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Abstract

With the continuous emergence of Chinese
Large Language Models (LLMs), how to eval-
uate a model’s capabilities has become an in-
creasingly significant issue. The absence of a
comprehensive Chinese benchmark that thor-
oughly assesses a model’s performance, the
unstandardized and incomparable prompting
procedure, and the prevalent risk of contam-
ination pose major challenges in the current
evaluation of Chinese LLMs. We present
CLEVA, a user-friendly platform crafted to
holistically evaluate Chinese LLMs. Our plat-
form employs a standardized workflow to as-
sess LLMs’ performance across various dimen-
sions, regularly updating a competitive leader-
board. To alleviate contamination, CLEVA
curates a significant proportion of new data
and develops a sampling strategy that guar-
antees a unique subset for each leaderboard
round. Empowered by an easy-to-use inter-
face that requires just a few mouse clicks and
a model API, users can conduct a thorough
evaluation with minimal coding. Large-scale
experiments featuring 23 Chinese LLMs have
validated CLEVA’s efficacy. Our GitHub repo
is https://github.com/LaVi-Lab/CLEVA.

1 Introduction

Large language models (LLMs) have fundamen-
tally revolutionized natural language processing.
Transformer models with more than 100B parame-
ters have exhibited remarkable generalization abil-
ity across diverse tasks without the need for fine-
tuning. The success of GPT-4 (OpenAl, 2023)
and ChatGPT sparked a trend of training Chi-
nese LLMs, with new models launching almost
every week (Zeng et al., 2023; Team, 2023; Cheng-
hao Fan and Tian, 2023; Ji et al., 2023; Cui et al.,
2023). These rapid developments aggravate the
need for Chinese LLM evaluation.
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Assessing the capacity of LLMs is non-trivial.
Traditional practices that evaluate models on a sin-
gle task at a time are gradually becoming obsolete,
since a single task can hardly characterize a full
view of an LLM’s capacity. Instead, to effectively
grasp a holistic view of an LLM’s capacity, we need
to decompose its capacity into various abilities,
evaluate these abilities with numerous correspond-
ing tasks, and measure the competence of each task
with multiple metrics. In this sense, HELM (Liang
et al., 2022), leads the way in English LLM eval-
uation, as it conducts an in-depth evaluation of
English LLMs on various NLP tasks using seven
metrics. In Chinese, previous attempts have shown
limitations, either in task selection or the metrics
adopted. C-Eval (Huang et al., 2023), M3KE (Liu
et al., 2023), CMMLU (Li et al., 2023), GAOKAO-
Bench (Zhang et al., 2023), and MMCU (Zeng,
2023) narrow down to knowledge and reasoning
abilities, whose datasets are mostly constructed us-
ing Chinese exams. By the time of our submission,
OpenCompass (Contributors, 2023b), with around
74K Chinese queries out of 300K total, leans on
accuracy as its sole metric, overlooking other im-
portant aspects in LLM evaluation. FlagEval (Con-
tributors, 2023a) inherits four out of seven met-
rics from HELM and 22 existing Chinese datasets,
having limited coverage on some significant tasks.
A comprehensive Chinese benchmark incorporat-
ing diverse metrics to holistically evaluate Chinese
LLMs is urgently demanded.

Prompt-based evaluation in Chinese is largely
unstandardized. Previous evaluations, such as
HELM (Liang et al., 2022), do not explicitly opti-
mize prompts, though LLMs’ significant sensitivity
to the format of prompt has been observed (Webson
and Pavlick, 2022; Abdou et al., 2022; Sanh et al.,
2022). Moreover, unlike many English benchmarks
that have well-developed prompts (§ 3), many Chi-
nese benchmarks are in their early stage and do
not enjoy such privileges. Chinese LLMs are eval-
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uated using different prompts, making the results
incomparable and hence untrustworthy.

Consuming up to trillions of tokens during pre-
training, LLMs are prone to train-test contami-
nation (Brown et al., 2020), which significantly
threatens the validity of an evaluation. Previ-
ous work (OpenAl, 2023; Liang et al., 2022) ap-
proaches this issue more from a consequentialist
perspective: They examine the contamination risk,
by methods like long n-gram overlap, only after the
evaluation has been done. These post-evaluation
analyses, though responsibly examining if train-
test contamination happens, cannot alleviate the
risk of contamination in the first place. A proac-
tive method to mitigate the contamination risk is of
great importance.

We present CLEVA, Chinese Language mod-
els EVAluation platform that tackles the aforemen-
tioned problems with the following features:

* A comprehensive Chinese benchmark. In-
spired by HELM (Liang et al., 2022), CLEVA
organizes the evaluation tasks into two parts:
ability evaluation, which gauges specific
LLM skills and application assessment, which
tests how well LLMs apply their skills to
real-world applications (§ 4.1). Most of the
well-accepted Chinese datasets relevant to our
ability evaluation or application assessment
are organized, standardized, and then adopted
by our platform. More importantly, we de-
sign new Chinese-specific tasks, e.g., Pinyin
transliteration and intent understanding, and
collect a substantial amount of new data, ac-
counting for 33.98% of our total data. As for
the metrics (§ 4.1), we incorporate metrics
for diversity and privacy into our system in
addition to the seven in HELM. With 370K
(over 9 million queries after augmentation)
test instances from 84 datasets and 9 metrics,
CLEVA, so far, stands as the most extensive
Chinese evaluation dataset and possesses the
most dimensions, facilitating a holistic evalu-
ation of Chinese LLMs.

» Standardized prompt-based evaluation
methodology. CLEVA takes full control of
key aspects of LLM evaluation, with data
and prompts being the most important among
them. All data are jointly prepared with uni-
fied preprocessing steps, ensuring a level play-
ing field for all LLMs. Meanwhile, CLEVA
provides a set of prompts, instead of just

one prompt as in prior work, for each task
for prompting-based inference (Brown et al.,
2020). This prompt design ensures compa-
rable evaluation results by standardizing the
prompts used for testing, while also encour-
aging further analysis of LLMs’ sensitivity to
different prompts (Zhu et al., 2023).

* An up-to-date and trustworthy leader-
board. CLEVA advocates a proactive method
for securing trustworthy evaluation results. By
collecting extensive new data, CLEVA sup-
presses the leakage of testing data prior to the
evaluation. Moreover, we frequently organize
new evaluation rounds, sampling a unique test
set from 9 million augmented instances. This
strategy further mitigates the risk of train-test
contamination, improving the trustworthiness
and timeliness of the leaderboard.

CLEVA is thoroughly validated by benchmark-
ing 23 Chinese LLMs on our large-scale test sets
(§ 6). The corresponding leaderboard and all other
user-friendly features will be continuously main-
tained and improved to accommodate new models
and evaluation methods.

2 Related Work

LLM evaluation is a rapidly developing field in
recent years to delineate the boundary of LLM’s
capability. In English, various systematic evalu-
ation benchmarks have been proposed. For ex-
ample, BIG-Bench (bench authors, 2023) is the
largest collection that covers more than 200 tasks.
HELM (Liang et al., 2022) organizes tasks into core
scenarios, which focus on use cases, and targeted
evaluation, which aims to better understand models.
HELM also presents a multi-metric measurement
that enables analysis of tradeoffs for each scenario.
Recently, AGIEval (Zhong et al., 2023) is proposed
to evaluate LLMs using challenging human ex-
ams. PromptBench (Zhu et al., 2023), on the other
hand, measures the robustness of LLLMs to prompts
via adversarial attacks. MT-Bench (Zheng et al.,
2023) collects multi-turn questions and presents the
Chatbot Arena platform that treats GPT-4 (OpenAl,
2023) as the judge.

While CLE VA shares the same fundamental mo-
tivation with HELM (Liang et al., 2022), to holis-
tically evaluate language learning models in their
original languages, CLEVA is far from a mere Chi-
nese replica of HELM. Building on the foundation
of HELM’s taxonomy, CLEVA introduces a range
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of tasks, with particular emphasis on those unique
to Chinese, to better assess the capabilities of Chi-
nese LLMs. It offers a new perspective on prompts,
providing abundant prompt templates to standard-
ize evaluation and encourage in-depth exploration
of models’ sensitivity. In terms of metrics, CLEVA
expands into new areas of diversity and privacy for
a more comprehensive evaluation. Finally, CLEVA
proactively mitigates train-test contamination by
collecting a significant amount of new data, cre-
ating unique test sets by sampling, and regularly
updating the leaderboard. All of these evaluation
designs are neatly packaged in a user-friendly plat-
form to facilitate community usage.

There is also a lot of progress in evaluating Chi-
nese LLMs (Huang et al., 2023; Liu et al., 2023; Li
et al., 2023; Zhang et al., 2023; Zeng, 2023). Open-
Compass (Contributors, 2023b) and FlagEval (Con-
tributors, 2023a) are two important attempts to
evaluate Chinese LLMs. OpenCompass pools 53
public datasets and uses standard accuracy-like
metrics as the only measurement for each dataset.
FlagEval, with a smaller number of datasets and
metrics, still needs further expansion to achieve
sufficient coverage. Compared to previous efforts,
CLEVA offers Chinese data from 84 datasets, in-
cluding 33.98% original queries, while employing
the broadest range of metrics to promote holistic
evaluation. CLEVA standardizes prompts (§ 4)
and mitigates data contamination issues, pioneer-
ing new paths for LLM evaluation in general.

3 Preliminaries

To measure the model performance on a task, a
relevant fest set is constituted from a collection of
instances. A test instance will contain multiple in-
put fields (string typically) and a list of references.
We then adopt a prompt template, which essen-

tially describes how to assemble the model input,
a.k.a, prompt, from input fields (Bach et al., 2022).
For example, a Chinese paraphrase identification
prompt template (and its translation) is:

Chinese Example:

“fsentencel ) F1“{sentence2} " X /i ™ | & 7E

[F] [/ — - H G2

English Translation:

Are the questions “{sentencel}” and “{sen-
tence2}” asking the same thing?

where {sentencel } and {sentencel} are two input
fields that will be replaced by the two candidate
questions in the test instance. The prompt will

be fed into a black-box LLM to predict an output
string together with its probability.

Finally, all model predictions and the corre-
sponding test instances will be passed into a met-
ric to obtain a numerical value that indicates how
well the model performs. Following HELM (Liang
et al., 2022), a metric in this paper is an umbrella
for a dimension of measures that share similar pur-
poses. For example, the accuracy metric corre-
sponds to BLEU for translation and pass@k for
code synthesis. We employ nine metrics, fore-
grounding metrics beyond accuracy and ensuring a
holistic evaluation.

4 System Design

CLEVA aims to deliver the following two key as-
sets to users who try to evaluate their own LLMs:
* A comprehensive and thorough assessment
report that informs users of the strength and
limitations of their models.
* A trustworthy leaderboard reflecting the lat-
est advancement of LLMs.
We will discuss our taxonomy that ensures compre-
hensive evaluations, and challenges like train-test
contamination in leaderboard maintenance.

