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ABSTRACT
Deep metric learning is widely used in extreme classification and
image retrieval because of its powerful ability to learn the semantic
low-dimensional embedding of high-dimensional data. However,
the heavy computational cost of mining valuable pair or triplet of
training data and updating models frequently in existing deep met-
ric learning approaches becomes a barrier to apply such methods to
a large-scale real-world context in a distributed environment. More-
over, existing distributed deep learning framework is not designed
for deep metric learning tasks, because it is difficult to implement
a smart mining policy of valuable training data. In this paper, we
introduce a novel distributed framework to speed up the train-
ing process of the deep metric learning using multiple machines.
Specifically, we first design a distributed sampling method to find
the hard-negative samples from a broader scope of candidate sam-
ples compared to the single-machine solution. Then, we design
a hybrid communication pattern and implement a decentralized
data-parallel framework to reduce the communication workload
while the quality of the trained deep metric models is preserved.
In experiments, we show excellent performance gain compared to
a full spectrum of state-of-the-art deep metric learning models on
multiple datasets in terms of image clustering and image retrieval
tasks.
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1 INTRODUCTION
Distancemetric learning attempts to learn an advancedmetric space
in which the mapped representation of the raw data preserves the
short distance between similar data points and the long distance
between the dissimilar data points [3, 35]. This well-learned rep-
resentation plays important role in information retrieval [28] and
recommender systems [13]. For the past few years, with the success
of deep learning, deep metric learning has received much attention.
Because the distance metric learning shares similar assumption
and objective with deep learning [17]. However, at odds with the
conventional deep learning, which are successfully used to learn
category related concepts on a large number of labeled data, deep
metric learning aims to learn a nonlinear embedding of the data
using deep neural network on a semantic metric space, which pre-
serves the general concept of distance metric in data space.

Compared to deep metric learning, the drawback of the tradi-
tional deep neural networks such as GoogleNet [29] and ResNet
[11] comes from the following two-fold: (a), the computational
complexity of training and inference in deep learning is linearly
proportional to the number of classes. It becomes impractical for
extreme or fine-grained classification. (b), the most of deep learning
models tend to overfit easily on a small amount of data per class.
Therefore, deep metric learning yields promising results on many
applications such as face recognition [23], zero-shot classification
[5] and image retrieval [2].

The general procedure of deep metric learning contains two
steps. First, a modified Siamese network [4] is optimized with the
minimum value of one of the following loss: contrastive loss [10],
random triplet loss [34], triplet loss with semi-hard negative mining
strategy [23], lifted structured embedding loss [27], N-pair metric
loss [25] and facility location loss [26]. Then, the semantic repre-
senting space generated from the Siamese network can be employed
by many algorithms with efficient nearest-neighbor inference using
the labeled data [12].

However, the existing deepmetric learning approaches encounter
a huge computational challenging for a large-scale dataset. Typi-
cally, deep metric learning considers a pair or a triplet of images as
a training sample. Hence, n images can generate O

(
n2
)
or O

(
n3
)

training samples, which are intractable to iterate for large-scale
dataset. A potential solution to reduce the size of search space is
to find hard samples for training [7, 36]. Unfortunately, the hard
sample mining brings enormous computation demands because
it involves the inference for all data, which constantly varies dur-
ing the training. To reduce the inference complexity, [7] involves
human to label hard negative images from the evaluation of the
model in each epoch. [32] samples triplets randomly during the
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first ten training epochs, then trains the model with negative hard
triplets in each minibatch after ten epochs. Although a compromise
between the inference complexity and the convergence process
during the training is reached, the inefficient problem still exists in
deep metric learning framework.

Usually, distributed computation is a prominent tool to provide
enough computational power. In the traditional deep learning com-
munity, distributed computation among multiple machines is also
widely involved to handle the substantial computation demands [9].
Therefore, a deep metric learning oriented distributed algorithm
is crucial to bring deep metric learning into big data applications.
Since the smart sampling is a special issue in deep metric learning.
It is difficult to utilize the conventional distributed deep learning
platforms to find valuable training data globally. However, to our
best knowledge, there is no distributed algorithm designed for or
platform optimized for deep metric learning task.

