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Abstract—With the increasing popularity of cloud com-
puting as a solution for building high-quality applications
on distributed components, efficiently evaluating user-side
quality of cloud components becomes an urgent and crucial
research problem. However, invoking all the available cloud
components from user-side for evaluation purpose is expen-
sive and impractical. To address this critical challenge, we
propose a neighborhood-based approach, called CloudPred,
for collaborative and personalized quality prediction of cloud
components. CloudPred is enhanced by feature modeling on
both users and components. Our approach CloudPred requires
no additional invocation of cloud components on behalf of the
cloud application designers. The extensive experimental results
show that CloudPred achieves higher QoS prediction accuracy
than other competing methods. We also publicly release our
large-scale QoS dataset for future related research in cloud
computing.
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I. INTRODUCTION

Cloud computing [1] is Internet-based computing,
whereby shared resources, software, and information are
provided to computers and other devices on demand. With
the exponential growth of cloud computing as a solution
for providing flexible computing resources, more and more
cloud applications emerge in recent years. The systems
architecture of the software systems involved in the delivery
of cloud computing (named as cloud applications in this
paper), typically involves multiple cloud components com-
municating with each other over application programming
interfaces, usually Web services [2]. How to build high-
quality cloud applications becomes an urgent and crucial
research problem.

In the cloud environment, designers of cloud applications,
denoted as component users, can choose from a broad
pool of cloud components when creating cloud applica-
tions. These cloud components are usually invoked remotely
through communication links. Quality of the cloud applica-
tions is greatly influenced by the quality of communication
links and the distributed cloud components. To build a
high-quality cloud application, non-functional Quality-of-
Service (QoS) performance of cloud components becomes

an important factor for application designers when making
component selection [3]. Moreover, for the existing cloud
applications, by replacing low quality components with
better ones, the overall quality of cloud applications can be
improved.

In recent year, a number of research tasks have been
focused on optimal component selection [4], [5] and recom-
mendation [6] in distributed systems or service computing.
Typically, evaluations on the component candidates are
required to obtain their QoS values. In cloud environment,
due to their various locations and communication links,
different users will have different QoS experiences when
invoking even the same cloud component. Personalized
QoS evaluation is required for each user at the user-side.
However, a cloud component user in general only invoked
a limited number of cloud components in the past and only
received QoS performance information of these invoked
cloud components. In practice, therefore, conducting real-
world evaluations on cloud components to obtain their QoS
information from the users’ perspective is quite difficult,
because:

∙ Executing invocations for evaluation purposes becomes
too expensive, since cloud providers who maintain and
host cloud components (e.g., Amazon EC21, Amazon
S32, etc.) may charge for invocations.

∙ With the growing number of available cloud compo-
nents over the Internet, it is time-consuming and im-
practical to conduct QoS evaluations on all accessible
cloud components.

∙ Component users need to focus on building cloud
applications on top of various cloud components. While
conducting evaluation on a large number of component
candidates would introduce extra cost and effort, and
sharply slow down the application development pro-
gresses.

Based on the above analysis, it is crucial for the cloud
platform to deliver a personalized QoS information service

1http://aws.amazon.com/ec2
2http://aws.amazon.com/s3
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to the application designers for cloud component evaluation.
In order to provide personalized QoS values on 𝑚 cloud
components for 𝑛 users by evaluation, at least 𝑛 × 𝑚
invocations need to be executed, which is almost impossible
when 𝑛 and 𝑚 is very large. However, without sufficient and
accurate personalized QoS values of cloud components, it is
difficult for the application designers to select optimal cloud
component for building high-quality cloud applications. It is
an urgent task for the cloud platform providers to develop an
efficient and personalized prediction approach for delivering
the QoS information service to cloud application designers.

To address this critical challenge, we propose a
neighborhood-based approach, called CloudPred, for person-
alized QoS prediction of cloud components. CloudPred is
enhanced by feature modeling on both users and compo-
nents. The idea of CloudPred is that users sharing similar
characteristics (e.g., location, bandwidth, etc.) would receive
similar QoS usage experiences on the same component.
The QoS value of cloud component 𝑐 observed by user 𝑢
can be predicted by exploring the QoS experiences from
similar users of 𝑢. A user is similar to 𝑢 if they share
similar characteristics. The characteristics of different users
can be extracted from their QoS experiences on different
components by performing non-negative matrix factorization
(NMF). By sharing local QoS experience among users, our
approach CloudPred can effectively predict the QoS value
of a cloud component 𝑐 even if the current user 𝑢 has
never invoked the component 𝑐 before. The experimental
results show that compared with other well-known collabora-
tive prediction approaches, CloudPred achieves higher QoS
prediction accuracy of cloud components. Since CloudPred
can precisely characterize users features (will be introduced
in Section III-B), even if some users have few local QoS
information, CloudPred can still achieve high prediction
accuracy.

In summary, this paper makes the following contributions:

1) We formally identify the research problem of QoS
value prediction in cloud computing and propose a
novel neighborhood-based approach, named Cloud-
Pred, for personalized QoS value prediction of cloud
components. CloudPred learns the characteristics of
users by non-negative matrix factorization (NMF)
and explores QoS experiences from similar users
to achieve high QoS value prediction accuracy. We
consider CloudPred as the first QoS value prediction
approach in cloud computing literature.