4.1 Evaluation Taxonomy

Inspired by HELM (Liang et al., 2022), we present
a Tasks x Prompts x Metrics evaluation taxonomy
for users to evaluate their models. Our evaluation
taxonomy carefully designs a Chinese benchmark
targeting various LLM abilities, employs a set of
diverse prompt templates for each task to charac-
terize the model performance variance, and adopts
multiple metrics to comprehensively assess LLMs.
Tasks. As shown in Figure 1, our Chinese LLM
evaluation benchmark consists of two parts: ability
evaluation and application assessment. Each task
in ability evaluation focuses on one special skill
of LLMs, while application assessment involves
real-world NLP tasks that require LLMs to solve
practical use cases with their skill sets. Ability
evaluation assesses LLM ability from five aspects:
* Language measures how well LLMs under-
stand Chinese. In addition to three conven-
tional tasks, we incorporate two tasks specific
to Chinese: Pinyin transliteration and classi-

cal Chinese understanding.
* Knowledge focuses on assessing the capac-
ity of knowledge acquired by LLMs. We
further segment our evaluation into subject
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Figure 1: CLEVA benchmark.

knowledge and cultural knowledge (mainly
Chinese culture) based on the source of knowl-
edge. This fine-grained design allows users to
closely analyze the model performance across
different knowledge categories.

* Reasoning evaluates LLMs’ reasoning ability
in two settings: reasoning primitives, which
is independent of language and knowledge
background, and realistic reasoning that re-
quires reasoning with domain knowledge on
practical scenarios. On top of HELM, we ad-
ditionally include commonsense reasoning, in-
ductive reasoning, conceptual generalization,
and deductive reasoning.

* Harms evaluates the potential risk of LLMs in
copyright, disinformation, bias, and foxicity.

* Others is newly introduced to include cru-
cial yet uncategorized tasks like mathematical
calculation and instruction following.

For application assessment, CLEVA features 11
real-world NLP tasks. In addition to the core sce-
narios of HELM, we newly include opinion mining,
dialogue generation, paraphrase generation, trans-
lation, paraphrase identification, and data-to-text
generation. A detailed description of each task is
documented in Appendix B.

We instantiate the aforementioned tasks in two
ways: by directly adopting related public Chinese
datasets and by collecting new data. For well-
studied tasks, widely-recognized datasets are the
best options for forming our benchmark. However,
many important tasks, such as reasoning primitive,
Pinyin transliteration, and disinformation, lack cor-
responding Chinese datasets, making the evalua-
tion even more challenging. On these occasions,
we either synthesize using sophisticated rule-based
scripts (e.g., reasoning primitive) or enlist profes-
sional human annotators to construct new test sets
(See Appendix C for annotation details). In total,

the 31 tasks include 370K test instances from 84
datasets (9M queries in total after applying multiple
prompt templates and data augmentation), 33.98%
of which are newly collected.
Prompts. Ideally, an LLM should be a general in-
terface, capable of understanding prompts with the
same semantics, regardless of variations in surface
forms. However, LLMs’ notorious sensitivity to
prompt templates hinders accurate evaluation (Web-
son and Pavlick, 2022; Abdou et al., 2022), leading
to results that are sometimes incomparable. To bet-
ter understand an LLM’s sensitivity to plausible
human instructions, multiple prompt templates are
needed, rather than a single template as in previous
work (Contributors, 2023a,b; Liang et al., 2022).
In this work, we manually annotate an average of
3.95 prompt templates for each test set and support
all major prompting formats. CLEVA calculates
the performance statistics across the entire set of
prompts. These statistics do more than just examine
the robustness to prompt templates, as reflected by
the standard deviation; they also help estimate the
upper and lower bounds of an LLM’s performance
on a specific test set, as indicated by the minimum
and maximum values. Users can benefit from these
statistics to select models and to make informed
trade-offs between performance and investment in
prompt engineering. More discussions on prompt
templates we provided are in Appendix F.
Metrics. We adopt the 7 metrics from HELM for a
holistic evaluation, and, to address recent interest
in chatbots and safety concerns, we add two new
dimensions: diversity and privacy.

* Accuracy. Accuracy refers to the standard
metrics to measure model performance on dif-
ferent tasks, e.g., F1 score for question answer-
ing and ROUGE score for summarization.

 Calibration and uncertainty. Calibration
represents the gap between the model confi-
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dence and its actual error rate and is measured
mainly by expected calibration error (ECE,
(Naeini et al., 2015)).

* Robustness. Robustness is the worst-case
performance of a model across transforma-
tions of test instances. We focus on semantics-
preserving perturbations as there are many
well-studied data augmentation tools.

¢ Fairness. Similar to robustness, fairness em-
ploys perturbations related to social groups
to test the disparate treatment and disparate
impact of LLMs.

* Bias and stereotypes. We quantify bias as the
disproportionate representation of different so-
cial groups. This is gauged through the rates
at which these groups are mentioned during
model generation. Additionally, we interpret
stereotypes as uneven associations between
these social groups and certain stereotyped
terms, such as occupational roles.

* Toxicity. Following HELM (Liang et al.,
2022), toxicity is a general term that covers
hate speech, abusive language, etc.

* Efficiency. Efficiency is a rather broad con-
cept that has many subtleties. It could refer
to training or inference efficiency and is mea-
sured by energy, carbon, and wall-clock time.
As most information could be confidential, we
focus only on the inference wall-clock time.

* Diversity. Given the popularity of LLM-
based chatbots, we incorporate the conven-
tional diversity metric in dialogue systems
that evaluates the response surface form di-
versity (Li et al., 2016). Here, we employ the
diversity metrics from Miller et al. (2017).

* Privacy. In the real-world deployment of
LLMs, detecting private information in the
generated text, such as Personally Identifiable
Information (PII), is a challenging yet impor-
tant question. We report the portion of PII in
the whole test set to make the privacy eval-
uation generalizable. CLEVA adopts some
established tools to smoothly detect PII, and
we are working on accommodating more as-
pects of private content in the near future.

Detailed metric lists are provided in Appendix D.

4.2 Leaderboard & Data Contamination

Ensuring fairness, objectivity, and authority is cen-
tral to maintaining a trustworthy leaderboard. Pre-
vious work (Brown et al., 2020) has reported train-

test contamination, a situation where the test set
is included in the training data, leading to unreli-
able evaluations. Many existing benchmarks, e.g.,
Huang et al. (2023), conceal the test set labels to
avoid data contamination. Given the small scale of
their test sets and the large-scale training corpora
used by modern LLMs, the risk of unintentional
train-test contamination remains high. Sun et al.
(2023a) address this problem by making the official
test set private and requiring users to submit mod-
els’ weights for evaluation. However, this arrange-
ment is unpopular because numerous cutting-edge
models consider their weights highly confidential.

We advocate “mutual confidentiality” in LLM
evaluation: Users need not expose their model de-
tails, and the platform should minimize the risk of
disclosing its test set. Instead of model weights,
CLEVA only requires API access. We proactively
achieve the other half of mutual confidentiality by
continuously collecting new data and frequently or-
ganizing leaderboard rounds with unique test sets
sampling from our full-scale 9 million augmented
instances. These strategies not only improve evalu-
ation efficiency but also alleviate train-test contam-
ination from data and temporal perspectives.

To make sure that the sampled subset delivers
accurate results, our sampling strategy is not just
random sampling: It estimates an acceptable ap-
proximation error threshold (i.e., within this thresh-
old, the evaluation results on the sampled set have
at least a 70% chance to correctly rank any model
pairs), then adjusts the sampling rate for each task
according to this threshold, reducing the risk of
over-/under-estimating the model performance.

S Usage Example

Upon authentication, users are immediately pre-
sented with an interactive summary of our evalu-
ation results of 23 LLMs. Users can select from
these models, freely exploring the evaluation re-
sults from all 9 metrics and 31 tasks.

CLEVA simplifies the evaluation process of new
models with minimal coding required. If a user has
a model to evaluate, the user only needs a few min-
utes to finish these three steps: entering the model’s
API, selecting relevant tasks from 31 choices, and
picking desired metrics from 9 options. CLEVA
will autonomously call the user’s model, extract
the corresponding responses, and compute the final
metrics. Detailed descriptions and screenshots of
CLEVA are listed in Appendix A.

190



Accuracy

Robustness

Fairness

0.8

0.6 1

0.4
N “lllllll
0.0
v“ <€ v, -»
R

Mean Win Rate

Calibration

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

& 00\» && :ﬁ@‘} ° i‘}v“;@" 4@&”;{:;@1 &sﬂifife

@ cH

Figure 2: The mean win rate of 23 models in 31 tasks. The mean win rate is the probability of a model outperforming
a random different model on a random task. We exclude toxicity, privacy, and efficiency metrics as all models
excel in the former two, and the latter is often paired with other metrics to deliver meaningful comparisons. Since
robustness and fairness involve expensive data augmentation, we only evaluate ChatGPT and Claude-instant.

6 Evaluation

Setup. We sample 6.43% of our data to test 23 mod-
els that support Chinese (See Appendix E). As for
the cost, for example, it takes roughly 1600 GPU
hours (NVIDIA A100 80G) to evaluate BLOOMZ-
176B-mt (Muennighoff et al., 2023).

Results & Analysis. Figure 2 ranks all models by
their mean win rates under different metrics.

* Accuracy. It can be seen that GPT-4 (OpenAl,
2023) has the highest winning rate, followed
by other limited-accessed models. This result
shows a considerable margin between the per-

formance of open-source models and limited-

accessed models. Recent small instruction-
following models are better than large LLMs
without instruction-tuning, and are even better
than some early large instruction-following
models, indicating the necessity of effective
instruction tuning.

* Robustness. The trend on robustness is
roughly the same as that of accuracy, with the
exception of LLaMA (Touvron et al., 2023).

» Fairness. Most of the model rankings have
changed. One possible reason is that fairness
involves simplified-to-traditional conversion
(See Appendix D), and many models have
rarely seen traditional Chinese in pretraining.

* Calibration. We report ECE-10 (Kumar et al.,
2019) following HELM. We find that mod-
els with more parameters tend to have higher

ECE. For example, GLM-130B (Zeng et al.,
2023) and LLaMA-65B rank at the bottom.
For BLOOMZ-mt-7B vs BLOOMZ-mt-176B
and BLOOM-7B1 vs BLOOM-176B (Scao
et al., 2022), the smaller one wins.

* Bias. We focus on gender bias for comparison.
GPT-4 and other models, which rank top by
other metrics, are at the bottom, while most of
the open-source models have low bias. This
is because open-source models usually output
shorter, resulting in a lower risk of bias.

* Diversity. We choose inter-distinct to com-
pare different models. Open-source models
generate more diverse and innovative expres-
sion than limited-accessed ones, probably due
to their fewer safety concerns.

More detailed results and analysis are in Ap-
pendix G.

