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Abstract—Logs, being run-time information automatically gen-
erated by software, record system events and activities with their
timestamps. Before obtaining more insights into the run-time
status of the software, a fundamental step of log analysis, called
log parsing, is employed to extract structured templates and
parameters from the semi-structured raw log messages. However,
current log parsers are all syntax-based and regard each message
as a character string, ignoring the semantic information included
in parameters and templates.

Thus, we propose the first semantic-based parser SemParser to
unlock the critical bottleneck of mining semantics from log
messages. It contains two steps, an end-to-end semantics miner
and a joint parser. Specifically, the first step aims to identify
explicit semantics inside a single log, and the second step is
responsible for jointly inferring implicit semantics and computing
structural outputs according to the contextual knowledge base
of the logs. To analyze the effectiveness of our semantic parser,
we first demonstrate that it can derive rich semantics from
log messages collected from six widely-applied systems with an
average F1 score of 0.985. Then, we conduct two representative
downstream tasks, showing that current downstream models im-
prove their performance with appropriately extracted semantics
by 1.2%-11.7% and 8.65% on two anomaly detection datasets
and a failure identification dataset, respectively. We believe these
findings provide insights into semantically understanding log
messages for the log analysis community.

I. INTRODUCTION

The logging statements, which are put into the source

code by developers, carry run-time information about software

systems. By reading these logs, software system operators

and administrators can monitor software status [1], detect

anomalies [2], [3], localize software bugs [4], or troubleshoot

problems [5] in the system. The overwhelming logs, however

impede developers from reading every line of log files as

modern software systems get more complicated than before.

Therefore, intelligent software engineering necessitates auto-

mated log analysis.

Basically, a log message is a type of semi-structured lan-

guage comprising a natural language written by software

* Corresponding author.

developers and some auto-generated variables during software

execution. As most log analysis tools accept the structured

input, the fundamental step for automated log analysis is log

parsing. Given a raw message, a log parser recognizes a set of

fields (e.g., verbosity levels, date, time) and message content,

while the latter being represented as structured event templates

(i.e., constants) with corresponding parameters (i.e., variables).

For example, in Figure 1 (up), “Listing instance in cell <*>”

is the template describing the system event, and “949e1227”

corresponds to the parameter indicator “<*>” in the template.

Although automatic log parsing is full of challenges,

researchers have made progress leveraging statistical and

history-based methods. For instance, SLCT [6] and LFA [7]

constructed log templates by counting the number of historical

frequently-appearing words while Logram [8] considered fre-

quent n-gram patterns. LogSig [9] and SHISO [10] encoded

the log by word pairs and words length, respectively, then

applied the clustering algorithm for partitioning. [11] adopted

the idea of probabilistic graph for parsing. The most widely-

used parser in industry, Drain [12], formed log templates by

traversing leaf nodes in a tree. However, we argue that all

current parsers are syntax-based with superficial features (e.g.,

word length, log length, frequency), and they have limited

high-level semantic acquisition. In this paper, we classify the

limitations into a three-level hierarchy.

The first is paying inadequate attention to individual infor-
mative tokens. Taking the first log in Figure 1 as an example,

the parameter (i.e., 949e1227) and technical concepts (i.e., in-

stance, cell) are noteworthy, comparing with other preposition

words (e.g., in). Syntax-based log parsers only distinguish

parameters and templates but treat each log message as a

sequence of characters without paying attention to special

technical concepts. A previous study [13] found that technical

terms and topics in logs are informative by studying six large

software systems. Therefore, both the parameters and domain

terms should be localized for log comprehension.

Secondly, the semantics within a message should be noticed.

While humans seldomly use digits or character strings (e.g.,

881

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00082

20
23

 IE
EE

/A
CM

 4
5t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 S
of

tw
ar

e 
En

gi
ne

er
in

g 
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

82

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:06 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Difference between syntax-based parsers and semantic-based SemParser. Logs are generated from OpenStack.

949e1227) in communication, parameters in the log message

are important with specific meaning. Unfortunately, syntax-

based parsers regard each parameter as a meaningless character

string. Intuitively, a parameter in a log is used to specify

another technical concept in the log. For example, from the

first log in Figure 1, we understand that the token “949e1227”

refers to another token “cell”, so “949e1227” is a cell ID. In

this way, exploiting such intra-message semantics benefits the

understanding of parameters.

Thirdly, the semantics between messages are missing. All

previous parsers process each log message independently,

ignoring the inter-message relation between logs. However,

historical logs can provide domain knowledge of a parameter,

helping resolve the implicit semantics of the same parameter

in subsequent logs. In Figure 1, though the second log does

not explicitly disclose the semantics of parameter “949e1227”,

we know it refers to a cell based on the historical information

provided in the first log. As parameters rarely appear in daily

language, mining semantics from log messages is distinct from

understanding common language.

Some studies notice the above limitations and attempt

to mitigate them. LogRobust [14] assigned weights towards

each token based on the TF-IDF value when encoding logs

to reveal informative tokens. This approach tends to assign

the rare word with a high attention weight, but common

technical terms can also be illuminating. For semantic mining,

Drain [12], LKE [15], MoLFI [16] and SHISO [10] used

regular expressions to recognize block ID, IP address, and

number when parsing HDFS datasets. However, designing

human handcrafted rules requires tedious effort and suffers

from system migrations. It is impossible to exhaust all pos-

sibilities, so the rules can only cover a fairly limited part of

the logs. Besides, these regular expressions cannot distinguish

polysemy of parameters. For instance, the variable “200” refers

to the return code if the system makes REST API calls,

but it may also represent a thread identifier (TID) in Spark.

Moreover, although text mining approaches [17], [18] try to

mine semantics from human language, they cannot understand

the variables with specific meaning in log messages. As shown

in the last log in Figure 1, the serious information omissions

and misunderstanding of the erroneous status code “500” will

accumulate as the scale of the parsed logs increases, and

ultimately hinder the further anomaly detection task, making

it difficult to accomplish the goal of avoiding incidents and

ensuring system reliability.