2) We conduct large-scale experiments to study the pre-
diction accuracy of our CloudPred compared with
other approaches. The experimental results show the
effectiveness of our approach. Moreover, we also
publicly release our large-scale QoS dataset3 for future
research.

3http://www.wsdream.net
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Figure 1. System Architecture

The remainder of this paper is organized as follows: Sec-
tion II describes the collaborative QoS framework in cloud
environment. Section III presents our CloudPred approach
in detail. Section IV introduces the experimental results.
Section V discusses related work and Section VI concludes
the paper.

II. COLLABORATIVE FRAMEWORK IN CLOUD

Figure 1 shows the system architecture in cloud comput-
ing. In a cloud environment, the cloud provider holds a large
number of distributed cloud components (e.g. databases,
servers, Web services, etc.), which can be provided to
designers for developing various cloud applications. The
cloud application designers, called component users in this
paper, are located in different geographic and network
environments. Since users invoke cloud components via
different communication links, their usage experiences on
cloud components are diverse in several QoS properties
including response-time, throughput, etc. In order to provide
personalized quality information of different components
to application designers for optimal component selection,
personalized QoS value prediction is an essential service of
a cloud provider.

Within the cloud platform provided by a cloud provider,
there are several modules implemented for managing the
cloud components. Examples of management modules in-
clude Task Scheduler, which is responsible for task schedul-
ing, SLA Wrapper, which is responsible for service level
negotiation between cloud provider and users, etc. In this
paper, we focus on the design of QoS Monitor, which is
responsible for monitoring the QoS performance of cloud
components from the users’ perspective. The QoS Monitor
consists of two sub-units: Collector, which is used to collect
QoS usage information from various component users, and
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Predictor, which is supposed to provide personalized QoS
value prediction for different component users.

The idea of our approach is to share local cloud com-
ponent usage experience from different component users,
to combine this local information to get a global QoS
information of all components, and to make personalized
QoS value prediction based on both global and local in-
formation. As shown in Figure 1, each component user
keeps local records of QoS usage experiences on cloud
components. Since cloud applications are running on an
identical cloud platform, QoS information can be collected
by an identical interface on the platform side. If a component
user would like to get personalized QoS information service
from the cloud provider, authorization should be given to
Collector for accessing its local QoS records. Collector then
collect those local QoS records from different component
users. Based on the collected QoS information, Predictor
can perform personalized QoS value prediction and forward
the prediction results to component users for optimizing
the design of cloud applications. The detailed collaborative
prediction approach will be presented in Section III.

III. COLLABORATIVE QOS PREDICTION

We first formally describe the QoS value prediction
problem on cloud components in Section III-A. Then we
learn the user-specific and component-specific features by
running latent features learning algorithm in Section III-B.
Based on the latent features, similarities between users and
components are calculated in Section III-C. Finally, the
missing QoS values are predicted by applying the proposed
algorithm CloudPred in Section III-D.

A. Problem Description

Let us first consider a typical toy example in Figure 2(a).
In this bipartite graph 𝐺 = (𝑈 ∪ 𝐶,𝐸), its vertices are
divided into two disjoint sets 𝑈 and 𝐶 such that each
edge in 𝐸 connects a vertex in 𝑈 and one in 𝐶. Let
𝑈 = {𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢4} be the set of component users,
𝐶 = {𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐6} denote the set of cloud components,
and 𝐸 (solid lines) represent the set of invocations between
𝑈 and 𝐶. This bipartite graph 𝐺 is modeled as a weighted
directed graph. Given a pair (𝑖, 𝑗), 𝑢𝑖 ∈ 𝑈 and 𝑐𝑗 ∈ 𝐶, edge
𝑒𝑖𝑗 is included in 𝐸 if user 𝑢𝑖 has invoked component 𝑐𝑗
before. The weight 𝑤𝑖𝑗 on edge 𝑒𝑖𝑗 corresponds to the QoS
value (e.g., response-time in this example) of that invocation.
Given the set 𝐸, our task is to effectively predict the weight
of potential invocations (the broken lines).

The process of cloud component QoS value prediction
is illustrated by a user-component matrix as shown in
Figure 2(b), in which each entry denotes an observed weight
in Figure 2(a). The problem we study in this paper is then
how to precisely predict the missing entries in the user-
component matrix based on the existing entries. Once the
missing entries are accurately predicted, we can provide

users with personalized QoS information, which is valuable
for automatic component ranking, component selection, task
scheduling, etc.

We observe that although about half of the entries are
already known in Figure 2(b), every pair of users still have
very few commonly invoked components (e.g., 𝑢1 and 𝑢2
only invoke 𝑐1 in common, 𝑢3 and 𝑢4 have no commonly
invoked components even if together they invoke all the
six components). Since the similarity between two users
are calculated by comparing their obtained QoS values
on common components, the problem of few common
components observed above makes it extremely difficult
to precisely calculate similarity between users. Motivated
by latent factor model [7], we therefore first factorize
the sparse user-component matrix and then use 𝑉 𝑇𝐻 to
approximate the original matrix, where the low-dimensional
matrix 𝑉 denotes the user latent feature space, and the low-
dimensional matrix 𝐻 represents the low-dimensional item
latent feature space. The rows in 𝑉 and𝐻 represent different
features. Each column in 𝑉 represents an user and each
column in 𝐻 denotes a component. The value of a entry in
the matrices indicates how the associated feature applies to
the corresponding user or component. In this example we
use four dimensions to perform the matrix factorization and
obtain:

𝑉 =

⎡
⎢⎢⎣
0.32 0.15 0.31 0.33
0.23 0.15 0.26 0.28
0.30 0.20 0.24 0.34
0.47 0.23 0.59 0.21

⎤
⎥⎥⎦ ,

𝐻 =

⎡
⎢⎢⎣
0.73 0.35 0.31 0.26 0.32 0.42
0.60 0.31 0.27 0.22 0.28 0.36
0.69 0.37 0.32 0.27 0.33 0.45
0.95 0.46 0.42 0.35 0.41 0.54

⎤
⎥⎥⎦ ,

where columns in 𝑉 and 𝐻 denote the latent feature vectors
of users and components respectively.

Note that 𝑉 and 𝐻 are dense matrices with all entries
available. Then we calculate the similarity between users
and components using 4-dimensional matrices 𝑉 and 𝐻 re-
spectively. Therefore, all the missing values can be predicted
by employing neighborhood-based collaborative method, as
shown in Figure 2(c).

Now we formally define the problem of cloud component
QoS value prediction as follows: Given a set of users and
a set of components, predict the missing QoS value of
components when invoked by users based on existing QoS
values. More precisely:

Let 𝑈 be the set of 𝑚 users and 𝐶 be the set of
𝑛 components. A QoS element is a triplet (𝑖, 𝑗, 𝑞𝑖𝑗)
representing the observed quality of component 𝑐𝑗
by user 𝑢𝑖, where 𝑖 ∈ {1, ⋅ ⋅ ⋅ ,𝑚}, 𝑗 ∈ {1, ⋅ ⋅ ⋅ , 𝑛}
and 𝑞𝑖𝑗 ∈ ℝ

𝑘 is a 𝑘 dimension vector representing
the QoS values of 𝑘𝑡ℎ criteria. Let Ω be the set
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Figure 2. A Toy Example for QoS Prediction

of all pairs {𝑖, 𝑗} and Λ be the set of all known
pairs (𝑖, 𝑗) in Ω. Consider a matrix 𝑊 ∈ ℝ

𝑚×𝑛

with each entry 𝑤𝑖𝑗 representing the observed
𝑘𝑡ℎ criterion value of component 𝑐𝑗 by user 𝑢𝑖.
Then the missing entries {𝑤𝑖𝑗 ∣(𝑖, 𝑗) ∈ Ω − Λ}
should be predicted based on the existing entries
{𝑤𝑖𝑗 ∣(𝑖, 𝑗) ∈ Λ}.

Typically the QoS values can be integers from a given
range (e.g. {0, 1, 2, 3}) or real numbers of a close interval
(e.g. [−20, 20]). Without loss of generality, we can map the
QoS values to the interval [0, 1] using the function 𝑓(𝑥) =
(𝑥−𝑤𝑚𝑖𝑛)/(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛), where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are the
maximum and minimum QoS values respectively.

B. Latent Features Learning

In order to learn the features of the users and components,
we employ matrix factorization to fit a factor model to the
user-component matrix. This method focuses on filtering
the user-component QoS value matrix using low-rank ap-
proximation. In other words, we factorize the QoS matrix
into two low-rank matrices 𝑉 and 𝐻 . The idea behind the
factor model is to derive a high-quality low-dimensional
feature representation of users and components based on
analyzing the user-component matrix. The premise behind
a low-dimensional factor model is that there is only a small
number of factors influencing QoS usage experiences, and
that a user’s QoS usage experience vector is determined by
how each factor applies to that user and the items.

Consider the matrix 𝑊 ∈ ℝ
𝑚×𝑛 consisting of 𝑚 users

and 𝑛 components. Let 𝑉 ∈ ℝ
𝑙×𝑚 and 𝐻 ∈ ℝ

𝑙×𝑛 be the
latent user and component feature matrices. Each column in
𝑉 represents the 𝑙-dimensional user-specific latent feature
vector of a user and each column in 𝐻 represents the 𝑙-
dimensional component-specific latent feature vector of a
component. We employ an approximating matrix �̃� =
𝑉 𝑇𝐻 to fit the user-item matrix 𝑊 :

𝑤𝑖𝑗 ≈ �̃�𝑖𝑗 =

𝑙∑
𝑘=1

𝑣𝑘𝑖ℎ𝑘𝑗 , (1)

The rank 𝑙 of the factorization is generally chosen so that
(𝑚 + 𝑛)𝑙 < 𝑚𝑛, since 𝑉 and 𝐻 are low-rank feature

representations [8]. The product 𝑉 𝑇𝐻 can be regarded as a
compressed form of the data in 𝑊 .

