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Abstract—Software logs record system activities, aiding main-
tainers in identifying the underlying causes for failures and
enabling prompt mitigation actions. However, maintainers need
to inspect a large volume of daily logs to identify the anomalous
logs that reveal failure details for further diagnosis. Thus, how
to automatically distinguish these anomalous logs from normal
logs becomes a critical problem. Existing approaches alleviate
the burden on software maintainers, but they are built upon
an improper yet critical assumption: logging statements in the
software remain unchanged. While software keeps evolving,
our empirical study finds that evolving software brings three
challenges: log parsing errors, evolving log events, and unstable
log sequences. In this paper, we propose a novel unsupervised
approach named Evolving Log analyzer (EvLog) to mitigate these
challenges. We first build a multi-level representation extractor
to process logs without parsing to prevent errors from the parser.
The multi-level representations preserve the essential semantics
of logs while leaving out insignificant changes in evolving events.
EvLog then implements an anomaly discriminator with an
attention mechanism to identify the anomalous logs and avoid
the issue brought by the unstable sequence. EvLog has shown
effectiveness in two real-world system evolution log datasets with
an average F1 score of 0.955 and 0.847 in the intra-version
setting and inter-version setting, respectively, which outperforms
other state-of-the-art approaches by a wide margin. To our best
knowledge, this is the first study on localizing anomalous logs
over software evolution. We believe our work sheds new light on
the impact of software evolution with the corresponding solutions
for the log analysis community.

I. INTRODUCTION

Nowadays, intelligent log analytics is designed to man-

age overwhelming logs [1] for failure troubleshooting, and

anomaly detection [2]. Existing automated log analytics can be

categorized into two types based on granularity: coarse-grained

tasks and fine-grained tasks. Coarse-grained models, such as

the anomaly detectors [3] and failure predictors [4], detect

(or predict) anomalies given the logs from a period of time.

Taking anomaly detection as an example, the model accepts a

session of logs to determine whether an anomaly exists in this

session. Although the coarse-grained models show promising

results in open datasets, they provide limited evidence of

failure diagnosis for software maintainers. On the other hand,

fine-grained tasks aim to further identify the individual/single

anomalous logs within a session showing possible interpreta-

tions of the failure [5], [6], [7]. Even if coarse-grained models

free maintainers from inspecting massive log lines, it is still

∗ Corresponding author.

time-consuming to analyze hundreds of log lines within a

session to find the anomalous log for troubleshooting [8]. To

ease the burden of software maintainers, we focus on this

more challenging yet significant task, individual anomalous

log identification, in this paper.

An anomalous log signals an anomaly in the system, such as

network error [8]. The following example shows a log message

that may indicate a connection problem caused by a network

fault within the system:

Container launch failed for container 32h: Connection refused.

Anomalous logs are crucial for diagnosing failures, but they

are often accompanied by numerous normal logs, which can

be overwhelming for maintainers. To distinguish them from

normal run-time logs, existing studies [6], [7], [9], [10] con-

structed a reference model from training log sequences and

then identified which log violated the reference model. Specifi-

cally, they abstracted log event sequences into a directed graph

via either a finite state machine (FSM) [6], [7], [9] or causal

dependencies [10] as the reference model. Subsequently, any

deviations from this model would be regarded as an indication

for anomaly and marked for troubleshooting.

However, both FSM-based and causal graph-based ap-

proaches following the closed-world assumption suffer lim-

itations for processing the unseen data. However, after the

initial version is released, software experiences continual de-

velopment to fulfill customers’ demand, to fix bugs, and to

extend to new functionalities, which is well-known as software
evolution [11], [12]. Previous studies pointed out that logging

statements change over software evolution is so pervasive that

around 33% of the log are revised as after-thoughts [13], [14].

The changed logging statements during the evolution activities

raise challenges for existing approaches:

(1) Parsing errors. Log parsers extract static events (e.g.,

Container launch failed for <*>: Connection refused.) and

dynamic parameters (e.g., container 32h) from log messages.

However, as discussed in Section II-B1, parsers may misalign

revised log events in evolving software versions, causing log

parsing errors. These parsing errors further downgrade the

subsequent log analytics performance. (2) Evolving events.
Even if state-of-the-art parsers work as expected, software

evolution brings new logging statements or paraphrases old

logging statements, which we refer as evolving events in this

paper. (3) Unstable sequences. Apart from log events, the log
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Fig. 1. Evolving logging statement cases for Spark2 and Spark3.

sequences from running identical jobs can vary, named unsta-
ble sequences. Such variation can be caused by interleaving

logs produced from multiple threads [6]. Moreover, software

evolution may alter the function invocation sequences, leading

to new sequential patterns.

While solutions to the first two challenges still remain un-

explored, there have been several attempts to handle the third

challenge. For example, previous study [15] tried to resolve

the interleaving logs by considering multiple predecessors and

successors of a log event, instead of just the direct ones.

Another study [16] mitigated unstable sequences challenge

by learning causal relationships between event pairs from

historical data. Nevertheless, none of the existing approaches

considered the software evolution scenario, which can nega-

tively impact the performance of identifying anomalous logs

if left unaddressed.

To address the above challenges, we propose an unsu-

pervised anomalous log identification solution over software

evolution. The design of our approach is based on two

insights: 1) the majority of logs are normal in a healthy
system; and 2) the anomalous logs are unknown a priori
because we cannot iteratively inject all kinds of failures. In

particular, we design EvLog with two steps. The first step

aims to tackle the parsing errors and the evolving events
issues. We derive multi-level representations directly from logs

to prevent introducing parsing errors. The representations at

different levels undertake different functions: 1) the semantic-

rich representation aims to fully retain semantics from log

messages, which is extracted by pre-trained language models;

and 2) the abstract representation to align similar logs across

software evolution, which is derived from the hierarchical

clustering approach. Such multi-level representations maintain

the pertinent semantics while leaving out unnecessary trifles

to address the evolving events issue.