To tackle the aforementioned complicated but critical limi-

tations, we propose a novel semantic-based log parser, Sem-
Parser, the first work to target parsing logs with respect to

their semantic meaning. We first define two-level granularities

of semantics in logs, message-level and instance-level seman-
tics. Message-level semantics refers to identifying technical

concepts (e.g., cell) within log messages (underscored in

Figure 1), while instance-level semantics means resolving

what the instance (i.e., parameters) describes. Then, we design

an end-to-end semantics miner and a joint parser that can

not only recognize the templates of given logs, but also

extract explicit semantics inside a log and the implicit inter-

log semantics. Specifically, the end-to-end semantics miner is

devised to recognize the semantics of messages (e.g., concepts

like “instance” and “cell”), and explicit semantics of instances

(e.g., “949e1227” refers to “cell”). In this way, the noteworthy

tokens and explicit semantics of parameters are obtained to

break the first and second limits, respectively. The joint parser

then infers the implicit semantics of parameters with the

assistance of domain knowledge acquired from prior logs,

mitigating the third limitation of missing inter-log relation.

Figure 1 illustrates the major difference between the syntax-

based parsers and the proposed SemParser, where the explicit

semantics is highlighted in yellow and implicit semantics is

highlighted in green. Obviously, not only can SemParser play

the role of an accurate log-template extractor as syntax-based

parsers, but also it can provide additional and structured

semantics to promote downstream analysis.

We conduct an extensive study to investigate the perfor-

mance of SemParser on six system logs from two perspectives:

(1) the effectiveness for semantic mining; (2) its effectiveness

on two typical log analysis downstream tasks. The exper-

imental results demonstrate that our approach can capture

semantics more accurately, which achieves an average F1 score

of 0.985 in semantic mining, and that it outperforms state-of-
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the-art log parsers by the average of 1.2% and 11.7% on two

anomaly detection datasets and 8.65% on a failure identifica-

tion dataset. These powerful results reveal the superiority of

SemParser and emphasize the importance of semantics in log

analytics, especially when the software systems we handle are

more complicated than ever before.

In summary, the contribution of this paper is threefold:

• To our best knowledge, SemParser is the first semantic-

based parser capable of actively capturing message-level

and instance-level semantics from logs, as well as actively

collecting and leveraging domain knowledge for parsing.

• We evaluate SemParser with respect to its semantic

mining accuracy on six system logs, demonstrating our

framework could effectively mine semantics from logs.

• We also employ SemParser on the failure identification

and anomaly detection tasks, and the promising results

reveal the importance of semantics in the log analytics

field.

II. PROBLEM STATEMENT

This paper focuses on parsing logs with respect to se-

mantics, which could further be decoupled into message-

level semantics and instance-level semantics. Message-level

semantics are defined as a set of concepts (i.e., technical

terms) appearing in log messages, such as “cell”. We use the

term instance * to denote variables in log messages, then the

instance-level semantics are represented by a set of Concept-
Instance pairs (CI pairs), which describe the concept that

the instance refers to, such as (cell, 949e1227). A Domain
Knowledge database maintains a list of detected CI pairs

from historical logs. After obtaining instances, concepts and

CI pairs from a log message, we replace the instances with

their corresponding concepts and name the new message as

conceptualized template.

The semantic parser task can be regarded as following.

Given a log message†, the structural output is composed

of a conceptualized template T , a set of CI pairs CI =
{(c0, i0), ..., (cn, in)}, as well as other orphan concepts OC =
{oc0, ..., ocj} and orphan instances OI = {oi0, ...oik} which

cannot be paired with each other.

III. METHODOLOGY

A. Overview of SemParser

Our framework is composed of two parts, an end-to-end

semantics miner and a joint parser. In Figure 2, we use

an example to illustrate how our framework processes log

messages. To begin with, log messages are sent to the semantic

miner for acquiring template-level semantics (i.e., concepts)

and explicit instance-level semantics (i.e., explicit CI pairs)

of each log independently. This step particularly solves the

first two stated challenges. The unseen explicit CI pairs will

be added to the Domain Knowledge database to keep the

*The term “instance” is rather closed to the “parameters” or “variables” in
the syntax-based parser. One concept can be instantiated by multiple instances.

†The log message refers to log content without fields in this paper by
default.

Fig. 2: The pipeline of SemParser.

knowledge updated. Moreover, to uncover potential implicit

semantics from domain knowledge, instances in log messages

are kept. Hence, the challenge of missing inter-log relations

are addressed.

Following that, the joint parser receives outputs from the

semantics miner, taking charge of implicit semantics inference

with the help of domain knowledge. The newfound implicit

instance semantics, coupled with the explicit one, form the

instance-level semantics, denoted as CI pairs. The remaining

concepts and instances which cannot be paired with each

other are stored as orphan concepts and orphan instances,
respectively. Besides, the conceptualized templates are derived

by replacing instances with their corresponding concepts (if

available), or “<*>” for else. The final structural outcome

of SemParser consists of conceptualized templates, CI pairs,
orphan concepts, as well as orphan instances.

As the first and fundamental step for log analysis, Sem-

Parser could facilitate general downstream log analysis tasks.

We will introduce details of the semantics miner and the joint

parser in the following two subsections. Then, two typical

downstream applications will be displayed in Section V.

B. End-to-end semantics miner

Semantics miner aims to mine semantics on both the

instance-level and the message-level. To acquire a set of

explicit concepts, instances , and CI pairs within a log

message, we model the task into two sub-problems: find-

ing CI pairs and classifying each token into a type in

{concept, instance, none}. As shown in Figure 3, an end-

to-end model with three modules is proposed to solve the

two sub-tasks simultaneously. First, a log message is fed

into a Contextual Encoder for acquiring context-based word

representation. Then, the contextualized words are separately

used in Pair Matcher and a Word Scorer for extracting CI pairs

and determining the type of each word, respectively. As the

total loss is the sum of the Pair Matcher loss and Word Scorer
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Fig. 3: The architecture of semantics miner.

loss, the model is forced to learn from both sub-tasks jointly.

We elaborate on the details of the three modules as below.