Note that the low-dimensional matrices 𝑉 and 𝐻 are
unknown and need to be learned from the obtained QoS
values in user-component matrix 𝑊 . In order to optimize
the matrix factorization, we first construct a cost function to
evaluate the quality of approximation. The distance between
two non-negative matrices is usually employed to define the
cost function. One useful measure of the matrices’ distance
is the Euclidean distance:

𝐹 (𝑊, �̃� ) = ∥𝑊 − �̃�∥2𝐹 =
∑
𝑖𝑗

(𝑤𝑖𝑗 − �̃�𝑖𝑗)
2, (2)

where ∥ ⋅ ∥2𝐹 denotes the Frobenius norm.
In this paper, we conduct matrix factorization as solving

an optimization problem by employing the optimized objec-
tive function in [8]:

min
𝑉,𝐻

𝑓(𝑉,𝐻) =
∑

(𝑖,𝑗)∈Λ

[�̃�𝑖𝑗 − 𝑤𝑖𝑗 log �̃�𝑖𝑗 ],

𝑠.𝑡. �̃�𝑖,𝑗 =
𝑙∑

𝑘=1

𝑣𝑘𝑖ℎ𝑘𝑗 ,

𝑉 ≥ 0,

𝐻 ≥ 0. (3)

where 𝑉,𝐻 ≥ 0 is the non-negativity constraints leading to
allow only additive combination of features.

In order to minimize the objective function in Eq. (3), we
apply incremental gradient descent method to find a local
minimum of 𝑓(𝑉,𝐻), where one gradient step intends to
decrease the square of prediction error of only one rating,
that is, �̃�𝑖𝑗 − 𝑤𝑖𝑗 log �̃�𝑖𝑗 . We update the 𝑉 and 𝐻 in the
direction opposite of the gradient in each iteration:

𝑣𝑖𝑗 = 𝑣𝑖𝑗
∑
𝑘

𝑤𝑖𝑘

�̃�𝑖𝑘
ℎ𝑗𝑘, (4)

ℎ𝑖𝑗 = ℎ𝑖𝑗
∑
𝑘

𝑤𝑖𝑘

�̃�𝑖𝑘
𝑣𝑗𝑘, (5)

𝑣𝑖𝑗 =
𝑣𝑖𝑗∑
𝑘 𝑣𝑘𝑗

, (6)

ℎ𝑖𝑗 =
ℎ𝑖𝑗∑
𝑘 ℎ𝑘𝑗

. (7)

4
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Algorithm 1 shows the iterative process for latent feature
learning. We first initialize matrices 𝑉 and 𝐻 with small
random non-negative values. Iteration of the above update
rules converges to a local minimum of the objective function
given in Eq. (3).

Algorithm 1: Latent Features Learning Algorithm
Input: 𝑊 , 𝑙
Output: 𝑉 , 𝐻
Initialize 𝑉 ∈ ℝ

𝑙×𝑚 and 𝐻 ∈ ℝ
𝑙×𝑛 with small random1

numbers;
repeat2

for all (𝑖, 𝑗) ∈ Λ do3
�̃�𝑖𝑗 =

∑
𝑘 𝑣𝑘𝑖ℎ𝑘𝑗 ;4

end5
for all (𝑖, 𝑗) ∈ Λ do6

𝑣𝑖𝑗 ← 𝑣𝑖𝑗
∑

𝑘
𝑤𝑖𝑘
�̃�𝑖𝑘

ℎ𝑗𝑘;7
ℎ𝑖𝑗 ← ℎ𝑖𝑗

∑
𝑘

𝑤𝑖𝑘
�̃�𝑖𝑘

𝑣𝑗𝑘;8

𝑣𝑖𝑗 =
𝑣𝑖𝑗∑
𝑘 𝑣𝑘𝑗

;9

ℎ𝑖𝑗 =
ℎ𝑖𝑗∑
𝑘 ℎ𝑘𝑗

;10
end11
for all (𝑖, 𝑗) ∈ Λ do12

�̃�𝑖𝑗 =
∑

𝑘 𝑣𝑘𝑖ℎ𝑘𝑗 ;13
end14

until Converge ;15

C. Similarity Computation

Given the latent user and component feature matrices
𝑉 and 𝐻 , we can calculate the neighborhood similarities
between different users and components by employing Pear-
son Correlation Coefficient (PCC) [9]. PCC is widely used
in memory-based recommendation systems for similarity
computation. Due to the high accuracy, we adopt PCC in this
paper for the neighborhood similarity computation on both
sets of users and components. The similarity between two
users 𝑢𝑖 and 𝑢𝑗 is defined by performing PCC computation
on their 𝑙-dimensional latent feature vectors 𝑉𝑖 and 𝑉𝑗 with
the following equation:

𝑆(𝑢𝑖, 𝑢𝑗) =

∑𝑙
𝑘=1(𝑣𝑖𝑘 − 𝑣𝑖)(𝑣𝑗𝑘 − 𝑣𝑗)√∑𝑙

𝑘=1(𝑣𝑖𝑘 − 𝑣𝑖)2
√∑𝑙

𝑘=1(𝑣𝑗𝑘 − 𝑣𝑗)2
, (8)

where 𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, ⋅ ⋅ ⋅ , 𝑣𝑖𝑙) is the latent feature vector
of user 𝑢𝑖 and 𝑣𝑖𝑘 is the weight on the 𝑘𝑡ℎ feature. 𝑣𝑖
is the average weight on 𝑙-dimensional latent features for
user 𝑢𝑖. The similarity between two users 𝑆(𝑖, 𝑗) falls into
the interval [−1, 1], where a larger value indicates higher
similarity.