7 Conclusion

We present CLEVA, a Chinese LLM evaluation
platform. With the largest scale of Chinese in-
stances and broadest metrics, CLEVA provides a
comprehensive benchmark to holistically evaluate
Chinese LLMs. CLEVA standardizes key compo-
nents, such as prompt templates, to make evalua-
tion comparable. It also proactively mitigates the
contamination issue by collecting large-scale new
data, sampling for unique test sets, and regularly
updating the leaderboard.

191



Limitations

Without further information needed from users, we
can only use the inference walk-clock time as the
metric, which may have a larger variance when the
network is unstable. We advise users to adopt other
methods in addition to our metric to make a more
informed judgment.

In addition, how to evaluate privacy is still a chal-
lenging problem. We will update our underlying
algorithm frequently to reflect the latest progress
of privacy evaluation.

Ethics Statement

We consider the ethics issue in two folds, respon-
sible data collection and usage. We widely adopt
manual data collection to enhance the variety of
the tasks supported by CLEVA. During the manual
data collection, all the crowdsourcing workers and
the translators are well compensated. No sensitive
information of any kind is collected, and all the
participants are informed of the data usage.

CLEVA involves tasks that evaluate LLMs’ per-
formance on harm. Like prior work on this similar
topic, a proportion of data that contains bias, tox-
icity, and other harmful content are deliberately
included to evaluate how LLMs react in these situ-
ations. We pay extra caution to the related datasets,
and we advocate the responsible usage of these
datasets. These datasets should only be used for
LLM evaluation. Our sampling mechanism also
reduces the unwanted leakage of the data.
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A Platform Usage

To fully utilize our CLEVA to evaluate a large
language model, users can take advantage of our
user-friendly web application. As shown by Fig-
ure 3(a), users will first see our latest leaderboard
results with an interactive interface. Users can
probe the latest results freely, selecting the models
they care about and comparing different models on
9 different metrics. If a user intends to evaluate a
new model, a holistic evaluation can be deployed
with just a few mouse clicks and model APIs: The
process initiates with users inputting a specific link
that enables our platform to interface with the to-
be-evaluated model, as shown by Figure 3(b). Sub-
sequently, users are granted the flexibility to select
applicable tasks from an extensive set of 31 pre-
defined options (Figure 3(c)). The concluding step
involves the selection of the appropriate evaluation
metrics, from the 9 available options (Figure 3(d)).

B Benchmark

In this section, we provide a detailed description
along with an example for each task involved in
our benchmark. This example is for demonstra-
tion only and does not represent the whole test
distribution and all possible prompt templates. We
also accompany the English translation after each
Chinese example. In the provided example, text
highlighted in | green | is a reference that we expect
LLMs to predict and the other part is prompt con-
structed by a random prompt template and input
fields from a random test instance.

B.1 Ability Evaluation

B.1.1 Language

Language Modelling. This task asks the LLM to
score the probability of the input text. We use bits
per bytes (Gao et al., 2021a) as the metric that al-
lows us to make comparisons with different tokeniz-
ers. Data are sampled from CLUECorpus2020 (Xu
et al., 2020).

Coreference Resolution. Coreference resolution
is a traditional NLP task. We sample data from
CLUEWSC (Xu et al., 2021), where the model
must answer whether a given pronoun refers to
a given entity (the Winograd Schema Challenge).
We use accuracy as the metric for this problem. A
coreference resolution example is shown below:
Chinese Example:

R FORPTAE ST A (LR B L E S — 2R
D, WEPEHRT —(EEEEENELT, METEAD

KPR T —IK, FRZE, W7 ZRBEEN T HE
%, MthFE/
FEXER, “f R ET . REA? B

English Translation:

An associate professor from the research office where Jiang
Yingbo used to work went to Germany to attend an academic
event. During the event, he met a Chinese-German colleague
who invited him to his home. While talking, they both suddenly
felt that there were many coincidences and the world was really
small.

Here, does “him” refer to “colleague”? Yes or No? No

Pinyin Transliteration. In this task, the model
needs to annotate the Pinyin of a Chinese sen-
tence or infer a reasonable Chinese sentence from
a Pinyin sequence. We introduce this task because
Pinyin is Chinese-specific and crucial for some ap-
plications, e.g., writing songs needs to rhyme in
lyrics according to Pinyin and offensive language
sometimes is tweaked to sentences with a simi-
lar Pinyin to circumvent the blocking of sensitive
words. Since this task is newly introduced and there
is no primary metric available, we treat this task
as a translation task and evaluate the performance
with BLEU (Papineni et al., 2002). A Chinese-to-
Pinyin transliteration example is shown below:

Chinese Example:

B AT A FEENFRADURH & 2 AT % -

DF: W, REREGES, AR 2EH DK

PRS2Vl D

PF&:  yinci, yikaokejijinbu, qgidng hua ke xué guin If
yi chéng wéi shi xian yéu tidn weén chin di dang wu zht ji

English Translation:

Translate the following sentence between Chinese and Pinyin.

Chinese:  Therefore, relying on technological progress
and strengthening scientific management has become an urgent
task to achieve stable oilfield production

Pinyin: yin ci, y1 kao k& ji jin bu, gidng hua k& xué gudn Ii

yi chéng wéi shi xian yéu tidn wén chan di dang wu zhi ji

Intent Understanding. We introduce this task
to test whether Chinese LL.Ms could capture the
writing intent of the authors of a long document.
This task helps measure how well LLMs can un-
derstand implications. We formulate this task as a
multi-choice problem and adopt accuracy to assess
the performance. An example is shown below:

Chinese Example:

AL ESFMABK AR O HEPE TR A R AL A I EOEHE, AR

SMRRREE R - HOLKERIMLIRE, HHTERE ST 70% HHE

gk, T I GBI R R . BRI, [

E—TES, ERIRMEE ST A A RE AN T - D

R, REERAMEE . WRRE, EEER - CTFEN
BRI SINESSHEEE T it s aotERe -

S RESROED, B —T02
A EERTERS KRR, E5HP IR RE

%
AL
B. #JF E PRI EFIR T, R0 AR AT

AT -
CORTMAZZ B IIE AR, A RER 5 LA i RO
ZEHER .
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Red-Hot Evaluation Results! (Frequently Updating 4)

(a) Evaluation Results Overview

ot B enusionTasts "]

(c) Step 2: Select Relevant Tasks

| Evaluaton Task

Please provide interfaces for interacting with your model

(b) Step 1: Provide APIs for Evaluation

ot EvluatonTasks B couonvetics

Please select the evaluation metrics

(d) Step 3: Select Desired Metrics

Figure 3: CLEVA provides a user-friendly interface. With only several clicks and minimum coding, evaluating a

new language model can be deployed in a few minutes.

D. 4 HESEHE A SO VLB R BT S, B SR IG5
WS R -

%A

English Translation:

Male blue butterflies in the Amazon jungle have a rainbow-like
blue glow that can be seen from half a kilometer away. Their
glow is so intense that some can reflect 70% of blue light, far
exceeding the reflectivity of blue paint. The dazzling glow of
the blue butterfly is actually a warning signal, allowing other
male blue butterflies to know where to avoid from a distance.
The stronger the blue light, the more obvious the warning
effect. Survival of the fittest. Millions of years of natural
selection have given the wings of Amazon blue butterflies such
a wonderful performance.

Regarding the bionic research on blue butterflies, one item that
is not properly understood is

A. Among the various applications of bionic research on blue
butterflies, the research on securities anti-counterfeiting is the
most effective.

B. The structure and size of the feather-like structures on the
wings are topics of great interest to bionics researchers.

C. The new type of color-changing camouflage suit may be
related to the reflective structure of the blue butterfly wings.
D. The application research on the reflection mechanism of the
blue butterfly wings has not achieved any breakthrough results
so far.

Answer: A

Classical Chinese Understanding. Classical
Chinese plays an important role in Chinese culture.
Quatrain, poetry and etc. are all rooted in classi-
cal Chinese and most of them frequently appear in
modern Chinese literature. Therefore we include
this task to examine the model’s understanding of
classical Chinese. We sample multi-choice ques-
tions from CCPM (Li et al., 2021) that inquire
about the semantic equivalence between a modern

Chinese sentence and a list of classical Chinese
candidates. We use accuracy as the primary metric.
Below is an example:

Chinese Example:

<L AELR T RRINIE 7 — s b B SR - X A AT LA
PUF R ) oy ORI

A FERIFFFE

B. UGN IR

C. TR RHIE

D. WW#&5%

%2 D

English Translation:

“The continuous rain in the mountains has just shown a little
sign of stopping.” Which of the following ancient Chinese
sentences can be used to express this sentence:

A. Cold rain just stops

B. A morning in mountains, rain just stops

C. An over-night rain just stops

D. Rain in the mountain is stopping

Answer:, D

B.1.2 Knowledge

Subject Knowledge. This task is in the format of
fact completion (Petroni et al., 2019), where LLMs
fill in the blank of a Chinese sentence with entities.
Here we construct the dataset as in Petroni et al.
(2019), which tests the knowledge from 13 subjects
and 1 general domain. The metric is Accuracy @ K
(K =1,5). We provide a math knowledge exam-
ple:

Chinese Example:

BETERZNFMRT _ > | HiLJE

English Translation:
The Brahmagupta formula describes__ -> quadrilateral
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Cultural Knowledge. Here we query Chinese
LLMs with multi-choice questions related to Chi-
nese culture, e.g., idioms. Data are sampled from
ChID (Zheng et al., 2019). We adopt accuracy as
the primary metric and show an idiom example
below:

Chinese Example:

Ao, BTG FAHE CRE AU —E LA,
PRVEMAR, SEVEM - HERA, Wi1#EE
AR DRIEN:, UNREESZET ST 5, FReHE
ERARN, A RERA—MEBRAY), ILATHA
A ARG .

XA F R RIAL T UE S A Al E?

A REZR

B. iETLIBIR

C. G51Ekk

Z: A

English Translation:

However, if you want to become ____ to achieve something
on your own, it doesn’t come easily. Any outstanding person
has to go through a lot of hardships and setbacks before they
can truly succeed and become a person of exceptional ability,
making their life smoother and smoother. . .

‘Which idiom can be filled in the blank in the sentence above?
A. Wise and resourceful

B. Speak incoherently

C. Pretty on the outside but lacking substance underneath

Answer: A

B.1.3 Reasoning

Reasoning Primitive. Following HELM (Liang
et al., 2022), reasoning primitive is a collection
of reasoning tasks independent of language and
knowledge background and focuses on abstracted
reasoning capacity evaluation. It includes tasks like
non-ampliative reasoning, ampliative reasoning, re-
cursive hierarchy and etc. Readers can refer to
Liang et al. (2022) for more details. Here we syn-
thesize the dataset similar to HELM (Liang et al.,
2022) and use exact match to evaluate the final per-
formance. Below is a recursive hierarchy example
(in Dyck languages):

CCCCCErrrt{tcorcct Oy Dy HIrIIonre)
OI1Y I IIT0{ 3]

Realistic Reasoning. Contrary to reasoning prim-
itive, in-the-wild reasoning combines the abstract
reasoning skill of LLMs and their knowledge as
well as the understanding of context (e.g., math-
ematical reasoning requires LLMs to be able to
perform simple arithmetics). We choose the fol-
lowing reasoning tasks that not only help better
surface the reasoning skills of LLMs but also have
practical applications.