In the second step, we address the unstable sequence issue

by constructing an anomaly discriminator with an attention

mechanism. The core idea is to learn a transformation function

(e.g., neural networks) that embeds normal log features (source

domain) to stay close (enclosed in a hyper-sphere) to a

target domain, then the logs that are largely distant from this

hyper-sphere are considered as anomalous ones. Specifically,

EvLog constructs log features for each single log and its

surrounding log contexts based on multi-level representations.

It then applies neural networks to discriminate the anomalous

logs instead of rigorously comparing new sequences with

existing ones. Once trained, EvLog can be directly applied

TABLE I
LOGGING EVOLUTION RATIO BETWEEN SPARK2 AND SPARK3.

Percentage Unchanged Inserted Paraphrased Removed

Log message 91.16% 0.07% 8.75% 0.02%
Logging statement 76.12% 12.69% 1.49% 9.70%

to a future software version without any fine-tuning.

Our new approach is evaluated using two realistic datasets

(i.e., LOGEVOL) and a synthetic dataset (i.e., SYNEVOL) to

simulate logging evolution. The experiment results illustrate

that EvLog reaches a promising average F1 score of 0.955

and 0.847 in intra-version identification and inter-version

anomalous log identification on two representative system

logs, respectively.

To conclude, the contribution of this paper is threefold:

• We empirically identify three challenges (i.e., parsing errors,

evolving events, unstable sequence) brought by software

evolution for anomalous log identification, which has never

been properly addressed before.

• To overcome the above challenges, we develop EvLog, an

unsupervised anomalous log identification approach with a

multi-level representation extractor and an anomaly discrim-

inator. To our best knowledge, EvLog is the first solution

to tackle the problem of identifying anomalous logs over

software evolution.

• By evaluating EvLog on real system log datasets and a syn-

thetic dataset, we show our approach can effectively identify

anomalous logs across different software versions without

fine-tuning or manual labeling. Artifacts are released for

research purposes at https://github.com/YintongHuo/EvLog.

II. MOTIVATING STUDY

A. How do logging statements evolve?

Developers may modify logging statements when updating

the software, producing unseen log messages in system run-

time for maintenance. To examine how logging statements

evolve during software updates, we analyze Spark, an open-

source cluster computing system for the parallel processing of

large-scale data. In particular, we run benchmark workloads in

Spark 2.4.0 (denoted as Spark2) and Spark 3.0.3 (denoted as

Spark3) with details shown in Section V-A and compare the

collected log messages.

We categorize the change of logging statements into three

types: insert, paraphrase and remove. We show three cases

in Fig. 1, where “<*>” refers to the dynamic parameters

generated in running time. In Case I, a new logging statement

is added in Spark3 to indicate the attached resources. In Case

II, the logging statement is paraphrased by adding information

on the number of pieces and the estimated size of the variable

to gain a deeper understanding of the system performance. In

Case III, a logging statement is removed from Spark2 due to

the deprecation of ”UserDefinedFunction” in Spark3.

Table I displays the statistics of the three types of changes

on collected log messages and logging statements. It is

observed that nearly 24% logging statements are changed

from Spark2 to Spark3, resulting in almost 10% changed log
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Fig. 2. Three challenges brought by software evolution. E1, E2, etc., represent different log events. (1) The parsing error case shows the incorrectly parsed
log messages that will impact the subsequent log analysis, (2) The evolving event case exhibits that a paraphrased logging statement will mislead the reference
model, and (3) The unstable sequence case depicts how a new logging statement E2 can alter produced log sequences.

messages. Although 12.69% and 9.70% logging statements

are inserted or removed, respectively, they only make up

less than 0.1% collected logs, meaning they appear in a low

frequency. However, the high proportion of paraphrased logs

implies developers are likely to modify the commonly-used

logging statements. To conclude, logging statements change

over software evolution. The non-negligible amount of changes

motivates us to reckon with the software evolution issue.

B. How does evolution raise challenges for anomalous log
identification approaches?

1) Parsing errors: Log parsers extract constant strings (i.e.,

events) and run-time parameters from log messages. However,

existing log identification models only use the extracted events

and do not consider the original log messages. This can be

problematic because log parsers can introduce errors, and the

evolution of logs over time can make parsing even more chal-

lenging [17]. CASE I in Fig. 2 displays two parsing mistakes

from a widely-used parser, Drain [18], where <*> denotes

parameters. The top one is caused by confusing parameters

with constant strings, and the bottom one shows inconsistent

parsing results in Spark2 and Spark3. Since current log parsers

are parameter-sensitive and not versatile enough [19], and

the hyper-parameters that work well for one software version

may not be suitable for others. Since systematic log analytics

should operate on raw log messages, it is essential to find ways

to avoid parsing mistakes.

2) Evolving events: Log identification models also face a

challenge in dealing with evolving events. Typically, these

models detect anomalous logs by examining whether the actual

next log is in line with the predicted next logs based on

contextual information. The idea works well when all the

events are known; however, if the actual next log is an unseen

event, it can never be matched with any predicted next logs.

For instance, in CASE II of Fig. 2, event E3’ cannot be

matched with the predicted logs since it is a paraphrase of

event E3. According to its decision logic, such inconsistency

leads to a significant issue where all unseen events are treated

as false positives. This issue becomes severe for all existing

log-based approaches considering that 8.75% of the collected

logs have been paraphrased.

3) Unstable sequences: Ideally, we expect that the log

message sequences perfectly match the execution sequences of

a program. However, there are situations where log messages

from different threads can interleave, resulting in what we

refer to as ”unstable sequences”. Additionally, introducing new
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Fig. 3. Anomalous logs localization problem illustration.

logging statements in a software update can create new log

events during run-time, leading to sequential pattern changes.