1) Contextual encoder: Intuitively, log messages can be

regarded as a special type of natural language due to its semi-

structured essence of mixing unstructured natural language and

structured variables.

Motivated by the success of long short-term memory net-

works (LSTM) across natural language processing tasks [19]

(e.g., machine translation, language modeling), we design an

bi-directional LSTM-based network (bi-LSTM) [20] to capture

interactions and dependencies between words in log messages.

However, it is not practical to directly feed the word

embeddings into the LSTM network because of the severe

out-of-vocabulary (OOV) problem, which is due to the large

portion of customized words in log messages (e.g., function

names, cell ID, request ID), resulting drastic performance

degradation. To solve the problem, we devise two additional

features associated with word representations. Firstly, inspired

by previous findings that character-level representation helps

exploit sub-word-level information [21], we adapt a Convolu-

tion Neural Network (CNN) to extract character-level features

of each word. Secondly, following several studies [22], [23]

that leveraged local features for sequential representations, we

also deliberate a set of local features for each word concerning

its shape, length, and other morphological features.

The word representations wordi, character representations

chari, as well as the local features f local
i , are concatenated

as word features and fed into the bi-LSTM indicated in

Equation 1. Afterward, the hidden state of bi-LSTM is used

as the contextual embedding for each word.

mi = LSTM([wordi; chari; f
local
i ]) (1)

2) Pair matcher: This module is designed for acquiring

explicit instance-level semantics. Numerous studies focus on

identifying key elements in texts and classify them into

several categories by assigning each word into one of the

pre-defined categories. For example, the combination of bi-

LSTM and Conditional Random Field (CRF) is deployed to

identify 100 log entities (e.g., IP address, identifier) in log

messages [24], or uncover 20 software entities (e.g., class

name, website) in software forum discussions [25]. However,

such token classification-based framework relies on a closed-
world assumption that all categories are known in advance.

The assumption makes sense when dealing with a specific

and small system with limited concepts. Unfortunately, it will

break down if we want to migrate the approach across software

systems, or the system we are facing is huge and sophisticated.
To get over the closed-world assumption limitation, the pair

matcher is required to discern the (concept, instance) pairs

between words in a log message. We abstract this problem

as a multi-classifier problem: for each word wi in a sentence

S = w1, w2, ..., wn, the matcher determines what previous

word wj(0 ≤ j < i) does the word wi refer to‡.
To achieve the goal, we rank the confidence score of each

word pair candidate (wi, wj), ∀0 ≤ j < i, which is determined

by a feed forward neural network FFNNa as in Equation 2.

Intuitively, if a word “is” exists between wi and wj , the

pair has a higher probability formed by the two words, so

we consider the interval context between the candidate pair

(wi, wj) as the average word embedding value between the

pair, denoted as contxi,j . In summary, we construct the pair-

level features fpair
i,j for scoring by concatenating contextual

representation (i.e., mi,mj) obtained from last step, as well

as the abovementioned interval context contxi,j , as shown in

Equation 3.

ScorePi(i, j) = FFNNa(f
pair
i,j ) (2)

fpair
i,j = [mi;mj ; contxi,j ] (3)

Figure 3 shows a simple case for matching pair for the

red word w5. After acquiring contextual word representations

‡We add a dummy word <TMP> (w0) to indicate the word does not
refer to any of the previous word in the message (e.g., in).
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from the contextual encoder, we form the pair-level feature

for each word pair in {(w5, w4), (w5, w3)...(w5, w0)}. These

pair features will be scoring by a softmax function on top of

a feed forward neural network for loss computation.

3) Word scorer: Apart from the pair matcher, we also

design a word scorer to determine whether each token is a

concept, instance or neither of both. The token’s category is

crucial for two reasons. First, the message-level semantics can

be perceived via extracted concepts. Second, we notice that

some instance-level semantics cannot be resolved via the pair

matcher if the instance’s corresponding concept does not occur

in a single message (e.g., the second log in Figure 1), which

we call implicit instance-level semantics. In this case, we need

to store the instances for further processing. To this end, we

devise the word scorer with a feed-forward neural network

FFNNb to learn the possibility of three types for each token.

The score is computed as follows:

ScoreMi = FFNNb(mi) (4)

Afterwards, the possibility of three categories will pass

through a softmax layer for normalization before computing

loss.

4) Loss function: Multi-task learning (MTL) is a training

paradigm that trains a collection of neural network models

for multiple tasks simultaneously, leveraging the shared data

representation for learning common knowledge [24], [26]. The

fruitful achievements of MTL motivate us to train pair matcher

and word scorer simultaneously by aggregating their losses.

Therefore, the total cost of semantics miner is defined as:

cost =
∑

i

CELoss(Pi
′) +

∑

i

CELoss(Mi
′) (5)

where Pi
′ and Mi

′ denotes the outputs of ScorePi and

ScoreMi after passing a softmax layer, respectively. Here, we

adopt Cross Entropy Loss (i.e., CELoss) as the loss function

due to its numerical stability. By minimizing the cost, the

model naturally learns the pairs and the word types for each

token with shared contextual representations generated from

bi-LSTM network.

In the inference, for each word, we regard the highest

probability of its pairs and its type score as the final results.

C. Joint parser

The joint parser leverages concepts, instances, and CI pairs

obtained from the end-to-end semantics miner, as well as log

messages to deal with : (1) uncovering implicit instance-level

semantics using domain knowledge; and (2) semantic parsing

log messages. The next sections go into the specifics.

1) Implicit instance-level semantics discovery: We apply

a novel domain knowledge-assisted approach to resolve the

implicit instance-level challenge of concepts and instances not

coexisting in one log message. Naturally, suppose we have

recognized a CI pair in historical logs, then we are able to

identify the semantics of such instance in the following logs,

even though the following logs do not explicitly contain such

pair information.

The knowledge-assisted approach maintains a high-quality

domain knowledge database when processing logs by incorpo-

rating newly discovered CI pairs acquired from the semantics

miner. To guarantee the quality of the domain knowledge, we

only add the superior CI pairs, which are defined by if and
only if there is a concept and an instance in the predicted pair.