* Inductive Reasoning is to draw conclusions
by going through a set of examples. Here the
model needs to infer the rule from the few-
shot demonstrations we provided and apply
the rule to new examples. Data are collected

from BIG-Bench (bench authors, 2023). We
use exact match as the evaluation metric and

an example goes like this:
Chinese Example:

WA 5> B8 SOFTR T A
512+372-> 885

528 + 170 -> 699

859 + 133 -> 993

199 +944 -> 1144

154 + 521 -> 676

67 + 987 -> 1055

English Translation:

Infer the meaning of the symbol -> and calculate the
following formula.

512 +372->885

528 + 170 -> 699

859 + 133 -> 993

199 + 944 -> 1144

154 + 521 -> 676

67 + 987 -> 1055

* Deductive Reasoning is contrasted with in-
ductive reasoning, where the model pro-
gresses from conclusions to specific exam-
ples. We provide an example of modus tol-
lens', a form of deductive argument, in which
the model predicts whether a given conclu-
sion is valid or not according to the previous
statements. Data are translated from McKen-
zie et al. (2023) and we use accuracy as the

evaluation metric.
Chinese Example:

%Ll F
LRSI AR, 4RI
2 AR RRE T -

Vi, B, SRR B % R -

AL ARIERRIA L2, GHERTEER?

&

[EE=

English Translation:

Consider the following facts:

1. If Julia likes the Beatles, then Julia is a guitarist.

2. Julia is not a guitarist.

Conclusion: Therefore, Julia does not like the Beatles.

Question: Based on statements 1. and 2., is

the conclusion valid?
Answer:| Yes

* Commonsense Reasoning is an umbrella of
all related tasks, e.g., natural language in-
ference and commonsense question answer-
ing (Storks et al., 2019). We mainly evaluate
the classical natural language inference (data
are sampled from OCNLI (Hu et al., 2020))
and commonsense question answering (data
are translated from McKenzie et al. (2023)).
We organize them into multi-choice tasks and
adopt accuracy for assessment. Here we pro-

vide a textual entailment example:
Chinese Example:
S A LN F R, — BR BR,— B R e o
S NE TR AT LIS 7

"https://plato.stanford.edu/entries/

logic-ancient/#ForModPonModTol


https://plato.stanford.edu/entries/logic-ancient/#ForModPonModTol
https://plato.stanford.edu/entries/logic-ancient/#ForModPonModTol

A, BERTLL
B. BRI
C. AAf LA

% A

English Translation:

Can it be inferred from “The basket, one yuan, one
yuan.” that “This basket is for sale.””?

A. Always

B. Sometimes

C. Never

Answer: A

* Mathematical Reasoning also has a rather
big scope that envelopes various tasks, e.g.,
math word problem (MWP) solving, theorem
proving and etc. (Lu et al., 2023). Here we fo-
cus on MWP and adopt exact match for evalua-
tion. Data are sampled from Math23K (Wang
etal., 2017). An MWP in our benchmark is:

Chinese Example:

[ —AEFEY, FE1200 0, FREONE IR
M (3/5), FERIMGHAE 2D H?

EZ: 720

English Translation:

Question: A farm has 1200 ducks, and the number of

chickens raised is (3/5) more than the number of ducks
raised. How many more chickens are there than ducks?

Answer: 720
* Code Synthesis is a task to synthesize an exe-
cutable program that matches the requirement
written in natural language. Data are trans-
lated from HumanEval (Chen et al., 2021) and
we use pass@Fk as the metric (k = 1, 10, 100).
An example is shown below:

Chinese Example:

def is_sorted(lst):

HRE—EEFIIE, RETHTRE LI FHER -
WRINFEPI A L EET, R EFalse -
BIICH R R

e

is_sorted([5]) -> True

is_sorted([1, 2, 3, 4, 5]) -> True
is_sorted([1, 3, 2, 4, 5]) -> False
is_sorted([1, 2, 3, 4, 5, 6]) -> True
is_sorted([1, 2, 3, 4, 5, 6, 7]) -> True
is_sorted([1, 3, 2, 4, 5, 6, 7]) -> False
is_sorted([1, 2, 2, 3, 3, 4]) -> True

is_sorted([1, 2, 2, 2, 3, 4]) -> False

count_digit = dict([(i, @) for i in 1lstl)
for i in Ist:
count_digit[i]+=1
if any(count_digit[i] > 2 for i in 1st):
return False
if all(lst[i-1] <= 1st[i] for i in range(1, len(lst)))
return True
else:
return False

English Translation:
def is_sorted(1lst):

XN

Given a list of numbers, return whether they are sorted in
ascending order.

If the list has two or more identical numbers, return False.
Assume that there are no negative numbers and only integers.

202

Examples:

is_sorted([5]) -> True

is_sorted([1, 2, 3, 4, 5]) -> True
is_sorted([1, 3, 2, 4, 5]) -> False
is_sorted([1, 2, 3, 4, 5, 6]1) -> True
is_sorted([1, 2, 3, 4, 5, 6, 71) -> True
is_sorted([1, 3, 2, 4, 5, 6, 7]) -> False
is_sorted([1, 2, 2, 3, 3, 41) -> True
is_sorted([1, 2, 2, 2, 3, 4]1) -> False

v

count_digit = dict([(i, @) for i in 1stl)
for i in Ist:
count_digit[i]+=1
if any(count_digit[i] > 2 for i in 1st):
return False
if all(1st[i-1] <= 1st[i] for i in range(1, len(lst)))
return True
else:
return False

* Conceptual Generalization is a new task that
is similar to inductive reasoning, where the
model must reason over concrete examples to
get a general rule and apply it to unseen exam-
ples. The reason we separate this task from
inductive reasoning is that this task is special-
ized in reasoning over physical concepts or
relations like directions. Data are synthesized
as suggested by Patel and Pavlick (2022) and
we employ top-k accuracy (k = 1) to mea-
sure the performance. An example is shown

below:
Chinese Example:
TH 5
[0, 1,0, 0]
[0, 0,0, 0]
EFE: I

5
[1,0,0]

[0.0.0]

TS

[0, 1]

[0, 0]

BR b
T

[0, 0, 0,0, 0]
[0,0, 0,0, 0]
[0,0, 0,0, 0]
[0,0, 0,0, 0]
[1,0,0,0,0]
[0,0,0,0,0]
[0,0,0,0, 0]
wx B
English Translation:
World:

[0, 1,0, 0]
[0,0,0, 0]
Answer: top
World:
[1,0,0]

[0, 0, 0]
Answer: left
World:

[0, 1]

[0, 0]



Answer: up

World:
[0, 0,
[0,
[0,
0,
1,

[
[
[0, 0,
[0, 0, 0,0, 0]

Answer: = left

s
s
s

I
I
I
I
I
I

Scooo o

SoLooo o
SoLooo o
SO OO OO

> Uy
> Uy
5 Uy

B.1.4 Harms

Copyright. This task was initially introduced by
HELM (Liang et al., 2022) to examine the model’s
ability to generate verbatim content and measure
the underlying legal risk. We similarly extract some
initial portion of copyrighted Chinese materials
like books to construct prompts and let the model
continue generation from this prompt. We follow
Carlini et al. (2021) to collect text data and code
data are sampled from HELM (Liang et al., 2022).
We use longest common sequence, edit distance
and edit similarity normalized by prefix length as
evaluation metrics.

Toxicity. Here we choose the toxicity detection
task to study the toxicity of Chinese LLMs (Borkan
et al., 2019). In this task, we present a Chinese
sentence to the model and ask the model whether
the given sentence is toxic or not. We sample data
from COLD (Deng et al., 2022) and choose accu-
racy as the metric.

Bias. Similar to the toxicity part, we ask the
model to determine whether a given text is bi-
ased. We sample data from CDial-Bias (Zhou et al.,
2022), which covers four demographic categories,
including race, gender, region, and occupation. Mi-
cro F1 is the primary metric.

Disinformation. According to HELM (Liang
et al., 2022), disinformation refers to

false information that is disseminated by
an actor with the intent to deceive, mis-
lead, or otherwise influence the behavior
of the target. . .

However, related tasks described by Buchanan
et al. (2021) are not well-developed in the Chinese
world. We take a step to advance in this topic
and focus on detecting “false information” that
closely resembles hallucination detection and fact
checking (Thorne et al., 2018; Gupta et al., 2022).
We present a text that may contain hallucinated
facts to the model and ask it whether this statement
is true. We use accuracy as this is a classification

problem. Data are sampled from CHEF (Hu et al.,
2022).
Chinese Example:
EIEEAIIEGE: HGEY] . FAWEERERSLEAM -
ERGER T AL
g R

English Translation:

The 33rd Golden Rooster Awards were announced: Huang
Xiaoming and Zhou Dongyu won the Best Actor and Actress
again.

Is it True or False?

Answer:| True

B.1.5 Others

Mathematical Calculation. Calculation is a fun-
damental skill for LLMs to execute a lot of tasks,
e.g., comparing the price of tickets. To examine
this skill, we provide two types of test instances
and both of them involve basic arithmetic:

* The first type directly queries the model with
mathematical equations. This format is more
likely to test the memorization of LLMs on
arithmetic.

11+32-> 43

* The second type expresses the equation in a
natural language format. This type checks
whether LLMs could generalize what they
have memorized in mathematical format to

natural language format.
Chinese Example:
il fRiZ-48+62=n- n MEZEELD? & 14

English Translation:
Question: Suppose -48 + 62 =n. What is the value of

n? Answer: 14

For both types of instances, we utilize exact
match to evaluate the performance. Despite the
second type of instances being similar to MWPs
in mathematical reasoning, test instances here only
require the model to execute one-step arithmetic,
while MWPs in mathematical reasoning are far
more complicated and need multi-hop reasoning.
Data are collected or translated from bench authors
(2023); McKenzie et al. (2023).

Instruction Following. The success of recent
LLMs is larger attributed to instruction tuning (Wei
et al., 2022a; Ouyang et al., 2022), which un-
locks the great potential of large models (Fu and
Khot, 2022). Although the extensive application of
prompting has demonstrated the strong capability
of LLMs on understanding human instructions, it
is natural to ask if this is just an illusion of fre-
quentists or if LLMs truly master this. It is thus
important to evaluate LLMs on long-tailed instruc-
tions. These instructions could be underlying bugs
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of LLMs that are vulnerable to attacks and lead to
potential risk (Zou et al., 2023). Here we translate
some of these instructions from McKenzie et al.
(2023) that do not relate to common NLP tasks but
most LLMs perform poorly. Below is an example:

Chinese Example:
P MNRFUMAREEZH - W 6+ 1K H— T
ZME? % 6

English Translation:
Consider “+” as the number 1 instead of a mathematical
operation. Question: What is the first digit of 6+1? Answer: 6

We formulate the data in this task into a multi-
choice problem and use accuracy for measurement.

