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Abstract—The rapid progress of modern computing systems
has led to a growing interest in informative run-time logs. Various
log-based anomaly detection techniques have been proposed to
ensure software reliability. However, their implementation in the
industry has been limited due to the lack of high-quality public
log resources as training datasets.

While some log datasets are available for anomaly detection,
they suffer from limitations in (1) comprehensiveness of log
events; (2) scalability over diverse systems; and (3) flexibility of
log utility. To address these limitations, we propose AUTOLOG,
the first automated log generation methodology for anomaly
detection. AUTOLOG uses program analysis to generate run-
time log sequences without actually running the system. AU-
TOLOG starts with probing comprehensive logging statements
associated with the call graphs of an application. Then, it
constructs execution graphs for each method after pruning the
call graphs to find log-related execution paths in a scalable
manner. Finally, AUTOLOG propagates the anomaly label to each
acquired execution path based on human knowledge. It generates
flexible log sequences by walking along the log execution paths
with controllable parameters. Experiments on 50 popular Java
projects show that AUTOLOG acquires significantly more (9x-58x)
log events than existing log datasets from the same system, and
generates log messages much faster (15x) with a single machine
than existing passive data collection approaches. AUTOLOG also
provides hyper-parameters to adjust the data size, anomaly rate,
and component indicator for simulating different real-world
scenarios. We further demonstrate AUTOLOG’s practicality by
showing that AUTOLOG enables log-based anomaly detectors to
achieve better performance (1.93%) compared to existing log
datasets. We hope AUTOLOG can facilitate the benchmarking
and adoption of automated log analysis techniques.

I. INTRODUCTION

The ever-growing amount and quality of data cultivate the

development of advanced data-driven approaches, showing

great power in many fields. Considering the dataset evolving

from the simple handwritten digit dataset MNIST [1] to the

large visual database ImageNet [2], the rich data foster more

sophisticated and applicable image algorithms against the

complicated real-world scenarios.

The log analysis community has proposed numerous tech-

niques to assist maintainers in automatically inspecting the

large log files produced by modern complex systems. The
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AutoLog

Fig. 1. Difference of existing passive-collection approach and our active-
generation methodology AUTOLOG.

techniques include detecting internal system anomalies [3]–

[7], and suggesting the root cause of an anomaly [8]–[12] for

employing the corresponding mitigation strategy. Despite the

continued development of automated solutions for software

maintenance through log analysis, there has been a lack of

emphasis on the need for effective datasets. Consequently, only

a few of these techniques have been successfully deployed

in real-world settings. This highlights the gap between the

limited log data used in academic research and the complexity

of industry deployment [13].

Acquiring sufficient, high-quality, and representative logs

for practical analysis is challenging. On the one hand, indus-

trial logs from real-world large service providers [13]–[16]

(e.g., IBM, Microsoft) contain rich events but have privacy

concerns, making it difficult to release them publicly for

researchers. On the other hand, logs collected in laboratory

environments using simulation [17]–[19] are publicly available

but contain simple events produced from limited standard

workloads. As a result, they do not accurately reflects the

complex run-time workflow of large-scale software. In ei-

ther case, existing datasets are based on a passive-collection
methodology that retrieves log files after running applications

in a computing system, as described in Fig. 1 (Up). The

output logs from the passive-collection methodology are solely

dependent on the value of inputs, which impedes exploring and

evaluating models on three aspects, namely:

(1) Comprehensiveness of log events. Log events are for-
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mulated as logging statements in source code for execution.

When collecting logs passively, the diversity of log events

is mainly determined by the variety of input workloads. For

example, the widely-used Hadoop dataset [17] was generated

using only two test applications. Even though the system is

deployed in scale, it is still impractical to traverse all what-if
scenarios [20] during execution to trigger complete logging

statements by deliberately designed workloads.

(2) Scalability over diverse systems. Collecting logs from

new systems requires engineers to re-deploy the system and

re-implement workloads, which is time-consuming and labor-

intensive [19], [21]. Hence, existing datasets are inadequate

in terms of system logs, making it challenging to evaluate

the generalization ability of proposed log analysis techniques

across diverse systems. For example, the most popular dataset,

LogHub [19], integrates only five labeled system logs for

evaluating anomaly detectors.