As shown in CASE III of Figure 2, unstable sequences can

be caused by interleaving logs [6] and new log events from

software evolution. To resolve the issue, identifying relevant

and informative log messages in a sequence is of great essence.

In summary, our empirical findings suggest that logging

evolution can affect existing models in three ways: the poten-

tial parsing errors, the evolving events, as well as the unstable

sequences. These influential factors have never been explored,

yet their impact can hardly be ignored.

III. PROBLEM ILLUSTRATION

In this paper, we consider the anomalous log identification

problem as in the literature [6], [7], [20], which enables

pinpoint a collection of fault-indicating anomalous logs [8].

Given a sequence of log messages s = s1, s2, ..., sn, the

task asks the model to find a set of anomalous logs AL =
{si|1 ≤ i ≤ n} within the message sequence. Compared

with the anomaly detection task that determines whether a

problem exists in a session (session-based), anomalous log

identification is a more fine-grained and challenging task that

needs to localize individual fault-indicating logs (message-

based). We use context to represent the surrounding logs of

a specific log (named as the center log) and analyze whether

the log is anomalous based on its context.

To resolve the subset AL, we check every individual log,

that is, for all si ∈ s, the model determines whether the center

log si is an anomalous log in the given context of si. We will

add the center log into AL if it is considered anomalous. Fig. 3

shows the identification process, where the center log and its

corresponding context are highlighted with a red rectangular

and yellow background, respectively.

IV. APPROACH

This section introduces our novel approach, called EvLog,

shown in Fig. 4, in tackling the anomalous log identification
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Fig. 4. EvLog with a multi-level representation extractor and an anomaly discriminator.

challenges over software evolution. EvLog has two compo-

nents, i.e., a multi-level representation extractor to derive

multi-level robust log representations, followed by an anomaly
discriminator with the attention mechanism to pinpoint the

anomalous logs. In particular, the multi-level representation

extractor targets at extracting rich representations as informa-

tive as possible and abstract representations to capture high-

level commonalities among similar logs. Then these represen-

tations are fed into the anomaly discriminator to automatically

localize the anomalous logs in an unsupervised manner.

A. Multi-level representation extractor

We exploit multi-level representations with various infor-

mation from log messages to semantically understand them.

This section illustrates how to extract multi-level semantic

representations, that is, a rich representation and an abstract
representation. The low-level rich representation provides a

concrete understanding of a certain log. In contrast, the high-

level abstract representation captures the commonality of logs

with similar semantics, regardless of their slight differences

(e.g., parameters difference, revised log events).

1) Rich representation: Semantics in both log events and

their corresponding parameters has advantageous for log anal-

ysis [21], [22]. To obtain informative representations from

logs with respect to their semantics, we fine-tune a pre-trained

language model [23] (PLM) on our collected log datasets.

The PLMs have shown the powerful semantic encoding

ability for many software engineering tasks, such as log-based

anomaly detection [24] and code comprehension [25]. In our

work, to overcome potential parsing errors and to make the

best usage of information inside log messages, EvLog acquires

domain-specific semantic representations via PLMs. On one

side, system logs share some fundamental knowledge with

natural languages since humans write logging statements.

After being trained on a large corpus, the PLMs learn more

information about word senses, not limited to system logs. On

the other side, we notice that these PLMs are not sufficient

for domain-specific tasks due to the knowledge gap. Hence,

we fine-tune the massive language models to further capture

domain-specific semantics. In specific, we employ the widely-

used masked language modeling strategy [26], [27], [28] to

fine-tune the PLMs, by randomly masking 10% tokens in each

log and asking the model to predict the masked tokens.

Specifically, given a log message x, the rich representation

xrich is designed to capture its detailed semantics. This parser-

free representation extractor accepts log messages instead of

events, allowing it to get away from potential parsing mistakes.

Algorithm 1 Abstract representation acquisition.

Input: Rich representation to be clustered E = [e1, e2, ..., en]
Output: Abstract representation C = [c1, c2, ..., cn]
1: C = []
2: Centroid={}
3: E′ = PRINCIPALCOMPONENTANALYSIS(E)
4: ClusterIds = HDBSCAN(E′)
5: ”””Compute centroid for each cluster”””
6: for all ClusterID from 1 → SET(ClusterIds) do
7: Centroid[ClusterID] = MEAN(E’[ClusterIds==ClusterID])
8: end for
9: ”””Compute abstract representation”””

10: for all i from 1 → n do
11: C .APPEND(Centroid[ClusterIds[i]])
12: end for

2) Abstract representation: Apart from the rich represen-

tation, we also extract a high-level semantic representation,

xabs, that remains stable on similar log events over logging

evolution. To this end, we develop a cluster-based approach

on top of the rich representations. Previous studies [29], [30]

have demonstrated the effectiveness of clustering approaches

in grouping similar texts together based on their intrinsic

characteristics. Motivated by theirs, we also employ a cluster-

based approach to group log messages. Specifically, we adopt

the idea from the previous log clustering study [31] using Hier-

archical Density-Based Spatial Clustering of Applications with

Noise (HDBSCAN) [32], whose efficiency and effectiveness

has been presented in many domains [33], [34]. Compared to

other clustering approaches, HDBSCAN inherits two special

advantages for our scenario: (1) It can automatically extract

the “dense” cluster without pre-defining the number of clusters

(e.g., Kmeans [35]), which is important in the case that we may

never know the number of clusters of logs. (2) HDBSCAN

has a few parameter numbers, and its robustness to parameter

choice [31], [32] makes it versatile for diverse log data.

Eventually, the abstract representation xabs for each log

message x is the centroid of its corresponding cluster by av-
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eraging all points (logs) belonging to the cluster. Algorithm 1

shows the abstract representation computation process.