B.2 Application Assessment

Reading Comprehension. Reading comprehen-
sion is a type of question-answering task, where we
present both the question and context to the model
before it returns the answer. Our data for this task
are sampled from C? (Sun et al., 2019) and are of
the multi-choice format, therefore we use accuracy
for evaluation. An example is given here:

Chinese Example:
FESRLAR N, A& A I e

2 Wi LT BRI R R REF?
B WSRIER AR MR, BRI, XA,
2L EE - FR%, MlaERARES -

Al FEIFLT #IR R A AR

TR

A LTRERT

B. X7 k2

C. )LF TIEfRA

D. SR SRKR

% H B

English Translation:

Read the following content and choose the appropriate option
to answer:

Woman: I heard that your relationship with your son
is not very good?

Man: To be honest, I'm not a good father. I'm busy and
don’t have time to take care of him. We hardly communicate.
Because of me, he also has a lot of pressure.

Question:  Why is the relationship between the man
and his son not good?

Options:

A. The son has a bad attitude

B. Lack of communication between the two
C. The son is very busy with work

D. The father is under too much pressure

Answer: B

Closed-Book QA. A more challenging setting
of question-answering is closed-book QA (Wang
et al., 2021), where the model is given no extra
information and attempts to answer the question
based on its own knowledge. Data are sampled or
translated from Duan (2018); Zhang et al. (2018);
Lin et al. (2022). An example is shown below and
we use exact match as the metric:

Chinese Example:
A EREREIA — T RALBERISI LY
B BERBRBER

English Translation:

Question: Who can describe the appearance of magnesium
oxide?

Answer: White, loose powder.

Paraphrase Identification. In this task, a pair
of sentences is passed to the model and the model
decides whether they are discussing the same thing
or not. We formulate the sampled data from
CLUE (Xu et al., 2020) and FewCLUE (Xu et al.,
2021) into a binary-choice format and leverage ac-
curacy for assessment. -

Chinese Example:

PRE KSR

PRKSRAK

XA FRIANEBEREG? Z2eh? &
English Translation:

Do you have a bad temper?

Are you quick to anger?
Do these two sentences express the same meaning? Yes or

No? Yes

Summarization. In text summarization, the
model needs to abstract a long, unstructured text
and generate a short summarization. Note that
some of the data-to-text generation tasks (dis-
cussed later) also borrow the name “summariza-
tion”. The main difference between data-to-text
generation and text summarization in our bench-
mark is whether the context is written in a pro-
gramming language (then it is data-to-text gener-
ation) or the natural language because these two
languages are distinct in nature. We sample data
from CSDS (Lin et al., 2021) and use ROUGE (Lin,
2004) to evaluate the results.

Chinese Example:

EERE, BRSSP T B - ki

AL SR FE B R 52 5 o [ O T S 1R o DS e

AR o BEE ARG R IUR SR, AU 2 AL 5

[= R R 0793 % 9115 -8/l My < 0 i

TL:DR: VERALYE = A B RIPOSLE

English Translation:

When Mo Yan won the award, the publishers around him

were also happy. Beijing Jingdian Bowei Culture Media Co.,

Ltd. owns the publishing rights to all of Mo Yan’s work and

derivatives in mainland China. Mo Yan’s winning of the Nobel

Prize in Literature will not only bring a “considerable” increase

to the company’s profit but also accelerate the process of the

company’s listing.

TL:;DR: Nobel Prize goes to Mo Yan, accelerating the IPO of
his contracted publisher.

Data-to-Text Generation. Data-to-text genera-
tion is of growing interest recently as people try to
use LLMs to assist their work, e.g., generating a re-
port from an Excel table. This topic has long been
explored prior to LLMs (Puduppully et al., 2019),
especially under the name of summarization. We
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sample data from Shao et al. (2019) and use BLEU
for measurement. An example of generating an
advertising proposal based on a structured table (in
the Markdown format?) is shown here:

Chinese Example:

LEREA TR TR, A BRI DU

KR
| IR | B |

| S | PRI |

| B2 | L |

| E% | F42 |

| #BE | 1 |

IR

EHHS NI —E SRR, FRE
TRFHEENEHEER, EUADTESEILE,
WKIE R E RS EARE, RRERAEE
MR E . 7ot E % TR, ik
GHE, RIABETE -

English Translation:
Given the description of the features of a clothing item, generate
a corresponding advertisement copy.

Clothing features:

| Fit | Loose |

| Style | Casual |

| Pattern | Textile printing |

| Pattern | Hand-painted |

| Clothing type | Shirt |

Advertisement copy:

The first impression this shirt gives is its unique style. The
soldier pattern hand-painted on the shirt is exquisite and
interesting, making one can’t help but take a few more glances.
The strong retro style also gives this shirt an artistic sense, just
like the famous paintings in the Louvre in Paris. In terms of
style, it fits like a pajama, which is loose and comfortable,
casual and natural.

Sentiment Analysis. Given a text, the model pre-
dicts the sentiment label (“Positive”) in sentiment
analysis. Since it is a classification task, we use ac-
curacy for evaluation. Our data are collected from
FewCLUE (Xu et al., 2021). A sentiment analysis
example is shown below:

Chinese Example:

XA AN R IE T D2 R P

WA SRNEEFH, 5T HEIEN LI F P E
BRI, N, BEMEERNRIE
B | fE

English Translation:
Is this product review Positive or Negative?

Review: Just got the phone today and found that

there is a squeaking noise in the earpiece when making a call.

Not satisfied, really doubt if it is genuine.

Answer: Negative
Text Classification. Similar to sentiment analy-
sis, text classification predicts the answer from a
fixed set of labels for a given text. Instead of the bi-
nary label in sentiment analysis, text classification
in general has a larger label space. We collect data
from FewCLUE (Xu et al., 2021) and SPR>. We

adopt accuracy and an example is shown below:

thtps://en.wikipedia.org/wiki/Markdown
Shttps://github.com/DUTIR-Emotion-Group/
CCL2020-Humor-Computation

Chinese Example:

<4 [E A UMW 2 ZAR R TR 24T B (8 1) 2K Bl 8
T #E

English Translation:
The category of the news “The National Young Teachers’

Teaching Art Competition is held” is| education

Opinion Mining. Opinion mining is a large topic
that consists of vast tasks and has a close connec-
tion with sentiment analysis (Zhang and Liu, 2017).
An exemplary task of opinion mining that we test
here is opinion target extraction (Liu et al., 2012).
We adopt exact match for evaluation in the context
of the LLM era and show an example below:

Chinese Example:

“BREIEAR) SRR TEAE R 20044 F)— R E K

R¥ - P EERESGE T ATRIR?

MEILA
English Translation:

What is the main focus of the description in “The Notebook
is a 2004 romance film directed by Nick Cassavetes.”?

The Notebook

Dialogue Generation The popularity of Chat-
GPT has shifted the interaction between humans
and LLMs from a single-turn prompt continuation
to a multi-turn conversation (OpenAl, 2023). It is
thus important to evaluate LLMs in a multi-turn
conversation setup, i.e., in the dialogue genera-
tion task. In this task, we use data from Cross-
WOZ (Zhu et al., 2020) and report BLEU and uni-
gram F1. A conversation example is shown below:

Chinese Example:

R X BB A2

REOL: REHZFHL CITOE) -

P FEE? RERMEREE -

RO HEFEN, ZEET0FEELE -

R #RfE IR A2

RY Pl LR R, HER, N .

English Translation:

User: What video are you watching?

System: The Eyas, on iQIYI

User: Is it good? I am going to watch it at home if I have spare

time.

System: It’s pretty good. A TV series to celebrate the 70th

birthday of our country.

User: Who is starring in it?

System: Yikuan Yan and other young actors. Ni Yan also appears

in a cameo.

Paraphrase Generation. Paraphrasing and
rewriting is a common task in NLP. We show a
text to the model and the model produces new text
that is of the same meaning as the original text but
of a different surface form. Following Sun and
Zhou (2012), we choose iBLEU to evaluate the
performance and utilize data from PKU Paraphrase
Bank (Zhang et al., 2019).
Chinese Example:

—MNAIT IR
MHERRE B BB Ik 0 T LIRS A -

205


https://en.wikipedia.org/wiki/Markdown
https://github.com/DUTIR-Emotion-Group/CCL2020-Humor-Computation
https://github.com/DUTIR-Emotion-Group/CCL2020-Humor-Computation

EF LSRN
MR SE AT E AW (R ) — U B RO T

English Translation:

The original sentence is:

A barely audible answer came from Mason’s pale lips.
It can be paraphrased as:

Mr. Mason’s pale mouth let out an unclear answer.

Translation. Machine translation is not a
Chinese-specific task but is multilingual. How-
ever, the success of Chinese LLMs relies heavily on
bilingual (Chinese and English) data (Team, 2023;
Zeng et al., 2023) and thus most Chinese LLMs
are born to be capable of translating English text
to and from Chinese. Our data are collected from
the past WMT competitions (Kocmi et al., 2022).
We employ SacreBLEU (Post, 2018) as the evalua-
tion metric and an English-to-Chinese translation
example is shown below:

Chinese Example:
P House rebukes Trump on border wall, but he plans veto

I ARIBEAE DS IR E AR TR, (BRI B
—EBR

English Translation:
English: House rebukes Trump on border wall, but he plans veto

Chinese: ARMUSEAEI ek A1 AR EAR T, (EfditRl (M
—EBRIL

C Manual Data Collection

We collect data on an extensive scale, comprising
33.98% of our entire benchmark. Besides con-
structing new test instances using sophisticated
rules, manual annotation and composition serve
as vital new data sources in many complicated
tasks. We conducted rigorous screening, training,
examination, and other quality control measures
to ensure all crowdsourced work meets our high
standards. In screening, we require each crowd-
sourcing worker to have at least a bachelor’s de-
gree in a related major, and all translators must hold
professional certificates. Before the manual collec-
tion, we prepare a detailed instruction handbook
for each task, equipping qualified workers with the
necessary knowledge and using in-domain exam-
ples to further clarify the requirements. During the
collection process, we addressed all questions from
crowdsourcing workers through an instant message
platform. Automatic methods, as well as ample
eye tests, were adopted both during and after the
collection to guarantee fine-grained quality.

D Metrics

D.1 Accuracy

For each task in our benchmark, we list and under-
line the corresponding evaluation metrics for each
task in Appendix B.

D.2 Calibration and uncertainty

We mainly report the values of the following met-
rics:

* Expected calibration error (Kumar et al.,
2019) (ECE) measures the difference between
the model’s predicted probability and its exact-
match accuracy.

» Selective classification accuracy (El-Yaniv
and Wiener, 2010) computes the accuracy for
the C'-fraction of examples where the model
assigns the highest probability.

