. The major log-
ics of this application are implemented via the ADC inter-
rupt (i.e., interrupt number 22). When a sensor reading is
ready upon a periodic request, an ADC interrupt will be is-
sued. As shown in Figure 2, after three sensor readings are
collected, a task will be posted to initialize the sending of
a data packet. This application involves several hardware
interrupts: specifically, the timer timeout interrupt for trig-
gering a periodical reading of a sensor, the ADC interrupt
for obtaining the sensor readings, and the SPI interrupt for
wireless communications. These interrupts cover most event
types a typical application needs to handle.
Similarly to case study 1, T-Morph first runs a simple,

easy-to-verify testing scenario, where the timer timeout pe-
riod is 100ms. We focus on the ADC interrupt since it is
centric to this application (see Step 1 in 4.4). T-Morph iden-
tifies two event-procedure models for the ADC events, one
for reading sensor data and the other for performing Re-
ceived Signal Strength Indicator (RSSI) functionalities. The
RSSI-related model is for wireless communications. We can
let T-Morph filter out its instances since we focus on sensor
readings (see Step 2 in 4.4).
Thus, T-Morph performs a separation-of-concern analysis

to the event-procedure models, and identifies two models,
A22 and B22. Both invoke the function shown in Figure 2.
The difference between them is that B22 also posts a task
to initialize the sending of a packet. This is consistent with
the source codes in Figure 2. T-Morph then finds a job flow
T-Morph with a simple pattern A22A22B22.

Time

Job Flow

... AdcMessageC.Read.readDone

... AdcMessageC.Read.readDone ... AdcMessageC.AMSend.send ...

...

... CC1000SendReceiveP.txWaitForAck

...

... CC1000SendReceiveP.txData

Job Flow Job Flow

X

A A B A A B A A B

A

B

a bab

b

a

Figure 10: A job flow model with interleaving event-
procedure models.

The correctness in the simple testing scenario is then con-
firmed and T-Morph generates the verified models. Then we
decrease the timeout period with a step size 20ms. T-Morph
runs the application for each case to conduct a more com-
plete testing, and checks the application behavior models
against the verified ones. The job flow in these testing runs
is still A22A22B22, which is consistent with that in the ver-
ified models. However, T-Morph identifies a violation of the
interleaving event-procedure models of the job flow. Specif-
ically, as shown in Figure 10, a new model a18, triggered by
the SPI interrupt, interleaves the job flow.
T-Morph can associate a18 with the source codes and al-

lows us to quickly realize its functionality is to transmit the
content of a packet. This unexpected interleaving execution
unveils that the previous packet is still being sent when a
new sensor reading arrives. So we inspect the source codes
that resulting in A22 and B22 to see whether the interleav-
ing parties bear any dependencies. We then observe that
the new sensor reading may pollute the packet content as it
shares the same memory with the sending packet (Line 5 in
Figure 2). The defect (a race condition between the reading
saving codes and packet sending codes) can thus be located.

This case study shows that with a separation-of-concern
mechanism, T-Morph works well to model the application
behaviors, and it can effectively help identify source code
defects caused by subtle interleaving executions of event pro-
cedures and job flows that bear implicit dependencies.

6.3 Case study 3: TYMO routing protocol
A routing protocol is crucial for sensor nodes in a WSN

to transfer packets collaboratively. In this case study, we
describe our experience of applying T-Morph to find a new
bug in TYMO. TYMO is a TinyOS-based implementation
of the DYMO (DYnamic MANET On-demand) routing pro-
tocol [28]. A testing scenario where four nodes (nodes 0
to 3) are reporting packets to a sink (node 4) via a one-
hop communication is constructed. The reporting rate is 2
packets/second. We start our verification at node 3 and let
T-Morph build its execution models.

We focus timer timeout interrupt (i.e., interrupt 16) since
it triggers packet reporting. T-Morph then finds one job flow,
which contains one event-procedure model A16. This is cor-
rect since the timer timeout in TYMO triggers a packet
sending process generally.