Similar to the user similarity computation, we also employ
PCC to compute the similarity between component 𝑐𝑖 and
item 𝑐𝑗 as following:

𝑆(𝑐𝑖, 𝑐𝑗) =

∑𝑙
𝑘=1(ℎ𝑖𝑘 − ℎ𝑖)(ℎ𝑗𝑘 − ℎ𝑗)√∑𝑙

𝑘=1(ℎ𝑖𝑘 − ℎ𝑖)2
√∑𝑙

𝑘=1(ℎ𝑗𝑘 − ℎ𝑗)2
, (9)

where ℎ𝑖 = (ℎ𝑖1, ℎ𝑖2, ⋅ ⋅ ⋅ , ℎ𝑖𝑙) is the latent feature vector
of component 𝑐𝑖 and ℎ𝑖𝑘 is the weights on the 𝑘𝑡ℎ feature.
ℎ𝑖 is the average weight on 𝑙-dimensional latent features for
component 𝑐𝑖.

D. Missing QoS Value Prediction

After computing the similarities between users, we can
identify similar neighbors to the current user by ordering
similarity values. Note that PCC value falls into the interval
[−1, 1], where a positive value means similar and a negative
value denotes dissimilar. In practice, QoS usage experience
of less similar or dissimilar users may greatly decrease the
prediction accuracy. In this paper, we exclude those users
with negative PCC values from the similar neighbor set and
only employ the QoS usage experiences of users with Top-K
largest PCC values for predicting QoS value of the current
user. We refer to the set of Top-K similar users for user 𝑢𝑖
as Ψ𝑖, which is defined as:

Ψ𝑖 = {𝑢𝑘∣𝑆(𝑢𝑖, 𝑢𝑘) > 0, 𝑟𝑎𝑛𝑘𝑖(𝑘) ≤ 𝐾, 𝑘 ∕= 𝑖}, (10)

where 𝑟𝑎𝑛𝑘𝑖(𝑘) is the ranking position of user 𝑢𝑘 in the
similarity list of user 𝑢𝑖, and 𝐾 denotes the size of set Ψ𝑖.

Similarly, a set of Top-K similar components for compo-
nent 𝑐𝑗 can be denote as Φ𝑗 by:

Φ𝑗 = {𝑐𝑘∣𝑆(𝑐𝑗 , 𝑐𝑘) > 0, 𝑟𝑎𝑛𝑘𝑝(𝑘) ≤ 𝐾, 𝑘 ∕= 𝑗}, (11)

where 𝑟𝑎𝑛𝑘𝑗(𝑘) is the ranking position of component 𝑐𝑘 in
the similarity list of component 𝑐𝑗 , and 𝐾 denotes the size
of set Φ𝑗 .

To predict the missing entry 𝑤𝑖𝑗 in the user-component
matrix, user-based approaches employ the values of entries
from Top-K similar users as follows:

𝑤𝑖𝑗 = 𝑤𝑖 +
∑
𝑘∈Ψ𝑖

𝑆(𝑢𝑖, 𝑢𝑘)∑
𝑎∈Ψ𝑖

𝑆(𝑢𝑖, 𝑢𝑎)
(𝑤𝑘𝑗 − 𝑤𝑘), (12)

where 𝑤𝑖 and 𝑤𝑘 are the average observed QoS values of
different components by users 𝑢𝑖 and 𝑢𝑘 respectively.

For component-based approaches, entry values of Top-K
similar components are employed for predicting the missing
entry 𝑤𝑖𝑗 in the similar way:

𝑤𝑖𝑗 = 𝑤𝑗 +
∑
𝑘∈Φ𝑗

𝑆(𝑖𝑗 , 𝑖𝑘)∑
𝑎∈Φ𝑗

𝑆(𝑖𝑗 , 𝑖𝑎)
(𝑤𝑖𝑘 − 𝑤𝑘), (13)

where 𝑤𝑗 and 𝑤𝑘 are the average available QoS values of
component 𝑐𝑗 and 𝑐𝑘 by different users respectively.

In user-component-based approaches, the predicted values
in Eq. (12) and Eq. (13) are both employed for more precise
prediction in the following equation:

𝑤∗
𝑖𝑗 = 𝜆× 𝑤𝑢

𝑖𝑗 + (1− 𝜆)× 𝑤𝑐
𝑖𝑗 , (14)

where 𝑤𝑢
𝑖𝑗 denotes the predicted value by user-based ap-

proach and 𝑤𝑐
𝑖𝑗 denotes the predicted value by component-

based approach. The parameter 𝜆 controls how much the
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hybrid prediction results rely on user-based approach or
component-based approach. We summarize the proposed
algorithm in Algorithm 2.

Algorithm 2: CloudPred Prediction Algorithm
Input: 𝑊 , 𝑙, 𝜆
Output: 𝑊 ∗

Learn 𝑉 and 𝐻 by applying Algorithm 1 on 𝑊 ;1
for all (𝑢𝑖, 𝑢𝑗) ∈ 𝑈 × 𝑈 do2

calculate the similarity 𝑆(𝑢𝑖, 𝑢𝑗) by Eq. (8);3
end4
for all (𝑐𝑖, 𝑐𝑗) ∈ 𝐶 × 𝐶 do5

calculate the similarity 𝑆(𝑐𝑖, 𝑐𝑗) by Eq. (9);6
end7
for all (𝑖, 𝑗) ∈ Λ do8

construct similar user set Ψ𝑖 by Eq. (10);9
construct similar component set Φ𝑗 by Eq. (11);10

end11
for all (𝑖, 𝑗) ∈ Ω− Λ do12

calculate 𝑤𝑢
𝑖𝑗 by Eq. (12);13

calculate 𝑤𝑖
𝑖𝑗 by Eq. (13);14

𝑤∗
𝑖𝑗 = 𝜆× 𝑤𝑢

𝑖𝑗 + (1− 𝜆)× 𝑤𝑐
𝑖𝑗 ;15

end16

IV. EXPERIMENTS

In this section, in order to show the prediction quality
improvements of our proposed approach, we conduct several
experiments to compare our approach with several state-of-
the-art collaborative filtering prediction methods.