D.3 Robustness

Following HELM (Liang et al., 2022), we report
the worst-case accuracy, which averages the poor-
est result among transformations of each test in-
stance. Inspired by NL-Augmentor (Dhole et al.,
2021), we implement the transformation recipe as
the composition of the following perturbations:

* Synonym perturbation randomly substi-
tutes Chinese words with their synonyms with
a probability of 0.3.

* Butter finger perturbationrandomly re-
places Chinese words with other words that
have the same toneless Pinyin with a probabil-
ity of 0.05.

* Character swapping randomly swaps any
two Chinese characters with a probability of
0.05.

We utilize LTP (Che et al., 2021) to perform word
segmentation.

D.4 Fairness

We similarly adopt worst-case accuracy as in ro-
bustness to report fairness. We support 4 transfor-
mation recipes inspired by the perturbations from
NL-Augmentor (Dhole et al., 2021):

e Simplified to traditional conversion
converts both the prompt and references from
Chinese Simplified to Chinese Traditional®.

* Mandarin to Cantonese conversion trans-
lates both the prompt and references from

4https://github.com/BYVoid/OpenCC
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Mandarin to Cantonese. Here we adopt a rule-
based approach’ which first maps phrases in
Mandarin to their translations in Cantonese
and then converts the resulting string from
Chinese Simplified to Chinese Traditional.
We are aware that this implementation has
certain limitations and there is ample room
for improvement.

* Chinese name perturbation randomly sub-
stitutes all occurrences of a Chinese name
with another feasible Chinese name with a
probability of 0.5.

* Gender term perturbation randomly flips
all gender terms of a source gender to their
counterparts in a target gender with a proba-
bility of 0.5.

D.5 Bias and stereotypes

We follow metrics from HELM (Liang et al., 2022)
to quantify bias and stereotypes:

 Bias: we adopt the demographic representa-
tion in HELM, which measures the uneven-
ness of gender or race terms for all social
groups.

* Stereotypes: we adopt the stereotypical as-
sociations in HELM, which computes the un-
evenness of gender or race terms for all social
groups when co-occurred with an adjective or
profession term, then averages over all adjec-
tive or profession terms.

D.6 Toxicity

We employ the toxic fraction metric from
HELM (Liang et al., 2022), which is the fraction
of instances that are classified as toxic according to
the Perspective API (Lees et al., 2022)°. We use a
threshold of 0.5 to determine whether an instance
is toxic or not.

D.7 Efficiency

As stated in the main text, we focus only on in-
ference wall-clock time because limited statistics
could be reliably collected from users. Concretely,
we adopt queries per second (QPS), the amount
of queries processed by a model API in a sec-
ond, which is a common metric for measuring the
throughput of online services.

5https://justyy.com/tools/chinese—converter/
6https://perspectiveapi.com/

D.8 Diversity

and intra-
to quantify

inter-distinct
2017)

Here we adopt
distinct (Miller et al.,
surface-form diversity.

* Inter-distinct collects n-gram statistics from
all instances in the test set and computes the n-
gram diversity, which is the rate of all distinct
n-grams against all n-grams.

* Intra-distinct evaluates the n-gram diversity
per instance and averages across all instances.

D.9 Privacy

We pay close attention to current research on pri-
vacy evaluation. For example, Carlini et al. (2021)
utilize adversarial attacks to yield meaningful out-
comes. We so far focus on the detection of person-
ally identifiable information (PII) and are striving
to involve more aspects in the near future.

To evaluate privacy from the PII perspective, we
define PII_match, a metric similar to the toxic frac-
tion which represents the proportion of instances
that contains PII:

PII_match = !

=|

N
> T[PII_Detect(y;) > 0]
=1

ey
where N is the number of test instances, ¥; is the
generated text for ¢-th instance and PII_Detect is
the tool that returns the number of PII entities in ;.
We use Azure PII detection service’ to instantiate
PII_Detect.

E Models

Table 1 is the summary of Chinese LLMs we eval-
uated in our leaderboard.

GPT (Ouyang et al., 2022; Brown et al., 2020)
is a family of autoregressive LLMs from OpenAl.
The most recent and powerful GPT models are
ChatGPT3, text-davinci-003°, and GPT-4 (OpenAl,
2023). We test all these three models in our evalua-
tion.

Claude (Askell et al., 2021; Bai et al., 2022b,a)
is another family of autogressive models from
Anthropic, which include Claude and Claude-

7https://learn.microsoft.com/en—us/
azure/ai-services/language-service/
personally-identifiable-information/overview

8https://openai.com/blog/chatgpt

*https://platform.openai.com/docs/models/
gpt-3-5
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Model Version Organization Access | #Param. Window Size In;::;:;on Architecture
ChatGPT gpt-turbo-3.5(2023/07/11) OpenAl limited 4096 v GPT
text-davinci-003 text-davinci-003 (2023/06/17) OpenAl limited 175B 4097 v GPT
GPT-4 gpt-4 (2023/07/11) OpenAl limited 8192 v GPT
Claude claude-1(2023/07/07) Anthropic limited 100000 v
Claude-instant claude-1 (2023/07/21) Anthropic limited 100000 v
InternLM-104B (2023/07/13) Shanghai AI Lab & SenseTime limited ‘ 104B 2000 v GPT
ERNIE-Bot (2023/07/09) Baidu Inc. limited ‘ 2000 v
ChatGLM-6B vo.1.0 Tsinghua University open 6B 2048 v GLM
ChatGLM2-6B vi.0 Tsinghua University open 6B 2048 v GLM
GLM-130B - Tsinghua University open 130B 2048 v GLM
BLOOMZ-7B1-mt BigScience open 7B 2048 v BLOOM
BLOOM-7B1 BigScience open 7B 2048 X BLOOM
BLOOMZ-176B-mt - BigScience open 176B 2048 v BLOOM
BLOOM-176B BigScience open 176B 2048 X BLOOM
LLaMA-7B Meta open 7B 2048 X LLaMA
LLaMA-65B Meta open 65B 2048 X LLaMA
Vicuna-7B vi.1 LMSYS open 7B 2048 v LLaMA
Vicuna-13B vi.1 LMSYS open 13B 2048 v LLaMA
BELLE BELLE-7B-2M Beike Inc. open | 7B 2048 v BLOOM
Chinese-Vicuna-7B  Chinese-Vicuna-lora-13b-belle-and-guanaco Cui et al. open ‘ 7B 2048 v LLaMA
Chinese-Alpaca-7B  Chinese-Alpaca-7B Fan et al. open ‘ 7B 2048 v LLaMA
MOSS-16B moss-moon-003-sft Fudan University open ‘ 16B 2048 v CodeGen
Baichuan-7B Baichuan Inc. open ‘ 7B 4096 X LLaMA

Table 1: 23 Chinese LLMs evaluated in this work. For limited-accessed models, we mark the timestamp where
we finalized the evaluation in the format of (YYYY/MM/DD). For models with the same public name but have
different versions, we also provide the version we used to conduct the experiment. Note that the unit of window size

of ERNIE-Bot is characters instead of tokens.

instant!®, Both models are evaluated in our ex-
periments.

InternLM (Team, 2023) is a GPT-like Chinese
LLM trained by Shanghai Al Laboratory and Sense-
Time. It has a limited-accessed 104B and an open-
source 7B version. We evaluate the 104B version
in our experiments.

ERNIE-Bot!' is a Chinese LLM launched by
Baidu Inc. We observe that some datasets trig-
ger the safety measure of ERNIE-Bot and obtain
invalid responses. This fact leads to a poor result
in our evaluation.

GLM (Du et al., 2022) is a Chinese LLM family
from Tsinghua University trained with autoregres-
sive blank infilling. We only assess their open-
source GLM-130B (Zeng et al., 2023), ChatGLM-
6B!? and ChatGLM2-6B'3.

BLOOM (Scao et al., 2022) is a family of open-
source multilingual LLMs from BigScience. It
is not fine-tuned and has an instruction-following
version BLOOMZ (Muennighoff et al., 2023).
In our experiment, we test the pretraining-only
BLOOM-7B1 and BLOOM-176B from BLOOM,

10https://www.anthropic.com/index/
introducing-claude
"https://yiyan.baidu.com/welcome
2https://github.com/THUDM/ChatGLM-6B
Bhttps://github.com/thudm/chatglm2-6b

and the instruction-following BLOOMZ-7B1-mt
and BLOOMZ-176B-mt from BLOOMZ.
LLaMA (Touvron et al., 2023) is a more recently
released open-source autoregressive English LLM
family from Meta and is pretrained only. We ex-
periment with LLaMA-7B (the smallest one) and
LLaMA-65B (the largest one).

Vicuna (Chiang et al.,, 2023) is a series of
instruction-following models built on top of
LLaMA (Touvron et al., 2023). It comes from
LMSYS. We evaluate both Vicuna-7B and Vicuna-
13B.

BELLE (Ji et al., 2023) refers to a series of
instruction-following models from Beike Inc., fine-
tuned on various pretrained models like BLOOM
and LLaMA. We assess their BLOOMZ-based 7B
variant.

Chinese-Vicuna (Chenghao Fan and Tian, 2023) is
a Chinese instruction-following model fine-tuned
from LLaMA and has 7B and 13B two variants.
We experiment with the 7B version.
Chinese-Alpaca (Cui et al., 2023) is a family
of LLaMA-based Chinese LLMs. They extend
the original LLaMA’s vocabulary for better Chi-
nese modeling and open-source fine-tuned Chinese
LLMs with various model scales. We test their
early 7B instruction-following model.

MOSS (Sun et al., 2023b) is pretrained and fine-
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tuned from CodeGen (Nijkamp et al., 2023) by Fu-
dan University. It includes the pretrained model, an
instruction-following model, and a tool-augmented
instruction-following model (Schick et al., 2023).
We evaluate the instruction-following version'# in
our experiment.

Baichuan'’ is a pretrained Chinese LLM from
Baichuan Inc., with the same architecture as
LLaMA. We test the early 7B version and a new

13B version'® is released by the time of writing.

F Prompting
F.1 Settings

The prompt setting remains the same as the com-
mon practice (Brown et al., 2020; Liang et al.,
2022), where we randomly choose 5 in-context
training examples (a.k.a., demonstrations) for few-
shot prompting. To mimic true few-shot set-
ting (Perez et al., 2021), these 5 in-context training
examples will be fixed for all test instances. For
classification, we sample one example for each of
the 5 most frequent labels if the number of possi-
ble labels is larger than 5. If the length of 5-shot
demonstrations exceeds the context window size of
a model (e.g., reading comprehension), we reduce
the number of in-context examples.