To verify the functionality of the event-procedure model,
we increase the value of parameter m, where T-Morph splits
the event-procedure instances into several more detailed mod-
els. Figure 11(a) shows a part of the layered function se-
quence of a typical model, where all involved functions be-
long to the ForwardingEngineM and MHEngineM modules in
TYMO. By showing its source codes, T-Morph allows us to
know that the selectRoute function (vertex 2) is designed

Layer 9

Layer 8

Layer 11

Layer 10

1

2 7 9

4 5 6

3

8

1

2

4 10

3

(a) Part of a valid event procedure model (b) Part of an invalid event procedure at node 0

1 ForwardingEngineM.AMSend.send

2 ForwardingEngineM.RouteSelect.selectRoute

3 MHEngineM.RouteSelect.selectRoute

4 MHEngineM.MHPacket.isForMe

5 MHEngineM.MHPacket.address

6 MHEngineM.RoutingTable.getRoute

7 ForwardingEngineM.PPacket.setPayloadLength

8 ForwardingEngineM.SubPacket.payloadLength

9 ForwardingEngineM.Timer.startOneShot

10 MHEngineM.MHPacket.type

* The format of the names is: Module.Interface.function

Figure 11: Layered function sequences for Case 3

for TYMO to choose a route for sending a packet. It per-
forms the following steps: After successfully determining a
packet is not for itself via two function calls isForMe (vertex
4) and address (vertex 5), it tries to select a route by call-
ing getRoute (vertex 6). If encountering a busy status, it
passes the busy status back so that the packet sending pro-
cess can be deferred by startOneShot (vertex 9). According
to TYMO specification, such an execution process is correct.
T-Morph then obtains the verified models, and check them
against the behaviors of other source sensor nodes.
No violations are reported for sensor nodes 1 and 2. How-

ever, T-Morph finds a violation in node 0, i.e., a new event
procedure model. Figure 11(b) shows a part of its layered
function sequence, which can be compared with the verified
models. We can instantly see that node 0 always determines
that it is the intended destination of a packet by calling is-

ForMe (vertex 4). This leads to calling type (vertex 10), and
it stops the packet sending process prematurely.
We can easily locate why isForMe always returns true for

source node 0: The destination field of a packet is not set
before calling selectRoute. It is left as its default value 0.
This accidentally is the ID of node 0. Hence, the isForMe

function of node 0 always returns true, indicating the packet
is for the node itself. Thus, the packet will not be forwarded.
With the support of T-Morph, we are the first to identify this
bug in the latest release of TinyOS and locate its root cause.

7. FURTHER DISCUSSIONS
Let us first discuss some threats to the validity of our ex-

periments, and the measures we take to address the threats,
as well as some limitations of T-Morph. First, emulation is
a popular way to verify the functionality and performance
of TinyOS applications (e.g. [16]). T-Morph intentionally
relies on emulations, but not real deployments, to capture
the system runtime behaviors. The reasons are as follows.
First, to test TinyOS applications, it generally requires us
to explore a variety of application states (i.e., testing sce-
narios) to hit the trigger conditions of bugs [16][24]. Hence,
it is not cost-effective, if not infeasible, to conduct testing in
real deployment. More importantly, to collect the behaviors
on a real deployment will require the instrumentation of the
target applications. The instrumented codes will inevitably
disturb the behaviors of the target application by influencing
the timing of the application logics, which will destroy the
fidelity of T-Morph. Hence, emulations are a better choice
than real deployment for T-Morph in out experiments.

Another possible threat is the fidelity of the emulation.
T-Morph relies on Avrora [30]. It can provide high fidelity
to the real world: It emulates hardware behaviors and their
interactions with precise timing, and hence supports accu-
rate interrupt preemptions and network communications. T-
Morph can thus explore real-world interleaving executions of
event procedures. Note that another widely-adopted simu-
lator TOSSIM released with TinyOS [29] does not emulate
hardware accurately, and hence cannot be an alternative.

The experiments are conducted in small-scale networks.
But T-Morph does not limit itself to small-scale networks.
T-Morph focuses on one sensor node to obtain the applica-
tion behavior models. This mechanism is not influenced by
the network size. Then, the verified models can automat-
ically verify the correctness of the application running on
any number of nodes.