The joint parser examines whether the orphan instances have

their corresponding concepts in the high-quality knowledge

base, to uncover implicit CI pairs. As a result, fresh CI pairs

of the log messages are stored if found. In such a way, we

merge the explicit CI pairs and new implicit CI pairs into the

final CI pairs. Details are in Algorithm 1.

Algorithm 1 Implicit instance-level semantics discovery

Input: Log message M = m0, ...,mn, instance indices I =
[i0, ...ij ], concept indices C = [c0, ...ck], explicit CI pair indices
P = [(s0, t0), ..., (su, tu)]

Output: Instances I ′, Concepts C′, CI pairs P ′

1: P ′ = []
2: C′ = []
3: for all p such that p ∈ P do
4: if p contains 1 instance curI and 1 concept curC then
5: DomainKnowledge.add(M [curC ],M [curI ])
6: I .REMOVE(curI )
7: C.REMOVE(curC )
8: end if
9: end for;

10: for all i such that i ∈ I do
11: if FINDCONCEPTFROMDOMAINKNOWLEDGE(M [i]) then
12: P ′ .APPEND([newfound concept, M [i]])
13: C′.APPEND(newfound concept)
14: I .REMOVE(i)
15: end if
16: end for
17: I ′ = INDEXTOWORD(I)
18: C′ += INDEXTOWORD(C);
19: P ′ += INDEXTOWORD(P )

2) Semantic parsing: As a semantic parser, SemParser is

able to extract the template for a given log message obeying

two rules:

• For the instance in CI pairs, replacing the instance with

the token <concept> of its corresponding concept.

• For the orphan instances, replacing the instance with a

dummy token <*> as syntax-based parsers do.

The rules are straightforward but reasonable. Compared to

other technical terms or common words, instances (e.g., ID,

number, status) are more likely to be variables in logging

statements automatically generated by software systems. As

the retrieved template takes in concepts, we name it “concep-

tualized template” instead of the vanilla template with only

<*> representing parameters.

Finally, the conceptualized template, CI pairs, orphan con-

cepts, as well as orphan instances are the structured outputs

of our SemParser. The results are extensible for a collection

of downstream tasks, and we will elaborate them later.
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IV. SEMPARSER IMPLEMENTATION

A. Dataset annotation
We implement the SemParser framework on a public

dataset [27] containing log messages collected from Open-

Stack for training. Considering that it is labor-intensive to

annotate a large dataset in a real-world scenario, we randomly

sample 200 logs from the dataset for human annotation, with

the sample rate of 0.05%. A practical model should be able

to learn from a small amount of data. The trained model from

such data is named the “base model” for further evaluation.
All annotation is carried out as follows. For each log, we

invite two post-graduate students experienced in OpenStack

to independently manually label: (1) whether a word is a

concept, instance, or neither of both; and (2) the explicit

CI pairs within a sentence. If the two students provide the

same answer for one log, the answer will be regarded as

the ground-truth for training; otherwise another student will

join them to discuss until a consensus is reached. The inter-

annotator agreement [28] before adjudication is 0.881. Finally,

we remove the sentences without any CI pair annotation

to mitigate the sparse data problem, yielding 177 labeled

messages for training the semantics miner.

B. Pre-trained word embeddings
Although existing pre-trained word embeddings show the

large success in representing semantics of words, it is not

appropriate for understanding logs. Log message is a very

domain-specific language, where the words have quite distinct

semantics from daily life. Hence, we train domain-specific

word embeddings on a representative cloud management sys-

tem, OpenStack corpus. The corpus is made up of 203,838

sentences crawled from its official website. We train the

pervasive skip-gram model [29] on Gensim [30] for ten epochs

and set the word embedding dimension to be 100.

C. Implementation details
When implementing the model, we set the character-level

embedding dimension to be 30. We select the two-layer deep

bi-LSTM with a hidden size of 128. The model is trained for

30 epochs§ with an initial learning rate of 0.01. The learning

rate decays at the rate of 0.005 after each epoch. It takes one

hour for training, and the trained model occupies only 25 MB.

SemParser runs 25 messages per second in a single batch and

single thread during inference.

V. EVALUATION

We evaluate SemParser from two perspectives, the ability

of semantic mining and the usefulness in downstream tasks,

with three research questions:

• RQ1: How effective is the SemParser in mining semantics

from logs?

• RQ2: How effective is the SemParser in anomaly detec-

tion?

• RQ3: How effective is the SemParser in failure identifi-

cation?

§The model converges within 30 epochs.

TABLE I: Statistics of dataset for semantic mining.

System type System #Logs #Pairs #Temp. Unseen
Mobile system Android 2,000 6,478 166 82.8%

Operating system Linux 2,000 2,905 118 86.8%

Distributed system

Hadoop 2,000 2,592 14 84.6%
HDFS 2,000 3,105 30 47.0%

OpenStack 2,000 4,367 43 52.3%
Zookeeper 2,000 1,189 50 75.9%

TABLE II: Statistics of anomaly detection datasets.

Dataset #Message Anomaly rate

HDFS dataset 11,175,629 3%
F-Dataset 1,318,860 0.22%

A. Experiment details

1) RQ1–Semantic mining: Dataset. LogHub [31] is a

repository of system log files for research purposes, which

has been used by plenty of log-related studies [32]–[34]. We

manually label six representative log files for semantic mining

evaluation ranging from distributed, operating, and mobile

systems. The dataset has a total of six different system log

files with 12,000 log messages and 20,636 annotated CI pairs.

Details are shown in Table I, where # Logs, # Pairs, # Temp.,

and Unseen denotes the number of log messages, CI pairs, log

templates, and the percentage of unseen templates in the test

set, respectively.

Settings. As SemParser is an semantic-based parser, we

consider its semantic mining ability for evaluating how ef-

fective is it when mining instance-level semantics from log

messages. Specifically, given a log message, we report the

correct proportion of the model’s extracted CI pairs (Preci-

sion), the proportion of actually correct positives extracted by

the model (Recall), and their harmonic mean (F1 score). As

we hope the model could learn semantics from small samples,

we fine-tune the base model (i.e., train from Section IV) on a

small dataset 50 randomly sampled logs for each system and

evaluate the performance on the remaining 1,950 logs.