B. Anomaly discriminator

This section illustrates how we pinpoint anomalous logs

from the acquired rich and abstract representations. In par-

ticular, for each input log, the unitary discriminator processes

the log, and the local discriminator processes the log’s context.

Two processed results are integrated as the final output.
1) Basic idea: Existing unsupervised log-based reference

sequences models [3], [6], [36] build a reference model from

training data and check whether the testing log violates the

prediction from the model. Unfortunately, these models are

ineffective at handling evolving events over software evolution.

Moreover, the anomalous logs are unknown a priori because

we cannot iteratively inject all types of faults. Thus, we

propose a different approach to handle the problem by learning

the “normality” of the normal log features instead of predicting

the subsequent events.

Motivated by the Support Vector Machine [37] (SVM)

that learns a hyperplane to separate data, our idea is to

develop a neural network that learns a hyper-sphere to separate

normal logs and anomalous logs. The neural network maps

log features (in the source domain) to a target domain where

normal features stay as close as possible (enclosed in a hyper-

sphere). We measure the distance between a mapped log

feature and the center of the hyper-sphere as normality (e.g.,

grey circle in Figure 4), with logs far from the center being

considered anomalous due to deviating from the normality.

In this way, logs with evolving events can be transformed

into the target domain where they are close to the previous

semantically similar logs, minimizing adverse effects on the

anomaly discriminator results. For example, if a normal log

is paraphrased during software evolution, the evolved log

with similar semantics will be mapped within the normality.

This new approach in localizing anomalous logs is superior

via two advantages: 1) It delivers better performances than

other traditional methods due to the neural network’s proven

learning ability. 2) Our approach frees humans from labor-

intensive labeling since it can learn the normality naturally in

an unsupervised manner from large-scale normal logs that can

be easily collected from stable software.

Specifically, the goal is to train a neural network model

(mapped features from the source domain to the target domain)

while minimizing the hyper-sphere volume that encloses the

normal data features in the target domain. In this way, the

model is forced to learn implicit semantics since it must map

the normal log features closely to the hyper-sphere’s center.

Thus the unseen log events with similar semantics can also be

embedded close in the target domain. To achieve the above

goal, the objective function is:

J = min
W

1

n

n∑
i=1

‖φ(xi;W )− c‖2 + α

2
‖W‖2, (1)

where φ(xi;W ) refers to using the model φ with its parameters

W to map each input sample xi ∈ x to a hyperspace R
n;

c ∈ R
n refers to the hyper-sphere center; the last term

serves as a regularization term with weight α to avoid over-

fitting. The objective function forces the normal data features

to stay close to the center c. Theoretically, the mapping

model φ can be replaced by any neural network architecture,

demonstrating the extensibility of our approach. The following

two sections show how we develop an appropriate neural

network for mapping multiple features. We then describe how

to integrate the mapped features for identifying anomalous

logs in Section IV-B4.
2) Unitary discriminator: We first look into single logs,

as the single log that contains negative words (e.g., “failure”

and “error”) usually indicates an anomaly. The unitary dis-

criminator works on rich representation of individual logs,

aiming to map normal logs to a hyper-sphere that describes the

normality. The motivation behind the unitary discriminator is

that, the negative terms in anomalous logs exhibit significantly

different semantics than words in normal logs (e.g., “running”,

“success”). These anomalous logs’ features will be mapped

far away from the center of the hyper-sphere; thus they

are considered as normality-deviating ones. To this end, we

adopt the strong learning ability from neural networks and

build the unitary discriminator (φuni) with a two-layer feed-

forward neural network denoted as FFNN . We describe the

architecture as follows:

φuni(xrich;Wuni) = FFNNb((FFNNa(xrich)), (2)

where xrich refers to the rich representation containing full

log semantics (i.e., unitary feature) of the center log x.
3) Local discriminator: Looking into one individual log

is not sufficient to comprehensively understand the running

status, so it is noteworthy to exploit its contextual information.

On the one hand, it is pointed out that different logs possess

different importance [38]. For example, some miscellaneous

logs regularly appear regardless of what job the system is

running, whereas other logs provide richer guidance for anal-

ysis. On the other hand, log data transmission, collection,

and software evolution affect synchronization temporally, lead-

ing to unstable sequences. To focus on beneficial logs and

leave the uninformative logs out, we leverage the attention

mechanism [39] to focus on beneficial logs. In the local

discriminator, we use the center log and its contexts to acquire

a local feature against unstable sequences and then learn the

normality of such a local feature.
Given a center log x, we construct its context representation

xctx by forming its abstract representation of context as a

matrix. Then we compute the weights across the context by

the attention mechanism [40], allowing the model to learn the

importance of surrounding logs, thus addressing the unstable

sequence issue. Specifically, given a center log xrich as query

and its context xctx as value, we compute the weighted

context representation as the local feature (denoted as xlocal)

as follows:

xlocal = softmax(
xqueryx

T
ctx√

dk
)xctx,

xquery = FFNNc(xrich),

(3)
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where dk refers to the dimension of xctx, and FFNNc

transforms xrich to the target domain that shares the same

dimension with xctx.

After that, another two-layer neural network with an activa-

tion function is applied to the local feature xlocal for learning

normality from contexts. To sum up, we describe the network

for the local discriminator (φlocal) as in Equation 4:

φlocal(xrich, xctx;Wlocal) = FFNNe((FFNNd(xlocal))).
(4)

4) Integration: The unitary discriminator learns normality

for individual logs, whereas the local discriminator learns the

context normality in running status. To fully exploit these two

different information sources, we propose the total objective

function with a weighted sum in Equation 5 to simultaneously

optimize two sub-discriminators:

Jtotal = λ ∗ Juni + (1− λ) ∗ Jlocal, (5)

where Juni and Jlocal are the functions defined in Equation 1

for unitary discriminator φuni and local discriminator φlocal,

respectively. The objective functions allow two discriminators

to learn the normality by minimizing their hyper-sphere vol-

ume.