Finally, our experiments employs short-term executions to
obtain verified models and check them against long-term ex-
ecutions. Nevertheless, there is actually no sharp conceptual
line between short-term executions and long-term ones. Any
execution can be used to identify verified models, although
it is surely easier to do so in short-term ones.

It is also important to identify the limitations of T-Morph.
First, T-Morph is specifically tailored for TinyOS applica-
tions. There are, however, several other operating systems
for WSNs, for example, Contiki [7], which T-Morph does not
currently support. However, the general idea of mining the
application behavior models from execution process, and
linking them back to the source codes for verification and
fault localization, can be applied to these systems. Second,
T-Morph resorts to human inspection to verify the correct-
ness of an application. We believe bug localization will in-
evitably involve human efforts. The aim of T-Morph is then
to reduce such efforts.

8. CONCLUSION
TinyOS applications are fault-prone due to the concep-

tual gap of the WSN developers towards understanding the
complicated execution processes of their static codes. We
observe that system failures are typically triggered by un-
known execution patterns of the source codes. This paper
presents an effective tool, T-Morph, for mining, visualizing,
and verifying the execution patterns of WSN applications.
T-Morph features the dynamic execution process of a TinyOS
application with sequences of event procedures and layered
function calls. Through a user-friendly graphical represen-
tation, these models can be linked to the source codes di-
rectly. Thus, T-Morph can provide substantial help to devel-
opers to understand and verify how their static source codes
are dynamically executed. We apply T-Morph to verify sev-
eral representative TinyOS applications. Our experiments
demonstrate that T-Morph can greatly save manual efforts
in troubleshooting their TinyOS applications and eliminat-
ing software design defects before real-world deployment.

Acknowledgements
This work was substantially supported by the National Nat-
ural Science Foundation of China (Project No. 61100077),
the National Basic Research Program of China (973 Project
No. 2011CB302603), the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project
Nos. CUHK 415311 and N CUHK405/11). J. Liu’s work
was supported by a Canadian NSERC Discovery Grant.

9. REFERENCES
[1] G. Ammons, R. Bodik, and J. Larus. Mining

specification. In Proc. of the ACM PoPL, pages 4–16,
2002.

[2] G. Barrenetxea, F. Ingelrest, G. Schaefer, and
M. Vetterli. The hitchhiker’s guide to successful
wireless sensor network deployments. In Proc. of the
ACM SenSys, pages 43–56, 2008.

[3] J. Burnim and K. Sen. Asserting and checking
determinism for multithreaded programs. In Proc. of
the ACM FSE, pages 3–12, 2009.

[4] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse,
and L. Luo. Declarative tracepoints: A programmable
and application independent debugging system for
wireless sensor networks. In Proc. of the ACM SenSys,
pages 85–98, Nov. 2008.

[5] Y. Chen, O. Gnawali, M. Kazandjieva, P. Levis, and
J. Regehr. Surviving sensor network software faults. In
Proc. of the ACM SOSP, pages 235–246, 2009.

[6] N. Cooprider, W. Archer, E. Eide, D. Gay, and
J. Regehr. Efficient memory safety for TinyOS. In
Proc. of the ACM SenSys, pages 205–218, 2007.

[7] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. In Proc. of the IEEE LCN.

[8] P. G. Frankl and E. J. Weyuker. An applicable family
of data flow testing criteria. IEEE Transactions on
Software Engineering, 14(10):1483–1498, Oct. 1988.

[9] D. Gay, M. Welsh, P. Levis, E. Brewer, R. von
Behren, and D. Culler. The nesC language: A holistic
approach to networked embedded systems. In Proc. of
PLDI, pages 1–11, 2003.

[10] V. Kahlon, N. Sinha, Y. Zhang, and E. Kruus. Static
data race detection for concurrent programs with
asynchronous calls. In Proc. of the ACM FSE, pages
13–22, 2009.

[11] J. Kahn, R. Katz, and K. Pister. Next century
challenges: Mobile networking for “smart dust”. In
Proc. of the ACM MOBICOM, pages 271–278, 1999.