(3) Flexibility of log utility. While existing datasets allow

for minor modifications (e.g., anomaly rate) for evaluation

purposes [22], [23], these changes are inadequate for imitating

diversified scenarios. For example, when maintainers need to

analyze the functionality of a storage component, existing

datasets with anomaly-or-not annotation cannot distinguish

these component-specific logs. Hence, the complicated condi-

tions in the actual production environment necessitate a more

flexible and controllable log collection methodology.

The limitations of the current passive-collection method-

ology have led to the need for effective log collection

for building practical solutions. Since system logs are gen-

erated during the execution of logging statements in the

source code, (e.g., LOG.error(‘‘failed to start
web server.’’)), we consider the log collection problem

as the task of constructing log sequences based on the execu-

tion order of logging statements. To create log sequences, we

adopt the idea from program analysis to develop AUTOLOG,

the first Automated Log generation methodology that actively
generates effective datasets for anomaly detection (Fig. 1

(Down)). The novel static-guided approach can uncover ex-

ecution paths and produce rational log sequences [24]–[26].

Specifically, AUTOLOG generates effective log datasets with

three phases: (1) logging statement probing phase explores

all methods containing the logging statements to achieve

comprehensive log events coverage. (2) log-related execution
path finding phase, which prunes the call graphs and acquires

the execution paths related to the logging statements to en-

sure scalability. (3) log graph walking phase, which forms

log sequences from execution paths and labels the anomaly

sequences based on expert annotations. The controllable pa-

rameters of AUTOLOG enable researchers to customize the

log dataset with different data sizes, anomaly ratios, and

component indicators, providing flexibility in log utility.

We conduct an extensive evaluation of AUTOLOG to 50

popular Java projects and compare the resulting dataset to

existing passively-collected datasets, showing its superiority

from three perspectives: (1) AUTOLOG generates 9x-58x
more log events than existing datasets from the same system,

and covers 87.77% of all log events of the 50 projects on

average. (2) AUTOLOG successfully produces logs at least

15x faster than the collection time for existing log datasets,

with tens of thousands of messages per minute on average.

(3) AUTOLOG is built with options to change the data size,

anomaly ratio, and certain components of logs, supporting a

wide range of development environment simulations. Further,

we show that existing anomaly detection models effectively

gain improvements (1.93%) by learning from the comprehen-

sive log dataset generated by AUTOLOG. Thus, we believe

that the data generation methodology AUTOLOG can serve
as a critical resource for developing advanced log analysis
algorithms, as well as for providing testing and benchmarking
data for such algorithms to ensure software reliability.

To summarize, the contributions of this paper are:

• We present AUTOLOG, a novel, widely-applicable auto-

mated log generation methodology that addresses three

limitations of existing log datasets: lack of comprehen-

siveness, scalability, and flexibility.

• AUTOLOG has three phases: logging statement probing,

log-related execution path finding, and log path walking.

• Extensive experiments show that AUTOLOG achieves a

comprehensive (87.77%) coverage of log events and effi-

ciently produces log datasets (over 10,000 messages/min)

on Java projects, and offers the flexibility for adapting

to multiple scenarios. We further demonstrate that AU-

TOLOG improves anomaly detectors by 1.93%.

• To our knowledge, AUTOLOG is the first log sequence

generator. All artifacts and datasets are released for future

research.1

1 // hdfs/server/datanode/DataXceiver.java
2 void methodA(){
3 while (datanode.shouldRun){
4 LOG.info("Receiving block " + block); //

Log@1
5 if (blockReceiver){
6 methodB();}
7 else{
8 methodC();}
9 }

10 }
11 void methodB(){
12 LOG.info("Received block " + block); //Log@2
13 }
14 void methodC(){
15 methodD();
16 }
17 void methodD(){
18 msg = "Join on responder thread, timed out.";
19 LOG.warn("Failed to delete restart meta file.

"); //Log@3
20 LOG.warn(msg); //Log@4
21 }

Listing 1. A simplified example from HDFS.

II. MOTIVATING STUDY

A. Study Subject
We select four widely-used datasets (Table I) as subjects

released by different project teams, including distributed sys-

1https://github.com/logpai/AutoLog.
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TABLE I
STATISTICS AND DESCRIPTIONS OF EXISTING DATASETS. # LOG EVENT, # WORKLOAD, # FAILURE TYPE, AND # MESSAGE SHOW THE NUMBER OF LOG

EVENTS, EXECUTED WORKLOADS, FAILURE TYPES, AND LOG MESSAGES IN EACH DATASET, RESPECTIVELY.