The distance between a log message (after mapping by

discriminators) to the hyper-sphere center measures the de-

gree of normality of the log. We apply an abnormal score
(abnScore) to describe how the log deviates from the nor-

mality, which is the weighted sum of the abnormal sub-scores

from two independent discriminators. The abnormal sub-score

abnScorei is defined by the Euclidean distance from the

feature embedding to its corresponding hyper-sphere center,

denoted by Equation 6:

abnScore = λ ∗ abnScoreuni + (1− λ) ∗ abnScorelocal,
abnScorei = ‖φi(x;Wi)− ci‖2, i ∈ {uni, local}.

(6)

The center log is eventually predicted as an anomaly if

and only if its abnormal score is larger than the threshold

D (Equation 7). We put all identified logs into the anomalous

log set AL, which provides detailed clues to troubleshoot the

system conveniently.

center log =

{
NormalLog, abnScore ≤ D

AnomalousLog, abnScore > D.
(7)

V. IMPLEMENTATION SETUP

A. Data collection

1) Infrastructure: Despite many log datasets being col-

lected for research [3], [41], [42], [43], there is no open-source

dataset documenting the evolution process. To fill this blank,

we collect a new dataset LOGEVOL containing log data from

the most widely-applied data processing system Spark [44]

(LOGEVOL-SPARK) and Hadoop [45] (LOGEVOL-HADOOP),

across different versions.

To this end, we employ HiBench [46], a big data benchmark

suite, to generate logs by running a set of workflows in

Spark and Hadoop, respectively, from basic to sophisticated

TABLE II
WORKLOADS FOR COLLECTING LOGEVOL.

Categories Workloads

Micro task Sort, Wordcount, etc.
Machine learning Bayes Classification, Gradient Boosted Trees, etc.

SQL Aggregation, Join, Scan etc.
Websearch Pagerank

Graph NWeight, Graph Pagerank
Streaming Repartition

TABLE III
STATISTICS OF LOGEVOL.

Spark2 Spark3 Hadoop2 Hadoop3

# Logs 931,960 1,600,273 2,120,739 2,050,488
# Anomalous logs 1,702 2,430 35,072 30,309

scenarios. In total, we run 22 workloads (shown in Table II)

on the systems to cover more practical scenarios, while other

existing datasets [43], [41] are collected from simply running

two straightforward tasks (i.e., page rank and word count).

Then, we repeat the procedure of running workloads us-

ing different versions of the software systems mentioned

above, covering a wide time range and various data size

scales. We select two typical versions of Spark (i.e.,

Spark2.4.0 and Spark3.0.3) and Hadoop (i.e., Hadoop2.10.2

and Hadoop3.3.3), as they have undergone systematic changes

with significant differences.

2) Fault Injection: We inject 18 typical types of faults into

the system to simulate real-world production failures: (1) Pro-
cess suspension: Suspend processes in multiple types of nodes,

one at a time; (2) Process killing: Kill processes in seven

types of nodes, one at a time; (3) Resource occupation: Inject

other computation programs to occupy CPU and memory; and

(4) Network faults: Establish network faults such as losing

packages, network delay, and connection lost.

In total, we collect 6,703,460 log messages (# Logs)with

recognized 69,513 anomalous logs (# Anomalous logs), whose

statistics are shown in Table III. To guarantee dataset quality,

anomalous logs are discussed and annotated by two engineers

who have two-year development experience with the Spark

system. Since annotators have read a lot of logs in their

development experience, they can provide reliable annotations.

B. Implementation details

In the multi-level representation extractor, we use

BERT [23] as the pre-trained language model and fine-tune

it with Hugging Face [47]. For the anomaly discriminator, we

specifically choose leaky ReLU [48] as the activation function

between two layers in the perceptron so as to resolve the

“all-zero-solution” issue [49]. We set the dynamic threshold

D to be 0.4 times of the maximum normality (hyper-sphere

radius) in the training data in intra-version and 0.6 times for

the inter-version. We set λ=0.5 in the experiments as the

unitary and local features both serve as an important role

in fault localization. We randomly split the collected logs

into training, development, and testing sets for each software

version with a standard 8:1:1 splitting. In contrast, the training

set only contains logs collected in the fault-free periods as

we assume the majority of logs are normal in a healthy

396

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 09:59:56 UTC from IEEE Xplore.  Restrictions apply. 



system. All experiments are conducted in 64-bit CentOS 7

with Intel(R) Xeon(R) CPU and 1 GeForce RTX 2080 GPU

for acceleration. It takes approximately 15 seconds for the

anomaly discriminator to train in an epoch.

VI. EXPERIMENTS

To evaluate the effectiveness of EvLog, we investigate three

research questions:

RQ1: How effective is EvLog in identifying anomalous logs?

RQ2: How effective is EvLog in resolving evolving events

and evolving sequences?

RQ3: How effective are different components in EvLog?

A. Experimental settings

1) Baselines: We select four unsupervised log-based ana-

lytics as baselines, including two anomalous log identification

models and two anomaly detection (AD) models. LogAnomaly

and LogSed are the state-of-the-art AD and log localization

models, respectively. The reason why we choose AD baselines

is, they both work for anomaly analysis with different granu-

larities (i.e., coarse-grained and fine-grained); For AD models,

we use the historical sequences to train a reference model and

predict the next event as in the original papers. The actual

next event that outside the predicted list of candidate events

will be considered as anomalous due to its deviation from

the reference model. In our implementation, we use the state-

of-the-art log parser [19] to extract events for all baselines

as they all require the parsing phase. In specific, we briefly

characterize four baselines as follows.