In the following, Section IV-A gives the description of our
experimental dataset, Section IV-B defines the evaluation
metrics, Section IV-C compares the prediction quality of
our approach with some other methods, and Section IV-D,
Section IV-E, and Section IV-F study the impact of training
data density, Top-K, and dimensionality, respectively.

A. Dataset Description

In real world, invoking thousands of commercial cloud
components for large-scale experiments is very expensive.
In order to evaluate the prediction quality of our proposed
approach, we conduct experiments on our Web service QoS
dataset [10]. Web service, a kind of cloud component,
can be integrated into cloud applications for accessing
information or computing service from a remote system.
The Web service QoS dataset includes QoS performance
of 5,825 openly-accessible real-world Web services from 73
countries. The QoS values are observed by 339 distributed
computers located in 30 countries from PlanetLab4, which is
a distributed test-bed consisting of hundreds of computers all
over the world. In our experiment, each of the 339 computers
keeps invocation records of all the 5,825 Web services by
sending null operating requests to capture the characteristics
of communication links. Totally 1,974,675 QoS performance

4http://www.planet-lab.org
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Figure 3. Value Distributions

Table I
STATISTICS OF WS QOS DATASET

Statistics Response-Time Throughput

Scale 1-20s 1-1000kbps
Mean 0.910s 47.386kbps

Num. of Users 339 339
Num. of Web Services 5,825 5,825

Num. of Records 1,974,675 1,974,675

results are collected. Each invocation record is a 𝑘 dimension
vector representing the QoS values of 𝑘 criteria. We then
extract a set of 339×5825 user-component matrices, each
of which stands for a particular QoS property, from the
QoS invocation records. For simplicity, we use two matrices,
which represent response-time and throughput QoS criteria
respectively, for experimental evaluation in this paper. With-
out loss of generality, our approach can be easily extended
to include more QoS criteria.

The statistics of Web service QoS dataset are summarized
in Table I. Response-time and throughput are within the
range 0-20 seconds and 0-1000 kbps respectively. The means
of response-time and throughput are 0.910 seconds and
47.386 kbps respectively. Figure 3 shows the distributions
of response-time and throughput. Most of the response-
time values are between 0.1-0.8 seconds and most of the
throughput values are between 5-40 kbps.

B. Metrics

We assess the prediction quality of our proposed approach
in comparison with other methods by computing Mean Ab-
solute Error (MAE) and Root Mean Squared Error (RMSE).
The metric MAE is defined as:

𝑀𝐴𝐸 =

∑
𝑖,𝑗 ∣𝑤𝑖𝑗 − 𝑤∗

𝑖𝑗 ∣
𝑁

, (15)

and RMSE is defined as:

𝑅𝑀𝑆𝐸 =

√∑
𝑖,𝑗(𝑤𝑖𝑗 − 𝑤∗

𝑖𝑗)
2

𝑁
, (16)

where 𝑤𝑖𝑗 is the QoS value of Web service 𝑐𝑗 observed by
user 𝑢𝑖, 𝑤∗

𝑖𝑗 denotes the QoS value of Web service 𝑐𝑗 would
be observed by user 𝑢𝑖 as predicted by a method, and 𝑁 is
the number of predicted QoS values.
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C. Performance Comparison

In this section, we compare the prediction accuracy of
our proposed approach CloudPred with some state-of-the-
art approaches:

1) UPCC (User-based collaborative filtering method us-
ing Pearson Correlation Coefficient): this method em-
ploys PCC to calculate similarities between users and
predicts QoS value based on similar users [11], [12].

2) IPCC (Item-based collaborative filtering method using
Pearson Correlation Coefficient): this method employs
PCC to calculate similarities between Web services
and predicts QoS value based on similar items (item
refers to component in this paper) [9].

3) UIPCC (User-item-based collaborative filtering
method using Pearson Correlation Coefficient): this
method is proposed by Ma et al. in [13]. It combines
UPCC and IPCC approaches and predicts QoS value
based on both similar users and similar Web services.

4) NMF (Non-negative Matrix Factorization): This
method is proposed by Lee and Seung in [8]. It applies
non-negative matrix factorization on user-item matrix
for missing value prediction.

In this paper, in order to evaluate the performance of
different approaches in reality, we randomly remove some
entries from the matrices and compare the values predicted
by a method with the original ones. The matrices with
missing values are in different sparsity. For example, 10%
means that we randomly remove 90% entries from the
original matrix and use the remaining 10% entries to predict
the removed entries. The prediction accuracy is evaluated
using Eq.(15) and Eq.(16) by comparing the original value
and the predicted value of each removed entry. Our proposed
approach CloudPred performs matrix factorization in Sec-
tion III-B and employs both similar users and similar Web
services for predicting the removed entries. The parameter
settings of our approach CloudPred are Top-K=10, dimen-
sionality=20, 𝜆 = 0.5 in the experiments. Detailed impact
of parameters will be studied in Section IV-D, Section IV-E
and Section IV-F.