In this paper, to conduct deep metric learning in distributed
environment efficiently, we first construct a distributed sampling
method to find the valuable triplet training data efficiently among
multiple machines. We analyze the characteristics of several deep
metric learning algorithms, then construct an empirical framework
to distribute the computation task of deep metric learning into
machines. Precisely, a typical Siamese network consists of two cas-
cading components: Convolutional Neural Network (CNN) part
and the last layer part. In many deep metric learning algorithms,
the first CNN part is initialized with a pre-trained model from tra-
ditional classification task. Based on the observation that the CNN
part with the massive number of parameters varies infrequently
compared to the frequently updated last layer part with fewer pa-
rameters, we have designed different communication patterns: ring
topology for CNN part, All-Reduce topology for the last layer part
to synchronize these two components among machines.

In summary, the contributions of this paper are listed as follows:

• To the best of our knowledge, we are the first to propose a
distance metric learning oriented distributed framework to
speed up the training of deepmetric learning amongmultiple
machines.
• We have verified the decentralized distributed computation
with mixed communication topology is reasonable in the
context of deep metric learning.
• We also demonstrate the proposed framework is appropri-
ately coupled with several state-of-the-art deep metric learn-
ing algorithms on CUB200-2011, CARS196, and Stanford On-
line Products and achieves a remarkable improvement with
four machines regarding accuracy and runtime speedup.

2 PRELIMINARIES AND RELATEDWORK
Siamese neural networks [4, 14] employ pair or triplet neural net-
work with shared parameters to learn a non-linear function embed-
ding raw high-dimensional data into low-dimensional metric, in
which a contrastive loss is trained to distinguish between similar
and dissimilar pairs of data.

Let x ∈ X be an input data and y ∈ {1, . . . ,L} is the correspond-
ing output label. In the pairwise framework, Siamese network is
trained with contrastive loss calculated with pairs of examples(
xi ,x j

)
which are either similar or dissimilar. The objective of

Figure 1: Siamese network. In triplet framework, the
Siamese network generates the embedding data f (xa ), f (x+),
f (x−) for the anchor xa , the positive x+ and the negative x−
respectively.

learning is that the distances between embedding vectors of simi-
lar examples with some fixed margin should be smaller than the
distances between that of dissimilar examples. More precisely, it
minimizes the following loss:

ℓ (X,Y ) =
1
|P |

∑
(xi ,x j )∈P

yi,jд
(
xi ,x j

)
+
(
1 − yi,j

) [
α − д

(
xi ,x j

)]
+
, (1)

where д (·, ·) represents the output of Siamese network for a given
pair of input. The labelyi,j ∈ {0,1} indicateswhether a pair

(
xi ,x j

)
comes

from the same class or not. The operation [·]+ denotes the hinge
function which takes the positive component. α denotes a fixed
margin. Usually, д is defined as a Euclidean distance between two
embedding data points:

д
(
xi ,x j

)
=



f (xi ) − f

(
x j
)


2 , (2)

where f (x ) generates the representing features of the given input
x in deep neural network.

The main idea is to construct a Euclidean space to make sure that
positive pairs are close to each other while negative pairs are pushed
away. Although the training process only requires a weaker form
of supervision, the contrastive loss is focused on absolute distances,
where the relative distance is more critical in many situations.

Similarly, in triplet-wise framework [34], the model is trained
with triplets of examples (xa ,x+,x−). The positive and negative
data of a given anchor point xa is denoted as x+and x− respectively.
It means that xa and x+ comes from the same class while x− is from
different class to xa . The objective of learning is that the distance
between embedding vectors of similar pair (xa ,x+) is less than that
of dissimilar pair (xa ,x−). Within the triplet-wise framework, [23]
constructs triplets by finding a semi-hard negative data, which has
the smallest distance to the anchor point xa among all negative
data points {x−}.
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The triplet loss is defined as the following:

ℓ (X,Y ) =
1
|T |

∑
(xa,x+,x− )∈T

[
д
(
xa,x+

)
+ α − д (xa ,x−)

]
+ , (3)

where T is the set of triplets.
[27] considers all the positive and negative pairs, they follow

[23] to randomly sample several positive pairs, then select their
semi-hard negative pairs to the training mini-batch. Finally, they
optimize a structured prediction objective on the lifted problem by
converting the vector of pair-wise distances in the mini-batch to the
matrix of pairwise distance. [24] finds an aggressive mining method
to improves the discrimination of model by combing both positive
and negative pairs during the training. [26] finds that minimizing
the metric loss for mini-batches does not necessarily lead to a more
discriminative metric space and propose to consider the global
structure of the metric space during the training.

The following two ideas closely relate to deep metric learning,
but it is difficult to extend these methods into a distributed set-
ting. [16] proposes an effective deep metric learning approach by
carefully partitioning the training dataset. [30] estimates the distri-
bution of positive and negative data pairs and take advantages of a
distribution loss for deep metric learning.