2) RQ2–Anomaly detection: Dataset. We evaluate the

anomaly detection performance on two datasets. (1) We first

follow the previous studies to evaluate in the HDFS [35]

dataset, which includes log messages by running map-reduce

tasks on more than 200 nodes. (2) The second F-Dataset [27] is

initially created for investigating software failures by injecting

396 failure tests in major subsystems of the widely used cloud

computing platform OpenStack, covering 70% of bug reports

in the issue tracker. For each failure injection test, the authors

all log data in major subsystems, the labeled anomaly log
messages, as well as the exception raised by a service API call

named as API Error, such as “server create error”. Statistics

of both datasets are shown in Table II.

Settings. In the anomaly detection task, the detector predicts

whether anomalies exist within a short period of log messages

(i.e., session). Motivated by previous studies [33], [36], we de-

couple the anomaly detection framework into two components,
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a log parser to generate templates, and a detection model
to analyze template sequences in a session. A dependable

parser should perform well as a foundational processor for

log analysis, regardless of the down-streaming detection model

used. In our experiments, we compare the performance of

different baseline parsers under various anomaly detection

techniques.

Specifically, we compare SemParser to the following log

parsers as baselines: (1) LenMa [37]. This online parser

encodes each log message into a vector, where each entry

refers to the length of the token. Then, it parses logs by

comparing the encoded vectors; (2) AEL [38]. This paper

devises a set of heuristic rules to abstract values, such as

“value” in “word=value”; (3) IPLoM [39]. IPLoM partitions

event logs into event groups in three steps: partition by the

length of the log; partition by token position; and partition

by searching for bijection between the set of unique tokens;

(4) Drain [12]. It leverages a fixed depth parse tree with

heuristic rules to maintain log groups. Its ability to parse logs

in a streaming and timely manner makes it popular in both

academia and industry.

We also reproduce four widely-applied anomaly detection

models as following: (1) DeepLog [40] employed a deep

neural network, LSTM, to conduct anomaly detection and

fault localization on logs, taking the context information into

account; (2) To handle the ever-changing log events and

sequences during the software evolution, LogRobust [14]

detected anomaly detection by an attention-based bi-LSTM

network. The attention mechanism allows the model to learn

the different importance of log events; (3) CNN [41] is also

utilized to detect anomalies in big data system logs inspired by

its benefits in general NLP analysis; and (4)Transformer. [42]

detected anomalies in logs via the Transformer encoder [43]

with a multi-head self-attention mechanism, allowing the

model to learn context information.

When conducting experiments, we feed parsing results from

log messages into different models. Different from previous

work [14], [40]–[42] that only employs templates to form

the input sequence x0, x1, ..., xm where xi refers to the ith

message in the sequence, we equip the sequence with extracted

semantics. Specifically, for each log message in the sequence,

we concatenate template, concepts, instances as follows:

x̃ = [template;< SEP >; sem0; sem1; ...; semn] (6)

semi = [concepti; instancei]. (7)

To specify the corresponding relationship within a CI pair, we

concatenate the concept and instance in semi. Otherwise, an

<NIL> token replaces another half pair, indicating the orphan

situation. A special <SEP> token is used to separate template

and semantics. Afterwards, the sequence x̃0, x̃1, ..., x̃m con-

taining m messages will be fed into the model for prediction.

Following previous anomaly detection work [14], [40]–[42],

we use Precision, Recall, and F1 as the evaluation metrics.

3) RQ3–Failure identification: Dataset. While anomaly de-

tection identifies present faults from logs, failure identification

TABLE III: Sample log messages and ground-truth templates.

Log After Scheduling: PendingReds:1 CompletedReds:0 ...
GT-Template After Scheduling: PendingReds:<*> CompletedReds:0 ...

Log TaskAttempt: [attempt 14451444] using containerId ...
GT-Template TaskAttempt: [attempt <*>] using containerId ...

looks deeper into the problems and identify what type of

failure occurs. To make the F-Dataset appropriate for failure

identification, we utilize the labeled anomaly log messages

and their corresponding API error in each injection test as the

input and ground-truth. Entirely, we collect 405 failures with

16 different types of API errors. With the splitting training

ratio of 0.5, we obtain 194 and 211 failures for the train and

test set, respectively. Typical API errors include “server add

volume error”, “network delete error” and so on.

Settings. In this paper, we formulate the failure identifica-

tion task as follows: given the anomaly log messages from one

injection test in F-Dataset, the model is required to determine

what API error emerges. Similar to the anomaly detection task,

we also compare the performance of different baseline parsers

associated with several log analysis models (i.e., DeepLog,

LogRobust, CNN, and Transformer). The only difference is

that we change the node number of the last prediction layer

of the above-mentioned techniques from 2 to 16 to make it a

16-class classification task for 16 error types in the dataset.

Recall@k is widely used in recommendation systems to

assess whether the predicted results are relevant to the

user(s) [44], [45]. Similarly, we are also interested in whether

top-k recommended results contain the correct API error.

Hence, we report the Recall@k rate as the evaluation metric.

4) Discussion–log parsing comparison: In this section, we

discuss why we do not compare SemParser to other syntax-

based parsers in the log parsing task where only the templates

and parameters are extracted. Firstly, the ground-truth for

log parsing is not suitable for the semantic parser. For the

logs and their ground-truth templates shown in Table III with

highlighted improper parts, we observe that “0” is not a

parameter but a token in the template, because the value for

“CompleteReds” is always “0” in 2000 logs in this template.

In contrast, “0” will be regarded as an instance in our model,

since “0” is used to describe “CompleteReds” semantically.

Besides, we show how different tokenizer affects the results in

the second example, where we consider “attempt 14451444”

as an instance for the concept “TaskAttempt”, but the syntax-

based log parsers only regard the number “14451444” as

parameters, excluding the same prefix “attempt”. This kind

of widely-present distinction occurs 817 times among 2000

logs in the Hadoop log collection. As a result, it is unfair

to compare SemParser with syntax-based parsers in the log

parsing task. Instead, we investigate the semantic mining

ability in the first research question.