The experimental results are shown in Table II. For each
row in the table, we highlight the best performer among all
methods. From Table II, we can observe that our approach
CloudPred obtains better prediction accuracy (smaller MAE
and RMSE values) than other methods for both response-
time and throughput under different matrix densities. The
MAE and RMSE values of dense matrices (e.g., matrix
density is 80% or 90%) are smaller than those of sparse
matrices (e.g., matrix density is 10% or 20%), since a
denser matrix provides more information for predicting the
missing values. In general, the MAE and RMSE values of
throughput are larger than those of response-time because
the scale of throughput is 0-1000 kbps, while the scale
of response-time is 0-20 seconds. Compared with other

methods, the improvements of our approach CloudPred are
significant, which demonstrates that the idea of combining
global and local information for QoS prediction is realistic
and reasonable.

D. Impact of Matrix Density

In Figure 4, we compare the prediction accuracy of all
the methods under different matrix densities. We change the
matrix density from 10% to 90% with a step value of 10%.
The parameter settings in this experiment are Top-K=10,
dimensionality=20, and 𝜆 = 0.5.

Figure 4(a) and Figure 4(b) show the experimental results
of response-time, while Figure 4(c) and Figure 4(d) show
the experimental results of throughput. The experimental
results show that our approach CloudPred achieves higher
prediction accuracy than other competing methods under
different matrix density. In general, when the matrix density
is increased from 10% to 30%, the prediction accuracy of
our approach CloudPred is significantly enhanced. When the
matrix density is further increased from 30% to 90%, the
enhancement of prediction accuracy is quite limited. This
observation indicates that when the matrix is very sparse,
collecting more QoS information will greatly enhance the
prediction accuracy, which further demonstrates that sharing
local QoS information among cloud component users could
effectively provide personalized QoS estimation.

In the experimental results, we observe that the perfor-
mance of IPCC is much worse than that of other methods.
The reason is that in our Web service dataset the number
of users, which is 339, is much smaller than the number
of components, which is 5258. When some entries are
removed from the user-component matrices, the number of
common users between two components, on average, are
very small, which would greatly impact the accuracy of
common user based similarity computation between com-
ponents. Therefore, the prediction accuracy of similar items
based method IPCC is greatly decreased by the inaccuracy
similarity computation between components.

E. Impact of Top-K

The parameter Top-K determines the size of similar user
and similar component sets. In Figure 5, we study the impact
of parameter Top-K by varying the values of Top-K from 10
to 50 with a step value of 10. Other parameter settings are
dimensionality=10 and 𝜆 = 0.5.

Figure 5(a) and Figure 5(b) show the MAE and RMSE
results of response-time respectively, while Figure 5(c) and
Figure 5(d) show the MAE and RMSE results of throughput
respectively. The experimental results show that our ap-
proach CloudPred achieves best prediction accuracy(smallest
MAE and RMSE values) when Top-K is set around 10.
Under both sparse matrix, whose density is 10%, and dense
matrix, whose density is 90%, all the prediction accuracies
decreases when we decrease the Top-K value from 10 to 2
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Table II
PERFORMANCE COMPARSIONS ( A SMALLER MAE OR RMSE VALUE MEANS A BETTER PERFORMANCE)

Matrix Response-Time (seconds) Throughput (kbps)
Density

Metrics
IPCC UPCC UIPCC NMF CloudPred IPCC UPCC UIPCC NMF CloudPred

MAE 0.7596 0.5655 0.5654 0.6754 0.5306 31.6722 26.2015 22.6567 19.7700 19.0009
10% RMSE 1.6133 1.3326 1.3309 1.5354 1.2904 65.5220 61.9658 57.4653 57.3767 51.8236

MAE 0.7624 0.5516 0.5053 0.6771 0.4745 35.1780 21.9313 18.1230 15.7794 15.4203
20% RMSE 1.6257 1.3114 1.2486 1.5241 1.1973 66.6028 56.5441 50.0435 50.1402 44.8975

MAE 0.6703 0.4442 0.3873 0.3740 0.3704 29.9146 14.5497 12.4880 12.5107 10.7881
80% RMSE 1.4102 1.1514 1.0785 1.1242 1.0597 64.3079 44.3738 39.6017 39.2029 36.8506

MAE 0.6687 0.4331 0.3793 0.3649 0.3638 29.9404 13.8761 12.0662 11.6960 10.4722
90% RMSE 1.4173 1.1264 1.0592 1.1121 1.0359 63.7149 42.5534 38.0763 36.7555 35.9225
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Figure 4. Impact of Matrix Density
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Figure 5. Impact of Top-K

or increase from 10 to 18. This is because too small Top-
K value will exclude useful information from some similar
users and similar components, while too large Top-K value
will introduce noise from dissimilar users and dissimilar
components, which will impact the prediction accuracy.

F. Impact of Dimensionality

The parameter dimensionality determines the number of
latent features used to characterize user and cloud com-
ponent. In Figure 6, we study the impact of parameter
dimensionality by varying the values of dimensionality from
10 to 50 with a step value of 10. Other parameter settings
are Top-K=10, and 𝜆 = 0.5.