F.2 Format

Completion-style few-shot prompting. Given
the description of the task, sampled demonstrations,
and a test instance, we use the below template to
construct the few-shot prompt for prompting con-
ventional LLMs (a string):

{instruction}\n\n{demonstration; }\n\n. ..
{demonstrations } \n\n. .. {prompt } {prediction}

where {instruction} is the task description,
{demonstration;} is the concatenation of the
prompt and reference of the first in-context exam-
ple, \n is the line break and {prompt} is the prompt
of the test instance. The model will continue the
prompt and complete the generation in {predic-
tion}. We denote this type of prompt template as
Completion. A mathematical calculation example
is shown below (we use an English prompt template
for demonstration only and all prompt templates in
our benchmark are Chinese):

14https://huggingface.co/fnlp/
moss-moon-003-sft

15https://github.com/baichuan—inc/baichuan—7B

16https://github.com/baichuan—inc/Baichuan—13B

Calculate the following formula.
758 + 445 -> 1203
758 + 445 -> 1203

140 + 361 -> 501

Chatbot-style few-shot prompting. The popu-
larity of ChatGPT has led to an outbreak of LLM-
based chatbot (Team, 2023; Chenghao Fan and
Tian, 2023). Existing work (Huang et al., 2023)
shows that the best few-shot prompting strategy for
chatbots is different from the one for conventional
LLMs. Specifically, the instruction, demonstra-
tions, and test prompt should not be concatenated
together but organized as a dialogue history, where
the instruction serves as the system prompt and the
prompt and reference of a demonstration form a
dialogue turn. The previous example will be reor-
ganized as below before feeding into the chatbot:

System:
Calculate the following formula.
User:
758 + 445 ->
Assistant:
1203

User:
163 + 140 ->
Assistant:
303

User:
140 + 361 ->
Assistant:
501

where System: is the field to set up the chatbot
and we will put the instruction here. User: and
Assistant: stand for the prompt and reference re-
spectively. We denote this type of prompt template
as Chatbot.

Multi-choice problem format. As discussed in
Liang et al. (2022), there are two strategies when
constructing prompts for multi-choice problems:

e Separate (Brown et al., 2020) scores each
choice by concatenating it with the prompt
and takes the one with the highest probability
as the prediction.

* Joint (Hendrycks et al., 2021) puts all
choices into the prompt and lets LLMs gen-
erate the choice index (e.g., “{question} A.
{choiceq } B. {choices} Answer:”).

In general, Separate approach better estimates the
model performance as the output space is restricted,
while Joint approach is more economic since the
model only needs to infer once to get the final an-
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swer. We consider both types when crafting prompt
templates for multi-choice problems.

Chain-of-Thought. Chain-of-Thought (Wei
et al., 2022¢; Kojima et al., 2022) (CoT) is a
crucial technique to elicit the reasoning ability
of LLMs. We also support CoT in CLEVA and
provide the corresponding prompt templates for
the mathematical reasoning task. An example
of CoT is shown below, where highlighted text
is predicted by the model and text in red is the
intermediate reasoning process and text in green is
the final answer.

Question: A community has 8 buildings, each

with 102 residents. On average, each household

pays 9 yuan per month for water. How much does

this community pay for water in total per month?
Answer: Let’s think step by step. First, each
household pays 9 yuan per month for water, and
each building has 102 residents. Therefore, the
total monthly water bill for each building is: 9 *
102 = 918 yuan. The community has a total of 8
buildings, so the total monthly water bill for the
community is: 918 * 8 = 7344 yuan. Therefore,
the answer is 7344.

F.3 System Design

Previous work (Bach et al.,, 2022; Ding et al.,
2022) has presented various approaches to design
a prompting language that enables flexible prompt
construction. However, their methods have shown
limitations in handling the vast variety of tasks for
large-scale evaluation: Their prompting languages
can only manipulate strings, while many tasks are
organized in a structured data format, e.g., dialogue
generation and data-to-text generation.

We therefore devise a slightly complicated
prompting language that accommodates cus-
tomized prompt construction of structured data
while preserving usability. We start the description
with an instance in JSON format from the dialogue
generation task:

{
"history”: [
{

"utterance”: "Who is the US president?”,

"role"”: "usr”

Yo

{
"utterance”: "Joe Biden.",
"role": "sys"

"utterance”: "Then who is his wife?”,
"role": "usr"
}
1y
"role": "sys",
"label”: [
"Jill Biden.”
]
}

and a prompt template example written as a JSON
dictionary (\n is the line breaking):

{
"verbalizer”: {
"role": {
"sys": "Assistant”,
"usr": "User”
}
3,
"history"”: {
"item_separator”: "\n",
"item_template”: "{role}: {utterance}"”,
"item_index"”: null
Yo
"input”: "{history}\n{role}:",
"label”: " {label}"

The general pipeline of our prompt construction
is as follows (we mark the field from the instance
in green and the one from the prompt template in
blue):

1. We first map values of all fields in a test in-
stance according to user-defined mappings in
verbalizer (Gao et al., 2021b). In our exam-
ple, all “usr” and “sys” will be replaced with
“User” and “Assistant” respectively.

2. We then stringify each field in the test instance.
We organize all structured data fields in the
format of a list of dictionaries (history in
our example) and apply the following rules to
process them:

(a) For each entry (a dictionary), we in-
dependently stringify it by composing
all its fields via a template defined in
the Python f-String syntax!”. For in-
stance, an utterance in the dialogue his-
tory “Who is the US president?” from the
speaker “User” will be formatted into
“User: Who is the US president?” ac-
cording to item_template in a prompt
template field that shares the same name
as history.

(b) We then index all stringified entries
(by prepending an index like “A. ”
to each entry) if needed and concate-
nate them with a user-defined separator
item_separator to stringify the whole
data structure. In our case, we do not
apply any indexing (an empty option in
item_index) and directly assemble the
final string of history with \n:.

User: Who is the US president?
Assistant: Joe Biden.
User: Then who is his wife?

3. We finally construct the prompt and references

17https: //peps.python.org/pep-0498/
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from all stringified fields. According to input,
the resulting prompt in our example will be:

User: Who is the US president?
Assistant: Joe Biden.

User: Then who is his wife?
Assistant:

For the references, we directly apply label in
the prompt template to every entry in label,
resulting in ““ Jill Biden” here.

Though not shown in the example above, another
crucial part is to attach specific post-processing
steps tailored to a prompt template. For example, if
we index the choices in an instance from a multiple-
choice task by capital letters like “A. ”, we should
capitalize the initial output letter for a more accu-
rate evaluation. In our system, we achieve this by
passing a list of predefined options to the subfield
postprocess in the prompt template field meta,
which executes the script of each post-processing
option on the output consecutively.

G Results

In this section, we provide the complete evaluation
results and breakdown analysis of our benchmark.

G.1 Meta Analysis

To validate the uniqueness and reasonability of di-
versity and privacy, we examine the correlation
between accuracy and these two newly introduced
metrics. Figure 4 shows the scatter plot. We can see
that there is a weak positive correlation between
accuracy and diversity, justified by a value of 0.30
in Pearson’s r (P-value is 9.9 x 10~). This phe-
nomenon suggests that a strong Chinese LLM is
likely to be able to produce diverse text. On the
other hand, privacy seems to have no strong correla-
tion to accuracy, with a value of -0.10 in Pearson’s
r (P-value is 0.05). These weak correlations indi-
cate the uniqueness of privacy and diversity as they
can not be easily encompassed by a single accuracy
metric.

G.2 Ability Evaluation

In this section, we focus on the analysis of ability
evaluation. Given that there are too many models
for comparison, we select several interested groups
of models in the visualization. Figure 5 compares
4 groups of models, each group consisting of two
categories with three top-performing models. We
have the following observations:
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* Although outstanding Chinese model like
InternLM-104B is comparable and even out-
performs the best English models in some
tasks, most high-ranking models in our Chi-
nese benchmark are English models.

The gap between limited-accessed and open-
source models (Liang et al., 2022) is also
witnessed in Chinese LLMs. We believe
this gap could be narrowed down by fine-
tuning a large-scale (with 100B and more
parameters) Chinese LLM with the most re-
cent instruction tuning strategies. Figure 2
shows that the well-performing open-source
models are small models fine-tuned by the
most recent and advanced techniques like Self-
Instruct (Wang et al., 2023). These models
mainly lag behind the limited-accessed model
in many reasoning and knowledge-intensive
tasks as shown in Figure 5, which could be
addressed by scaling up the model size (Liang
et al., 2022; Fu and Khot, 2022).

Aligned with Liang et al. (2022); Fu and Khot
(2022), large LLMs show clear advantages
over the small ones in many reasoning and
knowledge-intensive tasks.

Instructing tuning is indeed a crucial tech-
nique to unleash the full potential of
LLMs (Fu and Khot, 2022). Some small
instruction-following models are even more
powerful than those without instruction-
tuning. For example, InternL.M-104B is
much better than BLOOM-176B. In addition,
instruction-following models are generally
less sensitive to the choice of prompt tem-
plates (with a smaller area around each point),
suggesting that instruction tuning improves
the model’s robustness to prompt templates.

Moreover, we also observe some interesting phe-
nomena in Figure 5: Inverse scaling (McKenzie
et al., 2023) seems to appear in our instruction
following task, where the larger GPT-4, InternLM-
104B, and LLaMA-65B is worse than MOSS-16B.
According to our marking of tasks with a great stan-
dard deviation in Figure 5, they all are the emergent
ability (Wei et al., 2022b) candidate in the Chinese
world, e.g., mathematical reasoning, code synthe-
sis, Pinyin transliteration and etc. We are aware
that the analysis here is not a rigorous study that
verified the existence of inverse scaling and emer-
gent ability in certain Chinese tasks and we leave
it for future work. In the end, we find some tasks
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Figure 4: Correlation between diversity or privacy and accuracy on all tasks in a scatter plot format. Each point is a
model’s performance of diversity/privacy and accuracy on a specific task.

(e.g., inductive reasoning) that are difficult even for
the most powerful GPT-4, indicating an unresolved
problem that we could work on in the future.

We analyze the knowledge of different Chinese
LLMs in Figure 6 by utilizing questions from 14
subjects. We see that large models outperform
small models in this knowledge-intensive task on
many subjects, e.g., GPT-4, Claude, and Internl. M-
104B are much better than MOSS-16B and Vicuna-
13B. Notably, Baichuan-7B possesses a high quan-
tity of knowledge and is comparable to large mod-
els. This fact explains why it performs so well in
knowledge-intensive tasks like classical Chinese
understanding, commonsense reasoning and etc.,
as shown in Figure 5.

We also empirically examine the rationality of
the design and structure of our ability evaluation by
computing the correlation between any pair of tasks
and manually checking with the human prior. As
shown in Figure 7, most pairs of tasks that both not
belonging to the same aspect (e.g., knowledge) do
not share a statistically significant correlation, e.g.,
conceptual generalization and cultural knowledge.
Some statistically significant correlations are well-
match with our expectations (not exhausted):

* A good performance on coreference resolution
and cultural knowledge helps to identify toxic
and biased content (Pearson’s > 0.6);

* Commonsense reasoning ability is also re-
quired for toxicity and bias as this harmful
content could be implicit (Pearson’s 7 > 0.5);

* There is a strong positive correlation among al-
most all reasoning tasks (Pearson’s > 0.5);

* More subject knowledge improves conceptual
generalization and commonsense reasoning

(Pearson’s r > 0.6);

* More cultural knowledge yields a better result
in classical Chinese understanding (Pearson’s
r = 0.85);

* Mathematical calculation is almost mandatory
for mathematical reasoning (Pearson’s r ~
0.8);

These observations in general justify the rationality
of our taxonomy.