Secondly, log parsing is more of a pre-processing technique

for downstream applications rather than an application by

itself, and therefore, it will be more meaningful to concern

about how the log parsers promote performance in down-
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TABLE IV: Experimental results of mining semantics from logs.

System

Andriod Hadoop HDFS Linux OpenStack Zookeeper
Framework P — R — F1 P — R — F1 P — R — F1 P — R — F1 P — R — F1 P — R — F1

SemParser 0.951 0.935 0.943 0.993 0.978 0.985 1.000 1.000 1.000 0.998 0.977 0.987 0.999 0.998 0.999 1.000 0.989 0.995
- w/o Fchar 0.981 0.909 0.943 0.988 0.953 0.970 1.000 0.998 0.999 0.995 0.957 0.976 0.995 0.989 0.992 0.993 0.987 0.990
- w/o Flocal 0.979 0.858 0.915 0.993 0.880 0.933 1.000 0.999 0.999 0.992 0.947 0.969 0.994 0.989 0.992 0.997 0.940 0.968
- w/o LSTM 0.979 0.858 0.915 0.993 0.879 0.932 1.000 0.999 0.999 0.995 0.909 0.951 1.000 0.963 0.981 0.966 0.953 0.959
- w/o Fcontx 0.977 0.060 0.113 0.984 0.253 0.403 0.999 0.289 0.449 0.999 0.242 0.389 1.000 0.256 0.407 0.842 0.197 0.319

TABLE V: Experiment results for anomaly detection.

(a) HDFS Dataset.

Technique
DeepLog LogRobust CNN Transformer

Baseline P R F1 P R F1 P R F1 P R F1

LenMa .897 .994 .943 .914 .995 .953 .924 .995 .958 .872 .908 .890
AEL .896 .994 .943 .935 .996 .964 .922 .995 .958 .893 .904 .898
Drain .908 .994 .949 .934 .994 .963 .925 .995 .959 .886 .871 .878
IPLoM .898 .994 .944 .940 .994 .966 .926 .996 .960 .889 .904 .896
SemParser .940 .995 .967 .954 .995 .974 .931 .995 .962 .881 .954 .916

Δ% +1.86% +0.82% +0.21% +2.00%

(b) F-Dataset

Technique
DeepLog LogRobust CNN Transformer

Baseline P R F1 P R F1 P R F1 P R F1

LenMa .717 .938 .813 .714 .924 .806 .793 .815 .804 .685 .896 .776
AEL .738 .934 .824 .791 .877 .832 .747 .924 .826 .503 .962 .660
Drain .824 .867 .845 .810 .886 .846 .737 .943 .827 .693 .919 .790
IPLoM .863 .833 .848 .808 .877 .841 .834 .834 .834 .929 .683 .787
SemParser .971 .927 .948 .952 .913 .932 .907 .899 .903 .938 .904 .921

Δ% +11.80% +10.17% +8.27% +16.58%

stream tasks. For example, if a developer wants to detect

anomalies in overwhelming logs, the extracted templates and

their parameters are not what he/she needs, but the result

from an automated anomaly detection model is. From this

perspective, we compare SemParser with four baseline parsers

in two log analysis tasks to demonstrate our semantic parser’s

effectiveness. On the other hand, our approach could provide

accurate log templates with extra underlying semantics, so it

would naturally promote generalized downstream tasks.

To conclude, SemParser is developed as a semantic-based

parser instead of syntax-based parser, so the evaluation should

be related to its semantic acquisition ability and how the

acquired semantics benefits log analysis for downstream tasks

in an end-to-end fashion.

B. RQ1: How effective is the SemParser in mining semantics
from logs?

In this experiment, we focus on evaluating the explicit CI
pair extraction in the semantics miner as it serves as a vital

step. A high-quality domain knowledge database and further

joint parser process could be conducted if and only if the

semantics miner extracts high-quality explicit CI pairs from

log messages.

Basically, mining the instance-level semantics from log

messages is difficult to do with handcrafted rules. Taking logs

in Hadoop as examples, there are several ways to describe an

instance associated with one concept TaskAttempt:

• TaskAttempt: [attempt 14451444] using containerId ...

• attempt 14451444 TaskAttempt Transitioned from ...

• Progress of TaskAttempt attempt 14451444 is ...

The evaluation result across six representative system logs is

presented in Table IV. Since our work is the first to extract

semantics from logs, we do not set baselines for comparison.

Other general text mining techniques in the NLP field can

only extract keywords (e.g., LDA [17]), but they are not be

capable of extracting semantic pairs or parsing log messages

to structured templates. Instead, we conduct ablation studies

to explore the effectiveness of each element in the semantics

miner, where w/o Fchar, w/o Flocal, w/o LSTM and w/o

Fcontx refers to removing the character-level feature, local

word feature, LSTM network, and interval context, respec-

tively. The best F1 score for each system is in bold fonts.

In conclusion, our model could extract not only high quality

but also comprehensive instance-level semantics from log mes-

sages. We achieve an average F1 score of 0.985 for six systems

logs even though we only fine-tune the base model on 50

annotated samples and a large portion of templates are unseen

in the test set (the last column in Table I). The promising result

indicates our framework has a powerful ability for capturing

semantics from log messages.

We attribute the outstanding concept-instance pairs mining

ability of SemParser to its comprehensive architectures. The

ablation experiments indicate that removing components de-

grade the performance in varying degrees. Firstly, to mini-

mize the impact of a large portion of unknown words (e.g.,

attempt 14451444) to the model, we devise a character-level

feature extraction convolutional network and a local feature

extraction method since similar words are always composed

of similar character structures. For example, although at-

tempt 14451444 is different from attempt 14415371, they

share the same structures that the word “attempt” following

by an underscore and a sequence of numbers. Secondly, a

recurrent network is designed to capture the contextual repre-

sentation for each word in a sentence, since the same word may

have various meanings under different contexts. By removing

the bi-LSTM network, words in the sentence are equally

regarded as a bag of words. Thirdly, SemParser naturally learns

the patterns between concepts and instances by incorporating

the interval context. For instance, if a colon separates two

words, the latter word is probably an instance of the prior
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one, even if the latter one is an unseen word. We find such

interval context is quite important, as a dramatic degradation

is observed when we remove it. To conclude, the experiment

shows the superiority of the our model by achieving an average

F1 score of 0.985 across various system logs.