Although there is no existing distributed framework designed
for deep metric learning algorithm, we can easily employ con-
ventional distributed deep learning frameworks [21, 37] to boost
deep metric learning algorithms. Parameter server [18] is a widely
adopted solution in distributed deep learning platforms [1, 6] The
challenge is how to allocate resources between workers and pa-
rameter servers to fully utilize CPU and reduce the communication
workload around the parameter servers. [19, 33] explore to reduce
the communication demand in deep learning framework by de-
centralizing the process of the gradient aggregation. However, for
many deep metric learning algorithms, a straightforward adoption
from a single machine to distributed environment cannot achieve
a remarkable performance gain. We will discuss the reasons with
more details in the following sections.

3 PROPOSED FRAMEWORK
For the training process with large-scale datasets, we need larger
mini-batch, partitioned into multiple machines. However, the deep
metric learning with large mini-batch involves more communica-
tion demands because of the special selection method for mini-
batch. In order to obtain a reasonable speedup with satisfying the
accuracy, we need a smart architecture and policy for distributed
training.

A common architecture for deep neural network systems takes
advantage of data-parallelism [1]: a set of machines train model
replicas on partitions of the input data in parallel. The model repli-
cas are kept synchronized by all-reduced operation in Message Pass-
ing Interface (MPI) or parameter server, which maintains a global
partition of the trained model and working machines fetch updated
model from the parameter server periodically. These two meth-
ods guarantee the strong consistency of models among machines,
but saturate the available network bandwidth, which becomes the
bottleneck to accelerate the training process. In details, parameter
server deteriorates the utility of the number of machines, because

Figure 2: Illustration of the semi-hard negative mining in
distributed environment.

several physical machines are equipped with server maintaining
global parameters. The network around the server easily becomes
a bottleneck because of heavy communication tasks around the
servers. For all-reduced operation, there is no centralized parame-
ter server, but the frequent broadcast operations consume lots of
network resources. Meanwhile, the computation unit must wait
for the synchronization of large models. Therefore, it is an open
problem that how deep neural network systems balance the use of
computation and network resources to achieve the fastest model
convergence.

Compared to traditional deep neural network, deep metric learn-
ing contains two unique features: (1), the selection of the mini-batch
with valuable training data containing the hard-positive and hard-
negative samples is costly. (2), the major component of the whole
model is initialized with a sophisticated pre-trained model. To take
advantage of the two features, we propose a distributed frame-
work to conduct distributed sampling described in subsection 3.1
to find the valuable training data with hard-negative data globally.
Then we design a mixed communication topology to synchronize
these components with the different level of consistency, which is
explained in the subsection 3.2.

3.1 Distributed Sampling and Evaluation
In this subsection, we first discuss the challenge of the adoption
from single-machine solution to distributed solution for deep met-
ric learning algorithm. Then, we proposed a distributed sampling
and evaluation policy to alleviate the disadvantage of the single-
machine solution.

Existing distributed deep learning frameworks only focus on the
gradient synchronization (aggregation and scattering) among ma-
chines. There is no further consideration about data sampling meth-
ods, which are independent to machines in conventional platforms.
Therefore, as illustrated in fig. 2, a straightforward conversion from
single machine algorithm to distributed algorithm leads to a simple
aggregation from several single-machine solutions. For each ma-
chine, they can not take advantage of a large portion of samples
from other machines. This constrained sampling scope becomes a
barrier to enhance the overall performance of deep metric learning
algorithms. Because a proper sampling strategy plays an equally
important role as a suitable loss function [20].
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In order to achieve a fast convergence rate, it is crucial to sample
the hard positive and the hard negative samples from a large mini-
batch. For a given anchor sample xa , the hard positive is calculated
from:

x+ ← argmax
i :y[i]=y[a]



f (xa ) − f (xi )

22 (4)

The hard negative sample is calculated from:

x− ← argmin
i :y[i],y[a]



f (xi ) − f (xa )

22 (5)

To mine the hard negative sample, we formalize our proposed
method with optimization to identify a negative example from a
large scope of mini-batch co-located in all machines. For machine
p, suppose the number of classes in a mini-batch is ��C [p]��. For
each class, we randomly select an anchor sample xa and then find
the associated hard positive samples from the same class in the
mini-batch. We denote the indicator set of the anchor sample for
each class asC [p]. To support the above sampling rules, we should
construct the mini-batch with more classes and keep the number
of samples per class relatively constant.