Figure 6(e) and Figure 6(f) show the MAE and RMSE
values of response-time, while Figure 6(g) and Figure 6(h)
show the MAE and RMSE values of throughput. When
the matrix density is 90%, we observe that our approach
CloudPred achieves the best performance when the value

of dimensionality is 30, while smaller values like 10 or
larger values like 50 can potentially hurt the prediction
accuracy. This observation indicates that when the user-
component matrices are dense, 10 latent factors are not
enough to characterize the features of user and component
which are mined from the rich QoS information, while 50
latent factors are too many since it will cause overfitting
problem. When the matrix density is 10%, we observed
that the prediction accuracy of our approach CloudPred
decreases (MAE and RMSE increase) when the value of
dimensionality is increased from 10 to 50. This observation
indicates that when the user-component matrices are sparse,
10 latent factors are already enough to characterize the
features of user and component which are mined from the
limited user-component QoS information, while other larger
values of dimensionality will cause the overfitting problem.
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Figure 6. Impact of Dimensionality

V. RELATED WORK

Cloud computing [1] has been in spotlight recently. A
number of investigations have been carried out focusing
on different kinds of research issues such as fault toler-
ance [14], resiliency quantification [15], component rank-
ing [6], resource consistency [16], etc. Quality-of-Service
(QoS) has been widely employed as a quality measure
for evaluating non-functional features of software systems
and components [4], [17], [18]. QoS performance of cloud
components can be measured either from the component
provider’s perspective or from the user’s observation. QoS
values measured at the component provider side (e.g. price,
availability, etc.) are usually identical for different users,
while QoS values observed by different users may vary
significantly due to the unpredictable communication links
and heterogeneous user environments. Based on the QoS
performance of components, several approaches have been
proposed to optimize web component selection [4], [5], [19]
in improving the whole quality of web application.

The above approaches usually assume that the QoS values
are already known, while in reality a user cannot exhaus-
tively invoke all the components in cloud. In this paper,
we focus on predicting missing QoS values by collaborative
filtering approach to enable the optimal cloud component
selection.

Collaborative filtering approaches are widely adopted
in commercial recommender systems [9], [13], [20]. The
neighborhood-based (memory-based) approaches are one
of the most popular prediction methods in collabora-
tive filtering systems. The most analyzed examples of
neighborhood-based collaborative filtering include user-

based approaches [11], item-based approaches [21], [22],
[23], and their fusion [13]. These approaches employ simi-
larity computation to find similar users and items in making
the QoS value prediction. VSS algorithm [11] and PCC
algorithm [9] are often employed as the similarity computa-
tion methods. Compared with VCC-based approaches, PCC-
based approaches usually achieve higher prediction accuracy
due to the consideration on difference between users’ rating
styles.

In addition to memory-based methods, model-based ap-
proaches, which employ machine learning techniques to
train a predefined model from the training datasets, are
also widely studied. Model-based approaches include several
types: the clustering models [24], the latent factor mod-
els [7], the aspect models [25], etc. Lee et al. [8] presented an
algorithm for non-negative matrix factorization that is able
to learn the parts of facial images and semantic features of
text. The premise behind a low-dimensional factor model
is that there is only a small number of factors influencing
the QoS values in the user-component matrix, and that a
user’s factor vector is determined by how much each factor
applies to that user. Compared with other methods, such
as vector quantization which learns holistic representations,
non-negative matrix factorization method proposed in [8]
learns parts-based representations by using non-negativity
constraints, which allow only additive combinations.

The memory-based approaches employ the information
from similar users and items (local information) for predict-
ing missing values, while the model-based approaches adopt
information from the whole user-item matrix for making
value prediction. In this paper, we take advantage of both
types of approaches for predicting missing QoS values.
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By exploring global information using NMF technique and
adopting local information from similar users and items
simultaneously, CloudPred achieves higher accuracy when
predicting missing QoS values.

VI. CONCLUSION AND FUTURE WORK

Based on the intuition that a user’s cloud component
QoS usage experiences can be predicted by exploring the
past usage experience from both the user and its similar
users, we propose a novel neighborhood-based approach,
which is enhanced by feature modeling on both user and
component, called CloudPred, for collaborative and person-
alized QoS value prediction on cloud components. Requiring
no additional invocation of cloud components, CloudPred
makes the QoS value prediction by taking advantage of
both local usage information from similar users and similar
components and global invocation information shared by
all the users. The extensive experimental results show that
our approach CloudPred achieves higher prediction accuracy
than other competing methods.

Since the Internet environment is highly dynamic, the QoS
performances of a cloud component may be variable against
time (e.g., due to the network traffic, server workload, etc.).
In our current approach, the QoS values are observed over a
long period, which represent the average QoS performance
of cloud components. Since the average QoS performance
of cloud components is relatively stable, the predicted QoS
values provide valuable information of unused cloud com-
ponents for the users. In our future work, we will explore
an online prediction algorithm to handle the dynamically
changing QoS values by fusing with the time information.

Currently, we are collecting QoS information of Web
service, which is a kind of cloud component. In the future,
we will conduct more experiments to evaluate our approach
in commercial clouds which contain multiple kinds of cloud
components. For future work, we will investigate more
techniques for improving the similarity computation (e.g.,
clustering models, latent factor models, data smoothing,
etc.). We will also conduct more investigations on the
correlations and combinations of different QoS properties.
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