C. RQ2: How effective is the SemParser in anomaly detec-
tion?

To illustrate how SemParser benefits the anomaly detection

task, we compare SemParser with four baseline parsers on

four different anomaly detection models, and the results are

shown in Table V. Each row represents the performance of four

anomaly detection models associated with the selected parser

for upstream processing. The last row (Δ) displays how much

our semantic parser outperforms the best baseline parser of F1

score, and the negative score indicates how the percentage of

ours performs lower than the best baseline.

In the base HDFS dataset with only 31 templates, although

all parsers provides a good performance, we still observe

that SemParser also outperform syntax-based parsers by an

average F1 score of 1.22% over four techniques. In the more

challenging F-Dataset, we observe that SemParser performs at

rates approximately above ten percent overall baselines in F1

score, indicating its effectiveness and robustness across various

models. It outperforms baselines regarding DeepLog, LogRo-

bust, CNN, and Transformer by 11.80%, 10.17%, 8.27%, and

16.58% respectively, with an average F1 score of 0.926. The

results on Precision, Recall, and F1 reveal the effectiveness of

acquired semantics from logs.

We attribute SemParser’s distinct superiority on its precision

to the awareness of semantics we extract, particularly instance-

level semantics. Previous studies only use log template se-

quences to detect anomalies automatically, suffering from

missing important semantics. Taking a case in Figure 4 as an

example, where C-Template refers to the conceptualized tem-

plates. The CI-pairs are either extracted explicitly or implicitly

via a domain knowledge database. The green tick indicates a

normal log message, while the red cross stands for an anomaly

log. A service maintainer must understand that “status: 500”

returned by a REST API request reflects the internal server

error, while the “status: 200” means the request is successful

based on ad-hot knowledge. In this way, the maintainer can

easily recognize that an API request fails if the return status

equals to 500. Similarly, feeding semantics like (“status”,

“500”) and (“status”, “200”) into the anomaly detection model

forces the model to learn the relation between “500” and

“anomaly” (or the relation between “200” and “normal”). As

a result, the model will not mistake a log containing a normal

status (e.g., 200) for an anomaly. The instance-level semantics

also resolve problems for unseen logs. Even if the model has

never encountered the template before, it is able to correctly

predict it as a normal one according to a success status code,

and vice versa. Note that without the deliberately established

CI Pairs, previous syntax-based parsers cannot distinguish the

above normal v.s. anomaly status.

Log message

C-Template

CI pairs

Log message

C-Template

CI pairs

Fig. 4: A case for anomaly detection.

D. RQ3: How effective is the SemParser in failure identifica-
tion?

This section demonstrates how effectively our semantic

parser enhances failure identification. The experimental results

are shown in Table VI, where each row represents the perfor-

mance with the selected parser and several model architec-

tures. The last row reveals how much SemParser increases the

F1 score when compared to the best baseline results. Given

that there are 16 types of API errors in F-Dataset, we report

Recall@1, Recall@2, Recall@3 score, as we want the top-k

suggested errors to cover the real API error.

It is noteworthy that our semantic parser outperforms four

baselines by a wide margin, regardless of the analytical

techniques. We can observe that our parser surpasses oth-

ers by 12.5%, 10%, 7.75%, and 3.81% for LSTM, Atten-

biLSTM, CNN, and Transformer in Recall@1, respectively.

In general, SemParser shows the promising Recall@1 score

of 0.95, indicating the effectiveness of semantics for failure

identification.

The impressive performance can be attributed to several

reasons. Firstly, our parser can extract precise conceptualized

templates, serving as a basis for downstream task learning.

We extract conceptualized templates by replacing the instances

with their corresponding concepts while reserving all concepts

in the template, based on the observation that instances (e.g.,

time, len, ID) are more likely to be generated in running time.

The template number dramatically decreases after conceptu-

alization, giving the sequence of abstract log messages for

primitive learning.

Secondly, the instance-level semantics benefits failure iden-

tification. In the case shown in Table VIIa, “853cfe1b” will be

regarded as a meaningless character string by the traditional

syntax-based parser; however, SemParser recognizes it as a

“server” from previous log messages. Therefore, the preserved

semantics allows the downstream technique to understand that

the original log message is talking about the concept server, as

well as the concept attach volume, then it will not be hard to

infer the API error behind the failure is “server add volume”.

Thirdly, our parser provides strong messages-level seman-

tics, clues model in resolving failures. For example, Ta-

ble VIIb shows how the semantic parser extracts the concept

“network” with the actual API error being “network create”.

With the help of the concept “network”, the model focuses
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TABLE VI: Experimental results in failure identification task.

Model

LSTM Atten-biLSTM CNN Transformer
Baseline Rec@1 Rec@2 Rec@3 Rec@1 Rec@2 Rec@3 Rec@1 Rec@2 Rec@3 Rec@1 Rec@2 Rec@3

LenMa 0.839 0.924 0.953 0.858 0.943 0.957 0.877 0.962 0.967 0.919 0.934 0.948
AEL 0.844 0.919 0.953 0.853 0.915 0.962 0.810 0.905 0.929 0.858 0.929 0.953
Drain 0.844 0.919 0.972 0.863 0.938 0.953 0.867 0.948 0.967 0.853 0.919 0.943
IPLoM 0.848 0.943 0.957 0.863 0.948 0.962 0.867 0.967 0.986 0.839 0.910 0.948
SemParser 0.954 0.968 0.968 0.954 0.968 0.972 0.945 0.963 0.972 0.954 0.958 0.968

Δ% +12.50% +2.65% -0.41% +10.54% +2.11% +1.04% +7.75% -0.42% -1.44% +3.81% +2.46% +2.11%

TABLE VII: Cases for failure identification.