[12] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F.
Abdelzaher, and J. Han. Dustminer: Troubleshooting
interactive complexity bugs in sensor networks. In
Proc. of the ACM SenSys, pages 99–112, 2008.

[13] N. Kothari, T. Millstein, and R. Govindan. Deriving
state machines from tinyos programs using symbolic
execution. In Proc. of the ACM/IEEE IPSN, pages
271–282, 2008.

[14] V. Krunic, E. Trumpler, and R. Han. NodeMD:
Diagnosing node-level faults in remote wireless sensor
systems. In Proc. of MobiSys, pages 43–56, June 2007.

[15] S. Kumar. Specification mining in concurrent and
distributed systems. In Proc. of the ACM/IEEE ICSE,
pages 1086–1089, 2011.

[16] Z. Lai, S. C. Cheung, and W. K. Chan. Inter-context
control-flow and data-flow test adequacy criteria for
nesc applications. In Proc. of the ACM FSE, pages
94–104, Nov. 2008.

[17] K. Langendoen and A. B. O. Visser. Murphy loves
potatoes: Experiences from a pilot sensor network
deployment in precision agriculture. In Proc. of the
IEEE IPDPS, Apr. 2006.

[18] Y. Lei and R. H. Carver. Reachability testing of
concurrent programs. IEEE Transactions on Software
Engineering, 32(6):382–403, June 2006.

[19] P. Levis and D. Gay. TinyOS Programming.
Cambridge University Press, 2009.

[20] P. Li and J. Regehr. T-Check: Bug finding for sensor
networks. In Proc. of the ACM/IEEE IPSN, pages
174–185, 2010.

[21] D. Lo and S. Maoz. Mining scenario-based triggers
and effects. In Proc. of the IEEE/ACM ASE, pages
109–118, 2008.

[22] D. Lo, L. Mariani, and M. Pezze. Automatic steering
of behavioral model inference. In Proc. of the ACM
FSE, pages 345–354, 2009.

[23] ON World Inc. Industrial wireless sensor networks: A
market dynamics report. Mar. 2010.

[24] J. Regehr. Random testing of interrupt-driven
software. In Proc. of the ACM EMSOFT, pages
290–298, Sept. 2005.

[25] P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah,
and A. Vahdat. Pip: Detecting the unexpected in
distributed systems. In Proc. of the USENIX NSDI,
2006.

[26] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weisez,
S. Kowalewskiz, and K. Wehrle. KleeNet: Discovering
insidious interaction bugs in wireless sensor networks
before deployment. In Proc. of the ACM/IEEE IPSN,
pages 186–196, 2010.

[27] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and
K. Whitehouse. Macrodebugging: Global views of
distributed program execution. In Proc. of the ACM
Sensys, pages 141–154, 2009.

[28] R. Thouvenin. Implementing and evaluating the
dynamic manet on-demand protocol in wireless sensor
networks. Master Thesis, University of Aarhus, 2007.

[29] TinyOS Home Page. http://www.tinyos.net.

[30] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable
sensor network simulation with precise timing. In
Proc. of the IEEE IPSN, pages 477–482, May 2005.

[31] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring
sensor network. In Proc. of the USENIX OSDI, pages
381–396, Seattle, USA, Nov. 2006.

[32] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim,
J. Jeong, J. Hui, P. Dutta, and D. Culler. Marionette:
Using RPC for interactive development and debugging
of wireless embedded networks. In Proc of the
ACM/IEEE IPSN, pages 416–423, Apr. 2006.

[33] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for GUI-based software
applications. ACM Transactions on Software
Engineering and Methodology, 16(1), Feb. 2007.

[34] J. Yang, M. Soffa, L. Selavo, and K. Whitehouse.
Clairvoyant: A comprehensive source-level debugger
for wireless sensor networks. In Proc. of the ACM
SenSys, pages 189–203, 2007.

[35] Y. Zhou, X. Chen, M. Lyu, and J. Liu. Sentomist:
Unveiling transient sensor network bugs via symptom
mining. In Proc. of the IEEE ICDCS, pages 784–794,
2010.