Dataset # Log Event # Workload # Failure Type # Message Collection Time Annotation
D-HDFS 30 NA 11 11,175,629 38.7 Hours With labelling
D-Hadoop 242 2 3 394,308 NA With labelling
D-BGL 619 NA NA 4,747,963 214.7 days With labelling

D-Zookeeper 77 NA NA 207,820 26.7 days Without labelling

tems and supercomputers. In particular, D-HDFS [18], D-

Hadoop [17], and D-BGL [21] datasets are collected for

anomaly detection after running normal workloads and inject-

ing several types of failures in each system, respectively. D-

Zookeeper [19] is collected by running several benchmarks

without labeling.

B. Are Existing Datasets Comprehensive?

We first investigate whether the existing log datasets provide

comprehensive coverage of logging statements. Considering

the case in Listing 1 from Hadoop, Log@2 will occur if

blockReceiver is enabled; otherwise, Log@3 and Log@4
will be logged. Nevertheless, we find that the latter were

absent in the D-HDFS dataset, likely due to blockReceiver

being enabled at all times. As a result, the anomaly detection

techniques trained with an inadequate dataset may fail to tackle

the unseen log, and even their experiment conclusions may

not be representative. For instance, neglecting the responder

connection time anomaly, which is associated with Log@3 and

Log@4, can happen if the dataset used for training lacks these

logs. Furthermore, Table I reveals that the existing datasets

collected through passive-collection approaches are limited in

the number of failure types and workloads they cover. The

literature [27], [28] implies that although a range of workloads

has been implemented, it is still unrealistic to inject all types

of anomalies to trigger all log events. Thus, these datasets fall

short of comprehensive coverage, creating a significant gap

with real-world scenarios.

C. Are Existing Datasets Scalable?

Validating the generalization ability over diverse systems is

critical for practical log analysis algorithms. We use the term

scalability to measure the effort (e.g., time, workforce) we

should put in to acquire logs from multiple system sources.

To determine the scalability of existing datasets, we summa-

rize their log message amounts and collection time in Table I.

The table reveals that it takes a long time to collect logs,

even after the system has been deployed and configured. For

example, collecting 207,820 log messages from the Zookeeper

takes more than 26 days. Additionally, since existing datasets

are obtained from running system applications, it requires

additional expert efforts to redeploy and rerun the applications

when extending the workloads to a new system. Unfortunately,

software maintainers cannot afford to wait such a long time

before developing or validating new algorithms. In short,

existing datasets are not scalable enough, necessitating the

exploration of a new, more efficient approach to log collection.

D. Are Existing Datasets Flexible?

Previous research has examined the impact of certain dataset

characteristics, such as data distribution and data selection, on

log-based anomaly detectors [22], [23]. However, to further

investigate the performance of log analytics, it is necessary

to customize log datasets to simulate diverse scenarios, which

requires flexibility.

Ideally, all data can be collected, but in reality, data cannot

be completely collected (or collected in a large enough quan-

tity), and they suffer from restrictive flexibility. For example, to

increase the anomaly ratio from 0.1% to 15%, researchers may

need to remove a large number of normal logs (150x) from

the existing dataset, sacrificing data quantity [23]. Moreover,

logs collected from system files without component specifi-

cations raise difficulties for component-wise analysis. More

ingredients of the flexibility are elaborated in Section V-D.

In this regard, existing datasets cannot flexibly demonstrate

model effectiveness under various scenarios, motivating a

controllable log sequence acquisition approach.

III. METHODOLOGY

A. Overview

Log files are created every time when a system executes

logging statements. Therefore, we view the log sequence

generation problem as a task of finding the execution paths

related to logging statements in the program. Generating log

sequences for anomaly detection involves two primary ques-

tions: how to generate program execution paths that include

logging statements (Phase2), and how to identify whether the

execution path produces an anomaly or not (Phase3).