The search for hard negative sample involves the online evalua-
tion of deep neural networks, which is computationally demand-
ing for a large number of instances from distinct classes. In our
proposed framework, we dispatch the evaluation and compari-
son tasks to multiple machines. At the first stage, for each ma-
chine p, it will broadcast the embedding vector of anchor samples{
fp

(
x
(i )
a

)}
i ∈C[p]

to other machines. Note that the deep neural net-

work model could be slightly different among machines, it will be
explained in the next subsection. We denote fp as the deep neural
network in the machine p.

At the second stage, each machine seeks for the hard negative
sample corresponding to the incoming anchor samples. Specifically,
for each machine q, it conducts the online evaluation of deep neural
network for all samples in the mini-batch first, then calculates the
distances between the embedding vectors and the incoming anchor
samples to find the hard negative samples. For an anchor point xap
from the machine p, the hard negative sample is computed as:

x
(ap )
− ← argmin

i :y[i],y[ap ]




fq (xi ) − fp
(
xap
)


22 . (6)

When all hard-negative samples are found, the machine q will
scatter the embedding vectors of these samples to other machines.
Finally, when the set of triplet samples is ready in machine p, we
can employ the back-propagation method with the following loss
definition:

ℓ
(
[X ]p ,[Y ]p

)
=

−
1

��C [p]��

∑
a∈C[p]

log
exp

{
f (xa )

T f
(
xP (a)

)}
exp

{
f (xa )

T f
(
xP (a)

)}
+ exp

{
f (xa )

T f
(
xN (a)

)}
+

λ

m

m∑
i



f (xi )

2 , (7)

where P (·) andN (·) are the indicators of the hard positive sample
and negative sample respectively.m is the size of mini-batch.
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Figure 4: The average of the ℓ2 norm of all parameters in
CNN module during the training process.

3.2 Hybrid Synchronization
Suppose there are P machines, machine i contains a cascading
model parameterized by θi with two distinct componentsCi and Fi ,
which denote the parameters of the CNN part initialized with the
pre-trained model and the last fully-connected layer respectively.

Typically, the parameters are calculated by the back-propagation
algorithm with gradient descent, which updates θ iteratively:

θ
(t+1)
i ← θ

(t )
i + η

(t )
∑
j ∈P
∇f
(
θ
(t )
j

)
, (8)

where θt are the parameters in iteration t , η (t ) is the learning rate
in iteration t .

In the setting of All-Reduce or the synchronous parameter server,
θ j = θk ∀j,k ∈ [P]. It requires the parameter server to collects all
gradients and to conduct the gradient aggregation in Eq. (8), then
broadcast the updated parameters to all machines. This strong
consistency requirement brings a heavy burden for network com-
munication and degrades the training speed accordingly.

Empirically, we have the two following observations: (a), many
deep metric learning algorithms are designed for two settings: end-
to-end and last-layer. The latter means that the CNN part is initial-
ized with a pre-trained model and then keeps fixed. (b), we observe
that the average of ℓ2 norm CNN part Ci varies insignificantly on
many datasets, illustrated in fig. 6. Therefore, inspired by the decen-
tralized framework [33], to increase the communication efficiency,
we slacken the strong consistency constraints to allow the mod-
els in multiple machines are different. We propose the ring-based
synchronization topology as follows:

C
(t+1)
i ← C

(t )
i + η

(t )
(
β∇f

(
C
(t )
i

)
+ (1 − β ) ∇f

(
C
(t )
Left(i )

))
, (9)

where Left (·) denotes the index of last machine in a ring topology,
η (t ) represent the learning rate at iteration t . Currently, β = 0.5 is
a predefined constant.

Ring-based synchronization is an optimal bandwidth solution to
synchronize the parameters betweenmachines, because the commu-
nication complexity of each machine reduces from O (P ) to O (1).
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(a) All-Reduce (b) Parameter Server (c) Hybrid Synchronization

Figure 3: Comparisons of several distributed communication topologies

In experiments, we have profiled the training process to monitor
the change of all CNN components C[P ]. Figure 6 demonstrates
the convergence between any two adjacent machines in the ring
topology.

For the last layer, we follow the strong consistency requirements
to update the last layer Fi , because the number of parameters in Fi
is relatively small and the synchronous update does not barrier the
training process.

In overall, the proposed hybrid synchronization consists of ring-
based synchronization to update the large amount parameters in
CNN models, and All-Reduce synchronization to update the fre-
quently changed parameters in the last layer. Figure 3 illustrates
the difference of the three communication topologies. Algorithm 1
summaries the proposed distributed deep metric learning algorithm.