(a) A case for instance-level semantics.

API error server add volume

Log message ... Cannot ’attach volume’ instance 853cfe1b ...
C-Template ... Cannot ’attach volume’ instance <*server*> ...
CI Pairs [(server, 853cfe1b)]

(b) A case for message-level semantics.

API error network create

Log message ... POST /v2.0/networks ...
C-Template ... POST /<*>/networks ...
Concepts [POST, networks]

on network errors and filters other server errors or volume

errors. To sum up, SemParser benefits the failure identification

task by providing message-level semantics and instance-level

semantics altogether.

VI. THREAT TO VALIDITY

Threats to CI pair granularity. Our approach can

only discover semantic pairs in a single word. For ex-

ample, for one Zookeeper log “Connection request from

old client /10.10.31.13:40061”, the extracted CI pair

is “(client, /10.10.31.13:40061)” instead of “(old client,

10.10.31.13:40061)”. Using “old client” is more precise than

“client” to describe this instance. Fortunately, based on our

observation, since such multi-word concepts infrequently oc-

cur in log messages, using the single-word concept will not

alter the semantics too much.

Threats to transferability. Our model mines semantics

relying on manually labeled data. The sampled data for anno-

tation and annotation quality both affect its performance. Fine-

tuning with new annotation is required to transfer the model

across different systems. In this case, we consider that our

model can easily adapt to a new system after fine-tuning with

a small amount of data (e.g., Our RQ1 shows that 50 annotated

logs are sufficient to transfer a model from OpenStack to

Hadoop, with 84.6% templates in test set are unseen).

Threats to efficiency. Despite the fact that the neural

network used in our approach can effectively mine semantics,

it is not as computationally efficient as other statistical parsers.

Nevertheless, the issue can be mitigated by batch operation

or GPU acceleration. Moreover, missing identification of an

anomaly can also be very costly. As RQ2 and RQ3 demon-

strate SemParser’s effectiveness over other parsers in anomaly

detection and failure identification, it is worthy of mining such

semantics by sacrificing controllable computational efficiency.

VII. RELATED WORK

A. Log parsing

A series of data mining approaches are proposed for

log parsing, which can be further divided into three cate-

gories [46]: frequent pattern mining, heuristics, and clustering.

Among frequent pattern mining approaches, SLCT [6] pio-

neered the automated log parsing, determined whether a token

belongs to variables or constants based on its occurrences,

assuming that the frequent words are always shown in con-

stants. Heuristic approaches are more intuitive than others. For

example, AEL [38] went over a collection of heuristic rules

to conduct log parsing. Another online heuristic log parser

Drain [12] used a fixed depth parse tree, with each internal

leaf node encoding specifically designed parsing rules. The

clustering approaches first encode log messages into vectors,

then group the messages with similar vectors. For example,

LKE [15] hierarchically clustered messages with a weighted

edit distance threshold, then performs group splitting with fine-

tuning to extract variables from messages. Another approach

LenMa [37] encoded each log to its word length vector for

clustering.

However, all the above studies only distinguish variables

from constants in a log message, assuming the message as a

sequence of characters and symbols independent of the vari-

ables’ meaning. Our work starts from a higher-level semantic

perspective, particularly resolves the meaning of parameters

and the template in a log message. In this way, our work differs

significantly from previous studies. One similar Named Entity

Recognition (NER) work in log community [24] also noticed

the importance of semantics in logs, intending to identify

entities in logs. However, the NER task relies on a close-world

assumption that all entities are known in advance, suffering the

explosion of the number of entity types, which impedes real-

world practice and generalization across different systems.

B. Log mining

Log mining analyzes a large amount of data to facili-

tate monitoring and troubleshooting software systems [46].

Anomaly detection is a typical log mining task in large-scale

software systems, referring to identify logs that do not conform
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to expected behavior. Have encoded the log templates into

vectors, previous studies use traditional learning approaches

to find anomalies, such as Principal Component Analysis

(PCA) [2], clustering [34], and Support Vector Machine

(SVM) [47]. Some deep learning-based approaches have also

been adapted to identify anomalies, such as LSTM [14], [40],

CNN [41], Transformers [42] and pre-trained language mod-

els [48]. To overcome the unseen log problem, LogRobust [14]

proposed a robust log encoding method with the TF-IDF value

and word embeddings, and then an attention-based bi-LSTM

was used to learn the importance of each log.

Although anomaly detection points out whether an anomaly

exists in system logs, removing such anomaly requires the help

of failure diagnosis. To address the problem, some studies [49],

[50] automatically constructed time-weighted control flow

graphs (TCFG) from normal execution log sequences as the

reference model, and then checks the deviation between the

reference model and the new coming log sequences to diag-

nose a failure. Finite state models are also used to highlight the

difference between the logs [51]. In addition, inspired by the

fact that occurred failure manifests recurring, some studies [5],

[52] were interested in developing a failure matching algorithm

to retrieve similar historical failure reports from the report

database. Undoubtedly, as an important part of log analysis and

system monitoring, the performances of anomaly detection and

fault diagnosis model are affected by the output of upstream

tasks. We have demonstrated that our semantic parser enhances

the performance of mainstream analysis models.

VIII. CONCLUSION

In this paper, we first point out three limitations of cur-

rent log parsers: inadequate informative tokens, missing se-

mantics within logs, and missing relation between logs. To

overcome the limits, we then design SemParser, a semantic

parser with two phases: a semantics miner aiming to mine

explicit semantics from logs, as well as a joint parser lever-

aging domain knowledge to infer implicit semantics. We then

conduct extensive experiments to evaluate SemParser in six

representative system logs for semantic mining ability, which

achieves an average F1 score of 0.985. Moreover, we evaluate

our approach in two downstream log analysis tasks (i.e.,

anomaly detection and failure identification). The experimental

results demonstrate that our method outperforms syntax-based

log parsers by large margins, confirming the importance of

understanding semantics in log analysis. We release code and

data for future research¶.
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