• LOGAN [20] built the diagnosis system by constructing

a directed graph from normal log event sequences. Then

any of the test time logs that deviate from the directed

graph will be considered anomalous.

• LogSed [6] addressed the interleaving logs problem by

developing a two-stage approach to mine the important

sequential relationship from log sequences. The incoming

log message that violates that sequence will be regarded

as anomalous.

• DeepLog [3] utilizes an LSTM network to capture se-

quential information of log data. It accepts the sequence

of log event IDs to predict the next log, the actual log ID

outside prediction will be regarded as an anomaly.

• LogAnomaly [36] is proposed for unsupervised anomaly

detection with semantic representation for log events via

an attention-based LSTM network.

2) Dataset: EvLog is evaluated on two datasets: a soft-

ware evolution dataset collected from two representative sys-

tems (LOGEVOL) and a synthetic dataset (SYNEVOL).

LOGEVOL. Although existing study [12] analyzed the

evolution process of Hadoop, and mentioned the importance of

new-emerging log messages [38], there lacks a public dataset

showing how logs change during software evolution. Hence,

we evaluate our approach and compare it with baselines on

the data collected in Section V-A. To our best knowledge,

LOGEVOL is the first publicly accessible log dataset recording

software evolution activities.

SYNEVOL. To evaluate how EvLog resolves the challenges

of unseen events and unstable sequences separately (Note that

EvLog is parser-free), we build a synthetic dataset based on the

collected Spark2 logs in LOGEVOL (denoted as LOGEVOL-

Spark2). Following previous work [38], we inject unseen

events and unstable sequences into LOGEVOL-Spark2 to sim-

ulate the real-world software evolution as follows:

1. Unseen events are introduced by logging statement al-

teration in software updates. Developers may paraphrase or

insert logging statements for customized functionalities. Since

EvLog does not use a parser, we simulate the change by

creating a set of synthetic log messages via (1) inserting, (2)

deleting, or (3) replacing a common word from an original

log message. Such modification is more likely to reflect the

changes in log events.

2. Unstable sequences occur both in log generation and

log evolution. Logs from multiple transaction flows may be

interleaving, making the direct predecessor or successor of a

certain log different. Moreover, log evolution is likely to cause

variations via function ensemble or the changes of function

invocation sequences. To construct synthetic sequences, we

randomly remove a few unimportant log messages (far away

from anomalous logs), repeat some log messages several times,

or shuffle the log messages in a short time.

We inject the evolving events and unstable sequences

into the original dataset, denoted as SYNEVOL-Events and

SYNEVOL-Seqs correspondingly. The injection follows spe-

cific ratios. We inject the 5%, 10%, 15%, 25%, and 30%

synthetic log messages and log sequences to LOGEVOL-

Spark2, to observe how EvLog reacts to unseen and unstable

sequences, respectively.

3) Evaluation metrics: To evaluate the effectiveness

of EvLog in anomalous log identification, we apply Precision,

Recall, and F1-score as evaluation metrics. In particular, Pre-

cision (P) is the percentage of logs that are correctly identified

anomalous overall identified logs ( TP
TP+FP ). Recall (R) is the

percentage of logs that are correctly identified anomalous over

logs belonging to anomaly logs. ( TP
TP+FN ). F1 score (F1) is

the harmonic mean of Precision and Recall (2 ∗ P∗R
P+R ), where

TP refers to the amount of anomalous logs that is correctly

identified, FP refers to the number of normal logs that are

wrongly predicted as anomalous, and FN means the number

of anomalous logs that are identified as the normal logs.

B. RQ1: How effective is EvLog in identifying anomalous
logs?

To evaluate how effective EvLog can pinpoint the anoma-

lous logs with software evolution activities, we conduct ex-

periments on our dataset LOGEVOL. The experiments engage

two different settings: 1) Intra-version: identify the anomalous

logs on the same system it is trained (e.g., Spark2 → Spark2);

and 2) Inter-version: identify the anomalous logs in a different

system version after training (e.g., Spark2 → Spark3).

We can draw two observations from the experimental results

shown in Table IV. First, EvLog delivers an overall satisfactory

performance under the intra-version setting with the average
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TABLE IV
EXPERIMENTAL RESULTS IN IDENTIFYING ANOMALOUS LOGS (TRAIN SET→TEST SET).

LOGEVOL-HADOOP

Intra-version Inter-version
Hadoop2 → Hadoop2 Hadoop3 → Hadoop3 Hadoop2 → Hadoop3 Hadoop3 → Hadoop2

Baseline Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

LOGAN 0.894 0.995 0.942 0.899 0.988 0.942 0.360 0.988 0.528 0.376 0.995 0.546
LogSed 0.910 0.995 0.951 0.925 0.986 0.955 0.371 0.988 0.540 0.390 0.993 0.560
DeepLog 0.913 0.985 0.947 0.926 1.000 0.961 0.386 0.999 0.556 0.410 0.971 0.576
LogAnomaly 0.926 0.994 0.958 0.939 0.988 0.963 0.389 0.998 0.560 0.407 0.995 0.578
EvLog 0.945 0.982 0.963 0.952 0.988 0.970 0.770 0.941 0.847 0.857 0.913 0.884

LOGEVOL-SPARK

Intra-version Inter-version
Spark2 → Spark2 Spark3 → Spark3 Spark2 → Spark3 Spark3 → Spark2

Baseline Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

LOGAN 0.798 0.943 0.865 0.967 0.870 0.916 0.016 0.943 0.032 0.012 0.943 0.024
LogSed 0.842 0.914 0.877 0.907 0.923 0.915 0.013 0.917 0.026 0.010 0.914 0.020
DeepLog 0.862 0.952 0.905 0.858 0.976 0.914 0.017 0.947 0.032 0.014 0.909 0.026
LogAnomaly 0.931 0.939 0.935 0.898 0.947 0.922 0.020 0.923 0.038 0.017 0.948 0.034
EvLog 0.970 0.974 0.972 0.944 0.888 0.915 0.922 0.700 0.795 0.920 0.812 0.863

F1 score of 0.967 in Hadoop and 0.944 in Spark, which

is comparable with other baselines. The experimental results

indicate that EvLog can learn the normality and effectively

identify anomalous logs from log sequences. Besides, we

find that deep learning-based approaches perform better than

FSM-based approaches, demonstrating that neural networks

are capable of capturing intrinsic sequential patterns and log

semantics.