3.3 Implementation Details
We have implemented our framework 1 with the popular PyTorch
[22]. In order to reduce the waiting time of gradient synchroniza-
tion, we modified the default PyTorch architecture to allow us to
synchronize the gradients of the current layer in an asynchronous
way while computing the gradients of the next one simultaneously.

For network setting, we basically follow the configuration in [26].
We employ existing network with pretrained parameters and fine-
tune the network on new datasets. At the end of deep neural net-
work, we conduct ℓ2 normalization first to the embedding vector
before computing the loss. The experimental ablation study in [27]
reports that the dimensionality of the embedding vector does not
play a crucial role during the training and testing process. We ex-
plored the dimensionality of embedding vector from 64 [26] to
512 [27] . The larger embedding size will perform slightly better
than the smaller ones in accuracy but bring heavy communication
requests in a distributed setting. Therefore, we select 128 as a trade-
off. For each iteration, we only need to sample m examples and
labels from different classes at random. In particular, we randomly
select 5 images per class in a mini-batch. There is no need to prepare
the data in any rigid paired or triplets format.

1https://github.com/yxsu/ddml-hs

ALGORITHM 1: Proposed Distributed Deep Metric Learning Algo-
rithm

Input: Image datasets with C labeled categories, P : number of
machines, T : number of iteration, η : step size, λ:
regularization parameter

Output: f (θ ): optimized deep neural network parameterized by θ
for t = 1, . . . ,T do

for all machine p ∈ [1, P ] do in parallel
Randomly sample to from the whole dataset;
Randomly select anchor sample xa for each class. C[p]
represents the indicator set of anchor sample for each class;
Find the hard positive sample by:
x+ ← argmax

i :y[i]=y[a]


f (xa ) − f (xi )

22

Broadcast
{
fp
(
x (i )
a
)}
i∈C[p]

to other machines;

Receive
{
fq
(
x (i )
a
)
: i ∈ C [q] , q ∈ [1, P ]

}
from other

machines;
Find all hard negative samples by: x (aq )− ←

argmin
i :y[i],y[aq ]




fp (xi ) − fq
(
xaq
)


22 ∀aq ∈ C[q], q ∈ [1, P ];

Scatter the above hard negative samples;
After receiving the hard negative samples, conduct
back-propagation on the loss defined in Eq. (7) to update θ ;
All-reduce the FC parameters Fp among all machines;
Send CNN parameters Cp to its right neighbor Right(p );
Update Cp with Eq. (9);

end
end

For the network architecture, the CNN components are initial-
ized with the ResNet-34 [11] pre-trained on the popular ImageNet /
ILSVRC 2012-CLS dataset. The final fully-connected layers FC are
randomly initialized.

We fine-tuned the network on the training datasets with two
configurations:

• End-to-End: we fine-tune the overall model and update the
parameters of all the layers during the back-propagation
with the proposed hybrid synchronization. In this case, we
perform 20 epochs of gradient descent.
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• Last Layer: we keep all CNN components pretrained on
ImageNet unchanged and update the last layer with our
hybrid synchronization. In this situation, the communication
in our framework is equivalent to the default All-reduce
pattern in PyTorch.

All the input images are resized to 256 × 256 and cropped at
227× 227. We use a random crop with random horizontal mirroring
for training and a single center crop for testing. [25] takes multiple
random crops and compute the average from the cropped images
as the embedding vector.

4 EXPERIMENTS
In experiments, we attempt to answer the following two questions:
(a), is our proposed distribution framework correct in the context
of deep metric learning? We can obtain the answer from the com-
parisons between proposed framework and the several existing
deep metric learning algorithms regarding accuracy in clustering
and image retrieval. (b), is our framework communication-efficient
and does it enjoy good scalability regarding the number of the
machines? The observation on the execution time of the proposed
framework with different hardware setting will illustrate the effi-
ciency issue.

In the experiments, we evaluate our distributed framework on
the following widely-used fine-grained datasets and employ the
same train/test splits.
• The Caltech-UCSD Birds (CUB200-2011) [31] consists of
11,788 images of birds from 200 different species/categories.
We use the standard configuration in which the first 100
categories (5,864 images) is used for training and the rest for
test (5,924).
• CARS196 [15] consists of 16,185 images of cars from 196
model categories. The first 98 categories (8,054 images) are
used for training and the rest for test (8,131 images).
• Stanford Online Products [27] consists of 120,253 images
from 22,634 online product categories. The default config-
uration contains 59,551 images from 11,318 categories for
training and 60,502 images from 11,316 categories for test.

