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Abstract—Modern automated log analytics rely on log events
without paying attention to variables. However, variables, such
as the return code (e.g., “404”) in logs, are noteworthy for their
specific semantics of system running status. To unlock the critical
bottleneck of mining such semantics from log messages, this
study proposes LogVM with three components: (1) an encoder
to capture the context information; (2) a pair matcher to resolve
variable semantics; and (3) a word scorer to disambiguate
different semantic roles. The experiments over seven widely-
used software systems demonstrate that LogVM can derive
rich semantics from log messages. We believe such uncovered
variable semantics can facilitate downstream applications for
system maintainers.

Index Terms—log analysis, variable semantics, text mining

I. INTRODUCTION

A log message is a type of semi-structured language

comprising natural language written by software developers

and some auto-generated variables during software execution.

While logs carry detailed software run-rime information for

operators to monitor the software status, the overwhelming

logs impede developers from reading every line of log files

as modern software systems get more complicated. Intelligent

software engineering necessitates automated log analysis.

Unfortunately, modern log analytics only uses the natural

language part (i.e., event) and neglects the informative vari-

ables (i.e., parameters) inside logs. However, variables inside

logs with latent semantics should be noticed. While humans

seldomly use digits or character strings (e.g., 949e1227) in

communication, parameters in the log message are important

with specific meaning. Intuitively, a parameter in a log is

used to specify another technical concept in the log. Taking

the log in Table I as an example, a knowledgeable engineer

understands that the token “949e1227” refers to another token

“cell”, so “949e1227” is a cell ID. In this way, exploiting such

latent semantics benefits the understanding of parameters.
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TABLE I: An Example of the log message and its correspond-

ing event, variable and variable semantics.

Log messages Listing instances in cell 949e1227

Event Listing instances in cell < ∗ >
Variable 949e1227

Variable Semantics (cell, 949e1227)

Existing log parsing approaches [1], [2] used regular ex-

pressions to recognize block ID or IP address from log mes-

sages, but none of them captured the semantics of variables.

Moreover, designing human handcrafted rules requires tedious

effort and can only cover a fairly limited part of the logs.

In this study, we present a new approach, LogVM (i.e.,

Log Variables Miner), to automate latent mining semantics

for variables from log messages via the multi-task training

strategy. To our best knowledge, LogVM is the first model

that aims to extract the structured semantics of log variables.

II. TERMINOLOGY

We introduce the terminology by clarifying concepts and

instances firstly, then define the variable semantics in logs.

In particular, we use the term concepts to describe a set of

technical terms appearing in a log, such as “cell”. We use the

term instances to denote variables in log messages. In this

case, one concept can be instantiated by multiple instances.

Therefore, the variable semantics are represented by a set of

Concept-Instance pairs (CI pairs), which describe the concept

that the instance refers to, such as (cell, 949e1227).

III. OVERVIEW OF LOGVM

LogVM is an end-to-end model equipped with three mod-

ules to acquire the latent semantics of variables shown in

Figure 1. First, a log message is fed into a Contextual Encoder
for acquiring context-based word representation. Then, the

contextualized word representations are separately used for

two sub-tasks: (1) a Pair Matcher for extracting CI pairs; and

(2) a Word Scorer for determining the semantic role of each

word, respectively. In the training stage, LogVM applies the

multi-task learning strategy to simultaneously optimize two

sub-tasks. The extracted CI pairs in the testing phase will be

considered as variable semantics.
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Fig. 1: LogVM Architecture.

A. Contextual Encoder

Motivated by the success of long short-term memory net-

works (LSTM) across natural language processing tasks, we

devise a bi-directional LSTM-based network as the contex-

tual encoder to capture interactions and dependencies be-

tween words in log messages. Considering the severe out-of-

vocabulary (OOV) problem [3] caused by the large portion

of customized words in log messages (e.g., function names,

cell IDs), LogVM also takes character-level representation

learnt from a convolutional neural network. Consequently, for

each ward, its word-level representation and the character-level

representation are concatenated for contextual word encoding.

B. Pair Matcher

To resolve the variable semantics, this module is designed

for discerning the (concept, instance) pairs between words in

a log message. We abstract this problem as a multi-classifier

problem: for each word wi in a sentence S = w1, w2, ..., wn,

the matcher determines what previous word wj(0 ≤ j < i)
does the word wi refer to. 1 For each word, the pair matcher

built upon a feed-forward neural network ranks the probability

score for each previous token and regards the highest one as

the semantic pair.

C. Word scorer

We build a word scorer to determine the semantic role for

each token, i.e., whether it is a concept, an instance or neither
of both via another feed-forward neural network. The semantic

role is crucial because it can be used to disambiguate which

word in a CI pair is an instance (or a concept). Moreover, word

scorer benefits the pair matcher. Compared with two identified

concepts, one concept and one instance are more likely to be

a CI pair.

D. Multi-task training

Multi-task learning (MTL) is a training paradigm that trains

a collection of neural network models for multiple tasks

simultaneously [4] by leveraging the shared data representation

1A dummy token <TMP> (w0) is added to indicate the word does not
refer to any of the previous words in the message (e.g., in).

TABLE II: Statistics and experimental results.

System # CI Pairs Precision Recall F1
Android 6,478 0.979 0.858 0.915
Linux 2,905 0.992 0.947 0.969

Hadoop 2,592 0.993 0.880 0.933
HDFS 3,105 1.000 0.999 0.999

OpenStack 4,367 0.994 0.989 0.992
Spark 4,887 1.000 0.937 0.967

Zookeeper 1,189 0.997 0.940 0.968

Average - 0.994 0.936 0.963

for learning common knowledge. By minimizing the loss of

pair matcher and word scorer, the model naturally learns the

CI pairs and the semantic roles for each token with shared

representations generated from the contextual encoder. In the

inference, for each word, we regard the highest probability of

its semantic pairs and its semantic role as the final results.

IV. PRELIMINARY RESULT

We evaluate LogVM on seven widely-applied system log

files with 14,000 log messages (2,000 for each) and 25,523

CI pairs. Two volunteer Ph.D. students majoring in Computer

Science annotated the datasets separately and deliberate over

their answers to reach consensus.

In the experiment, we train LogVM on 150 OpenStack logs,

then finetune it on 50 logs for other systems and display the

result in Table II. We achieve an average F1 score of 0.963 for

seven systems logs with even a small number of the fine-tined

samples. The results demonstrate that our model could extract

high-quality and comprehensive variable semantics from log

messages.

V. CONCLUSION AND FUTURE WORK

In this study, we first discuss the limitations of variable

semantics usage in modern log analytics and then suggest

LogVM, the first automated variable semantics mining ap-

proach for log messages. Afterward, we demonstrate the

efficacy of LogVM over seven representative systems.

Apart from the intra-message semantics, it is also observed

that semantics can be resolved from the inter-message level. In

the future, we will (1) extend LogVM to cover semantics scat-

tering in several log messages; (2) evaluate how the extracted

variable semantics can help the downstream applications.
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