Second, in the inter-version scenario, EvLog significantly

outperforms all baselines by a wide margin, demonstrating its

effectiveness and robustness in software evolution. We observe

that all baseline performances drastically drop (approximately

an F1 score of 0.55) while EvLog achieves an average F1

score of 0.87 for Hadoop, which contains 3% new logs. In

the case of Spark, where logging statement paraphrasing and

insertion via software updating account for 10% logs, baseline

performances are further significantly downgraded.

We analyze the reasons below. First, log parsers will gener-

ate unseen events when they encounter these new logs. Then,

directed graph approaches (i.e., LOGAN, LogSed) and AD

models (i.e., DeepLog, LogAnomaly) fail in matching these

unseen events to any current events or predicted subsequent-

event candidates. Consequently, current baselines label all un-

seen events as anomalous, leading to high false-positive rates

(i.e., low precision). On the contrary, EvLog uses hierarchical

clustering to learn abstract representations of log messages

and aligns unseen events to similar past ones. In this way,

the modified log message shares the consistent representation

with its old one, so as to reduce false positives and improve

anomalous log identification performance. Note that false

positive rates in anomalous log identification, although not as

severe as false negative cases, can still be problematic as they

can lead to excessive work for maintainers.

(a) SYNEVOL-Events example (b) SYNEVOL-Seqs example

Fig. 5. Examples of synthetic dataset SYNEVOL.

(a) Experiments in SYNEVOL-Events (b) Experiments in SYNEVOL-Seqs

Fig. 6. Experiment results on the synthetic dataset SYNEVOL.

Answers to RQ1: EvLog can effectively identify anomalous

logs under both intra- and inter-version settings, all the while

demonstrating its robustness and stability across software

evolution activities.

C. RQ2: How effective is EvLog in resolving evolving events
and evolving sequences?

We overcome the parsing errors challenge naturally since

our model is parser-free. Thus, we are interested in how

well our model addresses the other two challenges, i.e.,

evolving events and evolving sequences. To do so, we measure

EvLog on the synthetic dataset, including SYNEVOL-Events

and SYNEVOL-Seqs. Fig. 5 shows the examples in the dataset.

Fig. 6 shows the F1 scores of baselines, and ours under

the injection ratio varies from 0% to 30% (the injection ratio

of 30% means 30% of the original dataset was replaced by

the synthetic one). The results demonstrate our approach’s

effectiveness in both evolving events and sequences compared
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with baselines. In particular, EvLog achieves the F1 scores of

0.42 and 0.86 in SYNEVOL-Events and SYNEVOL-Seqs, even

though the synthetic dataset replaces 30% of the messages and

sequences in LOGEVOL-Spark2, respectively. We attribute the

advantage to the extracted multi-level semantics, as well as the

stability of the normality learned by the anomaly discriminator.

Another observation is that log changes are more likely

to damage the model’s performance than sequence changes.

This is because log changes bring unseen events to the trained

model, posing greater difficulties for the model to deal with.

On the one hand, our approach can still perform stably with

evolving events due to EvLog’s unique clustering mechanism

that aligns old events with the new ones. This result is in

line with our experiments in RQ1 that all baselines perform

unsatisfactorily during version transferring, as many events are

changed from Spark2 to Spark3. On the other hand, in terms

of the unstable sequences, we conclude that neural networks

(used by LogAnomaly, DeepLog, and ours), particularly those

with the attention mechanism (used by LogAnomaly and

ours), force the model to pay attention to the informative log

messages while getting rid of unstable sequences.

Answers to RQ2: EvLog reveals the robustness across

different types of changes happening in software evolution,

owing to its multi-level semantics extractor and attention

mechanism.

D. RQ3: How effective are different components in EvLog?

This research question investigates an ablation study on

how much each design contributes to EvLog. Specifically, we

remove each focused component one at a time and conduct

experiments on LOGEVOL-SPARK. In particular, we remove

(1) the fine-tuning phase in PLM, (2) the unitary discriminator,

and (3) the local discriminator, separately.

Our experiments in Fig. 7 show that all three components of

EvLogcontribute to its effectiveness. The reasons based on the

experiments are elaborated as follows. First, fine-tuning on the

log dataset helps EvLogcapture precise semantics by bridging

the knowledge gap between Spark domain knowledge and

common sense knowledge. Second, the unitary discriminator,

which operates on individual logs, learns the commonality of

single normal logs. Third, removing the local discriminator

largely degrades the overall performance since it provides a

more comprehensive view of the contextual running status.

Answers to RQ3: The three components, i.e., PLM fine-

tuning, unitary discriminator, and local discriminator, all

show their effectiveness in the intended design of EvLog.