In these experiments, we choose to disjoint the categories for
training and testing separately, although they belong to the same
context (they all represent birds, cars or products). This makes
the problem more challenging because traditional deep neural net-
work models may easily overfit on the training datasets with a vast
number of categories.

All experiments are conducted on 4 servers with 2 Pascal GPUs
each connected by 10 Gbit/s network. To make fair comparisons,
we closely follow [26, 27] for deep metric learning configuration in
experiments.

For clustering evaluation, we calculate the embedding vector on
all the test images first, then conduct affinity propagation clustering
algorithm [8] with bisection method for the predefined number of
clusters, which is equal to the number of classes in the test set. We
use the standard Normalized Mutual Information (NMI) metrics to
quantitatively measure the clustering quality [26]. NMI is defined
by the ratio of mutual information entropy of clusters and labels.

For the image retrieval evaluation, we employ the standard Re-
call@K metric in the standard K nearest neighbor retrieval task.
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Figure 5: The training loss of the averaged deep neural net-
work model in our proposed framework with 4 machines.

Recall@K is defined as the fraction of queries for which there exists
a data sample of the same class as that of the query instance with
the first K positions of the retrieved list.

We compare our proposed methods against several state-of-the-
art methods including triplet loss with semi-hard-negative min-
ing [23], deep metric learning via lifted structure [27], deep metric
learning with histogram loss [30], deep metric learning with N-pair
loss [25], deep metric learning via facility location (also called NMI-
based) [26] and deep spectral clustering [16]. In experiments, to
make completed comparisons, we have also adopted the state-of-
the-art methods from single-machine solution to distributed com-
putation environment with All-reduce communication topology,
which is the standard distributed implementation in TensorFlow [1]
and PyTorch [22].

4.1 Convergence
In this subsection, we attempt to show the correctness of our pro-
posed framework on all three datasets.

In our proposed framework, the deep neural network model
could be slightly different with its neighbors. Since we loose the
consistency requirement in our hybrid synchronization policy to the
decentralized setting. The theoretical analysis on the convergence
issue of this decentralized deep neural network models is still an
open problem [19]. In this paper, we only conduct an empirical
study on this convergence issue. Figure 6 illustrates the difference
of models among neighbors on three datasets. From the figure, we
can see that the ℓ2 norm difference of the parameters in CNNmodel
convergence to zero after 10 epochs. It means that all parameters
among neighborhood convergences to the same values.

Figure 5 further demonstrates the convergence process of our
proposed framework. During the training process, we take the
average of all training loss in different machines as the overall
training loss depicted in fig. 5. After training, we consider the
averaged model as the final optimized model to conduct test tasks.
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Table 1: Evaluations on the Caltech-UCSD Birds (CUB-200-2011) dataset. Recall@k is the recall with the top k results.

Method Setting Time (s) / epoch NMI Recall@1 Recall@4 Recall@8

Original 524 56.12 40.46 58.15 69.28
Triplet semi-negative [23] 2 machines 458 56.10 40.98 57.45 69.56

4 machines 362 56.98 41.05 58.34 69.17

Original 536 56.30 43.24 66.73 79.61
Lifted struct [27] 2 machines 441 56.20 44.19 66.50 79.13

4 machines 391 56.98 44.34 66.56 79.78

Original 520 - 49.34 68.61 80.58
Histogram [30] 2 machines 437 - 49.10 66.97 78.24

4 machines 358 - 48.34 65.10 77.10

Original 513 58.87 44.29 67.26 79.18
N-pairs [25] 2 machines 420 58.97 45.14 67.26 79.78

4 machines 340 59.20 45.19 67.98 80.10

Original 702 60.19 48.38 72.47 82.25
NMI-based [26] 2 machines 599 60.15 48.19 72.38 81.98

4 machines 493 60.17 48.56 72.50 82.01

Original 617 58.13 50.28 76.80 85.79
Spectral [16] 2 machines 574 58.10 50.78 76.75 85.58

4 machines 432 58.98 51.03 76.85 85.78

2 machines 378 61.19 52.45 77.08 84.24
Ours 4 machines 234 61.96 52.87 78.19 85.07

4 machines (last layer) 86 55.34 43.19 60.73 75.21

Table 2: Evaluations on the CARS196 dataset. R@k is the recall with the top k results.