In addition, we observe some interesting phe-
nomena. Reasoning primitive has a strong positive
correlation with Pinyin transliteration (Pearson’s
r 2 0.9). This indicates that some sort of reasoning
is required for Pinyin transliteration. For example,
a valid Pinyin sequence matches the appearance of
each character and its Pinyin precisely. The model
needs to follow this rule to predict correctly. How-
ever, there are also some counter-intuition observa-
tions that could not be explained easily: A strong
positive correlation (Pearson’s r = 0.76) between
reasoning primitive and classical Chinese under-
standing reveals the distinct mechanism beneath
LLMs and the human brain.

G.3 Application Assessment

Figure 8 compares the performance of models in ap-
plication assessment tasks. The conclusions are in
line with those in Figure 2: Most high-ranked mod-
els are English models and are limited-accessed.
Interestingly, we see that English models tend to
have fewer “weak spots”, a task that the model per-
forms poorly compared to other models. It could
be the fact that we choose more Chinese models
that span a wide quality range, while English mod-
els are mainly the famous ones with the guarantee
in quality. We observe that English open-source
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fewer than 50B parameters, Tuned are instruction-following models and Pretrained are pretrained models (without
instruction tuning). Each point represents the mean performance of the model on a specific task and the area around
each point is of the size of £ standard deviation. We rank tasks in the x-axis by the standard deviation and the task
with a larger standard deviation is closer to the right. We mark tasks with a standard deviation larger than 0.1 by
gray shadow. These tasks imply the plausible emergent abilities of Chinese LLMs. Note that we normalize the
score in the copyright task across models and then subtract it from 1 to convert it to a metric whose value is larger

implying a better result.

models do not work well on translation and text * Efficiency. There is a large difference in effi-
classification. ciency among models. This is because there

We show the distribution of different metrics at exist many unfair comparisons. For example,
different tasks in Figure 9. limited-accessed models do not provide de-

tails on how many resources they invest when
serving each query.

* Robustness & Fairness. For robustness and
fairness, they have a similar trend as accuracy
but with a relatively lower value, probably
because they share the same base metric on

* Accuracy. Multi-choice tasks like reading
comprehension, text classification, and senti-
ment analysis have a high accuracy mean but
models are clearly differentiated. On the other
hand, generation tasks have a low median and
most models are close to each other in general.
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Figure 7: Correlation between different tasks in ability evaluation. Each entry is Pearson’s r between two tasks
from the corresponding row and column. * denotes that the correlation coefficient is statistically significant with a
P-value lower than 0.05.

augmented data. We observe that some tasks
are more sensitive to noise, e.g.,
analysis and opinion mining.
Calibration. We compare the values on
ECE-10 (Kumar et al., 2019). In general, mod-
els have a high ECE, making them less valu-
able in assisting human decisions.

Diversity. We focus on the inter-distinct met-
ric. We see that most models have a simi-
lar level of diversity in most tasks. Their

sentiment
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differences become obvious only in some
knowledge-intensive tasks like closed-book
QA and tasks that have multiple feasible cor-
rect answers, e.g., summarization, dialogue
generation, and data-to-text generation.

Bias. We choose to compare gender bias. We
observe that models in data-to-text generation,
summarization, and dialogue generation ex-
hibit a strong tendency to produce biased con-
tent. These results could be partially attributed
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Figure 8: Comparison among models from different groups in tasks of application assessment. We choose the best
models for each institution and divide them into 2 groups based on the language they focus on: Chinese or English.

Accuracy t Efficiency Fairness
096 1310 088
075 10 ° 066
°
0.54 7 0.44 8
s °
°
°
0.32 ? 3 é ° 0.22 Q
B & .
°
° ° %
3
ot ° 0 z === RS 000
I I P G CLg Cr L i« L I N P o (oP T I R G
26“00* v\\\\ &“ﬁ 0\‘*&\ $§5\(\57‘ \o\“\\\“ o oo a«a“& o o 25 * o @ \‘\‘&\ o < \e“‘“e“da 0o o™ R o @ o av\\“ «3“1} P‘“w ﬁ\‘\@ \o“‘\\\‘\e o oo 2¢< s Ga“dm
gom o\oa ““ RPF e <M Qcp\“" o o o (o n O ot (0" <ot o o = e ““ AT 0O 0 39° EC
¢ w\ e Q' S ¢ W & e ) X ¢ ¢ @ S
@@6“ o5 O oo o ‘ﬂ,@ o O o 20" @B@A“ o O o
Robustness t Calibration ¢ Diversity t
0.86 0.89 0.89 %
° ? =
H 8
0661 o 0.68 068
°
045 ° 0.47 ? 048
: T
°
°
0.24 é % B 0.26 0.27
é i | %I
°
0.04 ® 0.05 0.06
© S o =3 o ) o * o o
3O S ce\‘ W @ o o A S A S S & & 38 @
xé‘@“ Qa&a@ éev‘\\\ «?’“wﬁo“"@ o \‘\\0“\\ (23 Koy o e e s & o o ao\‘& 0\7“9\\ d’@fa“b R ol o o o R o
oo Q\o 0@ e o o o o o S ox & o o & T
@a@\ o 0%, B@Q W o o e 5
Bias | Toxicity ¢ Privacy {
050 [T_l £ 0.023 014
°
°
039 0018 0.10
8
°
8
029 0.012 0.07 e
8 o
] °
0.18 ° ’ o 0.006 % 0.03 ’
°
0
é 8 . i
° ° °
007 ° 0000] B e 2 — 0.00 == — — & -
N
w*o? « Ao “\\“m@ &\\ s“‘ o & of o o &\\wv & o & o W & o 2o &
e o o e o e 2 e e o &
G P I I e T
o o 20 o 5 o 0@ o o

Figure 9: The performance distributions of application assessment tasks under different metrics. Some tasks are
missing in some metrics because they are unavailable, e.g., models merely generate an index in the text classification
task, thus metrics that evaluate the generated text like diversity, bias, toxicity, and privacy are not applicable.

to the bias in the dataset domain.

* Privacy & Toxicity. For toxicity and diver-
sity, it is meaningless to compare as almost
all values are low. The only exception is dia-
logue generation in privacy. This is because
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our data contains inquiries for detailed con-
tact information. The implication of a high
value of privacy metric in dialogue generation
is mixed: It means that the model understands
users’ requests and attempts to address them
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Figure 10: The accuracy standard deviation of different models in different prompt templates from different
application assessment tasks. We select the best-performing models from top-10 institutions according to accuracy.

Multiple Choice Separate

TextCl Reading Comprehension

Multiple Choice Joint

Sentiment Analysis

Tuned Models

08

06

04

02

® @ ® ® @ @
¥ o R = ey
o K o

®
&

=

o o

o

=

v 3
o

TextCl Reading Comprehension

o o o ® O o o o
s W & o o o

@

Sentiment Analysis

Pretrained Models

08

06

04

02

&0
S

o

. .
& x5
o™ o

© e ° © &0 e o
¥ o W S o N oS
o X0 e 2 o
o o W o o o

&2 e a®
el (5o o
W of o

© ® - ® @ ® &
= e = & < A >
RO o RC \@w %&a“ o o

o

Figure 11: The accuracy of different models in multi-choice tasks with Separate and Joint style prompt templates.

with concrete information. It also implies that
the model has a higher risk of hallucination
that leads to potential harm.

At the end of this section, we study the prompt
template sensitivity, one of the key features in
CLEVA. Figure 10 presents the accuracy standard
deviation of different prompt templates of different
models. We find that instruction-following models
have a lower level of standard deviations and thus
are more robust to variations in prompt templates,
consistent with the conclusion in ability evaluation.
We also see that small models like ChatGLM2-6B
and Baichuan-7B have relatively higher standard
deviations compared with large models. Interest-
ingly, strong models like GPT-4 have a relatively
large variance in some tasks like summarization.
A possible reason is that models are sensitive to

some keywords in the instruction, e.g., almost all
models perform better in prompt templates that con-
tain “zhai yao” (means “summarize” in English) in
the summarization task. We also find that limited-
accessed models sometimes refuse to answer. For
example, ERNIE-Bot refuses to answer about 4
tasks, resulting in a lower ranking in Figure 2.

G.4 Prompting Analysis

As discussed in Appendix F, there are two feasi-
ble prompt template types for multi-choice tasks:
Seperate that feeds each choice with the prompt
separately and Joint that concatenates all choices
and feeds once. We compare the model perfor-
mance on these two types of prompt templates
in multi-choice tasks from application assessment.
Figure 11 shows that despite the cost of Separate,
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Figure 12: The accuracy of different chatbots with Completion and Chatbot style few-shot prompt templates.
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Figure 13: The accuracy of different models with various numbers of few-shot demonstrations.

it is more friendly to models without instruction
tuning as they perform much better than Joint.
This is because Separate restricts the model to
output choices only, reducing the errors caused by
unconstrained generation. However, for instruction-
following models, Joint yield more advantages
(e.g., ChatGLM2-6B in text classification, reading
comprehension, and sentiment analysis) as some
Separate prompt templates may not include all
possible choices in the prompt. In this case, mod-
els are likely to produce other viable answers that
could not be parsed by automatic metrics (e.g.,
paraphrasing the correct answer).

Similarly, we discuss the impact of Completion
and Chatbot style few-shot prompting strategies,
where the former concatenates everything into a
string and the latter orgainzes demonstrations into
a structured dialogue history. Figure 12 illustrates
the impact of these two styles of few-shot prompt-
ing strategies in various chatbots. We see that al-
most all chatbots perform better with Chatbot than
with Completion, demonstrating the effectiveness
of this tailored strategy. We also notice that GPT-4
and ChatGPT from OpenAl are not sensitive to the
few-shot prompting styles. After taking a closer
look at the generation results, we find that most
chatbots do not follow the format described in the
instruction and illustrated in the in-context exam-
ples to customize their answers, resulting in invalid
postprocessing of automatic metrics. For instance,

most prompts ask the model to output the answer
only, but Claude and ChatGLM6-2B tend to pro-
vide an explanation first.

We also investigate how the performance varies
as the number of in-context examples increases for
Chinese LLMs. Figure 13 visualizes the overall
trends of different models in different tasks. In gen-
eral, most models perform better with more demon-
strations and are saturated with around 4-8 training
samples. In line with existing work (Liang et al.,
2022), models without instruction tuning benefit
more from few-shot demonstrations. We observe
that many models suffer from performance degra-
dation in the text classification task. We believe this
is because our test set has a relatively large label
space and including more demonstrations distracts
the models.
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