VII. CASE STUDY

This section conducts a case study (Fig. 8) to show how

EvLog successfully deals with unseen events and avoids

false positives. Having been trained on Spark2, baselines and

EvLog are tested in the case from Spark3, where their AL
predictions are marked with lights. Green, red lights refer to

true positive and false positive, respectively. “GT” refers to the

(a) Spark2 → Spark2 (b) Spark2 → Spark3

Fig. 7. Effectiveness of finetuning, unitary discriminator and local discrimi-
nator, respectively (train set→test set).

ground-truth AL set. All baselines wrongly predict the line2

and line3 logs as anomalous. We attribute the false-positive

results on the two logs to their evolving events. In fact, this

event is paraphrased as follows:

Spark2: Started reading broadcast variable <*>

Spark3: Started reading broadcast variable <*> with <*> pie-

ces (estimated total size <*> MiB)

where <*> refers to the run-time generated numeric values.

Facing such evolving logs, EvLog can mitigate the associ-

ated issue by the abstract representation shown on the right-

hand side of Figure 8. Though line2 and line3 are unseen

logs, they can be assigned to a cluster that contains historical

semantically similar log messages, according to their rich

semantic representations. The yellow squares represent the

rich representations of logs in the hyperspace, where the

logs before and after paraphrasing stay closely in one cluster.

Therefore, the high-level abstract representation remains stable

in the change from the original logs to the paraphrased logs,

and these new logs will not be mapped far away from the

hyper-sphere’s center. Eventually, the model can identify the

new paraphrased log as a normal one because it does not

deviate from the normality.

VIII. THREAT TO VALIDITY

Internal threats. (1) Dynamic threshold. EvLog requires a

dynamic threshold D to identify anomalous logs. Our study

found that the satisfied threshold for intra-version and inter-

version identification is 0.4 and 0.6 times the maximum

normality in the training data, respectively. The threshold

strikes a balance between recall rate and precision rate. In

practice, maintainers can customize the threshold based on

different scenarios. (2) Domain knowledge gap. Technical

terms in logs may have specific meanings not captured by

PLMs. For example, we use “volume” to describe a detachable

block storage device in a computing system, but it usually

refers to the degree of loudness or the amount of space in daily

life. We fine-tune the PLM with the collected log messages to

mitigate the threat.

External threats. (1) Software drastic evolution. Software

systems possibly experience a drastic change, such as complete

code restructuring or infrastructure renewal. In such scenarios,

logging statements are likely to be altered significantly, and

our approach has limitations to handle it without incremental
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Fig. 8. An example of how EvLog identifies anomalous logs over software evolution.

learning. Nevertheless, our comparison between Spark2 and

Spark3 over two years shows limited extreme changes. (2)

Limited dataset. EvLog has been evaluated with only two real

datasets and a synthetic dataset, and more real datasets with di-

verse job types are necessary to validate EvLog’s effectiveness.

However, as this is a brand-new task, datasets are sparse and

challenging to collect. To address this issue, our created dataset

is collected with representative 22 benchmark workloads from

two widely-used systems. Although this dataset does not cover

all possible workloads, it includes many commonly used ones

and provides a practical simulation of the task.

IX. RELATED WORK

A. Software evolution

Run-time data of systems can vary dramatically from time

to time, as cloud systems are continuously being upgraded

and evolving, causing variations in statistical properties [50].

Some studies [12], [38], [50], [51] noticed this issue and

conducted empirical studies to investigate the effects it brings

to automated techniques and found many methods are not

intelligent enough to embrace such evolution. For example,

previous research [12] found that the frequent source codes

change liking releasing a new version leads to fragile log

processing techniques. Also, LogTracker [51] revealed that it

is challenging to request developers to maintain well-organized

log statements as software evolves without rigorous specifica-

tions and demonstrated that the vast majority of context-similar

logs come from log reversions.

These studies demonstrate that software evolution poses

challenges to automated log analytics. Yet, they have not

directly pointed out how and to what degree such an issue

will affect log analytical tools. This paper is the first systematic

study that fills such a gap by pointing out the three challenges

log evolution brings and their reasons, as well as proposing a

solution to overcome software evolution issues.

B. Failure analysis

Tremendous efforts have been devoted to cloud reliability

insurance, and failure analysis has attracted considerable atten-

tion since it provides detailed clues for troubleshooting. Some

existing approaches look deep into the source code to localize

the failures, for example, mapping log messages to source

code and reconstructing execution process for debugging [52].

However, source codes are not always accessible. Recently,

log-based failure analysis is in the ascendant. To highlight

the anomalous logs for failure diagnosis, existing approaches

attempt to abstract the state transition processes in normal

status by mining the logs and identifying the log that deviated

from the model. For example, previous studies [20], [53] built

a directed graph by regrading a log message sequence as an

execution workflow and then checked whether logs in the test

phase deviate from the graph. Besides, some studies use a

retrieval-based approach to map a newly identified failure into

the historical failure database whose cause is annotated by an

expert in advance [54], [55].

However, these methods share three shortcomings in the

evolution scenario. First, they rely strictly on dependencies

within historical data. Second, they cannot extract sufficient

semantics from logs, which are found significant in software

evolution. Third, these approaches highly rely on prior exper-

tise, making it impractical in modern evolving systems.

X. CONCLUSION

Existing advanced log localization models are proposed to

discover anomalous logs that may indicate faults in a system

automatically, but they ignore software evolution activities.

This paper first empirically identifies three challenges (i.e.,

parser errors, evolving events, and unstable sequences) carried

with software evolution and discusses how these challenges

can affect localization models. Second, we propose EvLog to

address the above challenges. To deal with the first two

challenges, we develop a parser-free extractor to mine multi-

level semantic representation from logs. Then, an anomaly

discriminator with an attention mechanism is built to overcome

the unstable sequence issue. At last, the effectiveness of

EvLog in identifying anomalous logs over software evolution

is confirmed by evaluating it on large-scale system logs. This is

a newly identified research task in anomalous log localization

due to software evolution, and the associated code of EvLog as

well as the newly collected datasets, are released for research

purposes. We hope our study can motivate more future work

on software evolution in the log analytics community.
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