Method Setting Time (s) / epoch NMI Recall@1 Recall@4 Recall@8

Original 507 54.09 41.30 75.21 80.32
Triplet semi-negative [23] 2 machines 446 54.13 44.25 75.59 79.19

4 machines 378 54.20 44.56 75.50 79.31

Original 530 56.90 53.70 75.98 83.30
Lifted struct [27] 2 machines 439 57.02 53.98 76.04 83.34

4 machines 395 57.13 53.88 76.05 83.50

Original 512 - 53.67 75.56 81.20
Histogram [30] 2 machines 425 - 53.10 74.97 81.09

4 machines 355 - 53.00 74.56 80.78

Original 489 58.04 54.36 79.03 84.23
N-pairs [25] 2 machines 398 58.34 54.56 79.01 84.34

4 machines 336 58.78 54.88 79.12 84.56

Original 832 57.27 57.29 79.90 88.24
NMI-based [26] 2 machines 703 57.17 57.09 79.78 88.05

4 machines 578 57.20 57.19 79.81 88.20

Original 798 61.08 69.35 81.08 90.35
Spectral [16] 2 machines 637 61.10 69.56 81.10 90.29

4 machines 501 61.21 69.70 81.23 90.40

2 machines 423 61.24 70.07 82.13 89.25
Ours 4 machines 298 61.80 70.73 82.87 90.10

4 machines (last layer) 93 53.10 44.37 77.19 82.28
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Table 3: Evaluations on the Stanford Online Products dataset. R@k is the recall with the top k results.

Method Setting Time (s) / epoch NMI Recall@1 Recall@4 Recall@8

Original 4,097 88.38 67.12 77.97 82.28
Triplet semi-negative [23] 2 machines 3,658 88.40 67.23 78.01 82.38

4 machines 3,167 88.42 67.34 78.01 82.38

Original 3,814 88.19 65.50 78.23 81.08
Lifted struct [27] 2 machines 3,512 88.22 65.68 78.19 81.00

4 machines 3,170 88.25 65.71 78.41 81.56

Original 3,856 - 65.55 78.73 81.56
Histogram [30] 2 machines 3,550 - 65.01 78.30 81.12

4 machines 3,210 - 64.95 78.15 81.03

Original 3,701 89.01 67.12 79.15 84.09
N-pairs [25] 2 machines 3,506 89.12 67.31 79.21 84.15

4 machines 3,010 89.18 67.35 79.51 84.34

Original 6,238 90.27 66.98 77.06 82.15
NMI-based [26] 2 machines 5,078 90.34 67.10 77.10 82.20

4 machines 3,998 90.35 67.28 77.21 82.24

Original 5,713 87.38 66.09 78.98 83.12
Spectral [16] 2 machines 4,892 87.50 66.12 79.01 83.20

4 machines 3,820 87.55 66.15 79.23 83.20

2 machines 3,028 89.17 67.79 80.34 84.73
Ours 4 machines 2,356 89.56 68.02 80.48 84.70

4 machines (last layer) 898 86.57 64.14 76.23 80.18

0 5 10 15 20

0

0.5

1

1.5

·10−2

Epoch

ℓ 2
no

rm

Birds
CARS196
Products

Figure 6: The average of 


Ci −CRight(i )



2 ∀i ∈ [P]. This figure

displays the convergence of CNN models with 4 machines

4.2 Quantitative Results
In this subsection of quantitative evaluation, we try to empirically
prove the effectiveness of our proposed distributed deep metric
learning method in image retrieval and clustering tasks.

Tables 1, 2 and 3 display the comparison results between sev-
eral state-of-the-art methods and our proposed method in terms
of the NMI and k nearest neighbor task with the Recall@K metric.

In this subsection, we only consider the “Original" setting for the
state-of-the-art methods. “Original" means that all these algorithms
are executed in the original single-machine solution with the same
configuration in their original paper. However, we do not report
the results of our proposed framework in the single machine set-
ting. Because in a single machine, our sampling policy cannot take
advantage of the large portion of data samples in a mini-batch.
Therefore, the comparisons in the single-machine setting are un-
fair. The overall performance of our method in this environment is
worse than the N-pairs method [25] with the similar loss definition.

From the tables, we can easily see a considerable improvement
of our proposed method compared to the state-of-the-art methods,
especially the N-pairs method. The improvement against N-pairs
method demonstrates the effectiveness of our distributed sampling
policy. Because our method has a similar loss definition compared
to the N-pairs method and the significant difference comes from the
extension of the sampling policy to the distributed configuration.

For the execution time, table 1, 2 and 3 also demonstrate dis-
tinguishable results from all these state-of-the-art methods. The
execution time of the triplet loss with semi-hard-negative mining ,
the N-pairs method and the lifted structure method are comparable.
Because these methods spend the majority of time on the online
evaluation of the deep neural network. Compared to other methods,
NMI-based method is slowest for each epoch. This is due to the
cost of finding the facility location in this method.

For different datasets, the evaluation time of these methods for
each mini-batch on the larger Stanford Online Products dataset
is comparable to that on the smaller CUB-200-2011 and CARS196
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Figure 7: Comparison of computation time and communi-
cation time on the Caltech-UCSD Birds dataset with 4 ma-
chines. The results from other two datasets are similar.

datasets. Since all input images are scaled into the same size before
evaluating the deep neural network. However, all methods are
slow on the Stanford Online Products dataset. Because the Stanford
Online Products dataset is larger than the others and has more
rounds of mini-batching for each epoch. For the last-layer setting,
as demonstrated in table 1, 2 and 3, the execution time is very fast.
Since there is no computationally expensive back-propagation and
heavy communication demands for the CNN components. However,
in most cases, the performances of our proposed method with the
last-layer setting on three datasets are not competitive concerning
image retrieval and clustering tasks.

4.3 Scalability
In this subsection, we attempt to demonstrate the scalability of
several state-of-the-art methods with the distributed setting. Then,
we compare our proposed framework and the other methods with
different distributed settings, in which the different behaviors mo-
tivate our work.

In triplet framework, large batch size brings a large scope of
candidate samples, and it enjoys high probability to generate useful
triplets with real hard-positive and hard-negative samples. Further-
more, there is generalization gap between large batch size and small
batch size in learning theory. However, since existing deep metric
learning algorithm are all designed for single machine environ-
ment, which contains a limited number of GPUs. The limited GPU
memory constraints the maximum batch size as well as the model
complexity of deep neural network. For example, we believe the
overall performance of the state-of-the-art methods will increase
if we only replace ResNet-34 with ResNet-151 and keep sampling
policy unchanged in these methods. Unfortunately, the higher com-
plexity of deep neural network will cost more GPU memory and
lead to a smaller mini-batch size owing to the limited total GPU
memory. Therefore, a suitable distributed framework is necessary
for deep metric learning algorithm.

From table 1, 2 and 3, we can see that the overall execution time
of all methods decreases when the number of machines increases.
Specifically, the computation time for each epoch decreases. Be-
cause the rounds of mini-batching in each machine is less than
that in single machine. However, the communication illustrated in
fig 7 is costly. The strong consistency requirement in All-reduce
distributed framework brings heavy communication workload in
this case. For the performance in image retrieval and clustering
tasks, we can not observe a stable improvement for the state-of-
the-art methods when the number of machine increases. Therefore,
a simple gradient aggregation policy implemented in All-reduce
framework is not benefiting to distributed deep metric learning.
This phenomenon is different from the conventional distributed
deep learning approaches. The potential improvement should come
from a smart sampling method which utilizes all machine resources.

Our proposed framework performs well in image retrieval and
clustering tasks. In many cases, it achieves the state-of-the-art
results. For the scalability issue, our proposed method performs
better in general when the number of machine increases. These
experiments prove that our distributed sampling method has a
positive impact on the overall performance of deep metric learning
algorithms.

For communication time, we expect that the ratio of communica-
tion time is as low as possible. Figure 7 illustrates the ratio of com-
munication time and computation time of several methods. From
the figure, we can easily observe that the ratio of communication
time in our proposed method is lower than many state-the-of-art
methods in a conventional distributed framework. The advantage
of our proposed framework is more obvious if the algorithm is con-
ducted on a larger-scale cluster with more machines. For NMI-based
and Spectral methods, the lower ratio of communication time does
not reveal an excellent performance on a distributed framework. In
fact, the computation of NMI-based and Spectral methods are more
costly.

5 CONCLUSION
In this paper, we present a scalable solution from the perspective
of distributed computation to tackle the big data challenge for
deep metric learning algorithm. In particular, we first propose a
distributed samplingmethod to find the hard-negative samples from
all machines to improve the efficiency of triplet mining method.
Then, with the help of the unique characteristics of deep metric
learning, we further propose a hybrid synchronization policy to
speed up the training process of deep metric learning algorithm by
reducing the communication workload significantly in a distributed
environment. Finally, extensive experimental results demonstrate
the effectiveness of our proposed distributed deep metric learning
framework on image retrieval and clustering tasks.
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