To tackle the problem, AUTOLOG takes the program as

input and outputs a dataset for anomaly detection by analyzing

its execution paths. It comprises three phases, as illustrated

in Fig. 2: The first phase builds call graphs for the project

and marks all methods that contain logging statements (Log-

Method), enabling comprehensive coverage of log events. The

second phase prunes out the call graph nodes and records the

log-related execution paths (LogEPs) within each remaining

method to overcome the scalability issue. The third phase

propagates logging statement labels from domain experts to

all LogEPs. AUTOLOG eventually generates flexible log se-

quences with chaining LogEPs across methods based on their

calling relationship.
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PHASE I: Logging Statement Probing PHASE II: Log-related Execution Path Finding PHASE III: Log Path Walking
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Fig. 2. The overall framework of AUTOLOG with three phases: logging statement probing, log-related execution path finding, and log path walking. The
details of ”Acquiring Log-related Execution Path” are illustrated in Fig. 3.

B. PHASE1: Logging Statement Probing
To cover comprehensive log events, AUTOLOG starts with

exploring the methods containing logging statements and the

calling relationships of these methods.
1) Deriving Call Graphs: Initially, we perform a standard

static analysis to construct a call graph that chains methods

based on their execution-time relationships in a program [29].

A call graph is a directed graph where each node identifies

a method and each edge represents a pair of (caller, callee)

method-level relationships. AUTOLOG derives call graphs with

the context-insensitive pointer analysis [30] to enhance the

precision of the call graph in handling virtual method calls,

calls through interfaces, and polymorphism. Afterwards, we

treat each call graph as a directed acyclic graph after marking

the cycles induced by recursion invocation.
2) Marking LogMethod: Since we concentrate on logs,

AUTOLOG identifies methods containing logging statements

(LogMethods) by checking whether any logging API is used in

a method. To detect a variety of logging APIs used in different

projects, we summarize commonly-used logging frameworks

(e.g., slf4j [31]) and capture logging APIs by analyzing

the invocation of these popular frameworks. Compared to

the regular expressions applied in LogCoCo [24], this API-

based analysis is capable of recognizing more comprehensive

customized logging APIs by examining the inheritance rela-

tionships. Fig. 2 illustrates how AUTOLOG manages Listing 1,

where methodA, methodB, and methodD are recognized as

LogMethod (highlighted in red).

C. PHASE2: Log-related Execution Path Finding
An intuitive idea to solve the execution path finding problem

is to construct the entire execution graph of a project and tra-

verse it. However, in most cases, large-scale software contains

an infinite number of paths [32] so that exhaustive enumeration

undoubtedly causes path explosion problem [33]. To overcome

scalability challenges, AUTOLOG takes two steps: (1) pruning

out the call graph nodes that will not induce LogMethods; (2)

traversing the intra-method execution graph and recording the

execution paths that are related only to logging activities.
1) Pruning Call Graph: The goal of pruning is to eliminate

redundant nodes from the call graph, particularly those that

neither represent LogMethod nodes nor nodes that lead to any

LogMethod nodes. A node may induce a LogMethod node

in two ways: (1) by calling it directly, or (2) by calling it

indirectly through other intermediate nodes. Identifying the

LogMethod-inducing nodes can be viewed as a graph sorting

problem that finds all ancestor nodes of specific nodes (i.e.,

LogMethod nodes) in the graph. To do so, AUTOLOG per-

forms topological sorting [34] over the call graph. Using the

topological sorting, a node is considered a non-LogMethod-

inducing method if it is neither a LogMethod nor comes

before any LogMethod, indicating that it is not an ancestor

of any LogMethod. In Fig. 2, red, yellow, and dashed contour

nodes are used to represent LogMethod, LogMethod-inducing

methods, and non-LogMethod-inducing methods, respectively.
All non-LogMethod-inducing nodes and the edges associ-

ated with them (represented by dashed lines) will be pruned

out. The resulting pruned graph (denoted as CG′) is much

smaller than the original call graph since many methods do not

contain or induce other logging statements. For example, only

14.79% of nodes are reserved after pruning call graphs for the

HDFS system. Because only the remaining methods are used

for further analysis, the pruning step significantly promotes

AUTOLOG’s efficiency and facilitates subsequent analysis.
2) Restoring Logging Statements: This step involves restor-

ing logging statements by resolving run-time parameters

to provide more detailed information beyond the specific

logging statements. A logging statement typically includes

constant strings written by developers (e.g., “Receiving
block”) and run-time parameters (e.g., block). Specifically,

AUTOLOG resolves the parameters that are constant string

variables inside the methods. For example, the parameter msg

(Line20) is resolved from its assignment (Line18) in Listing. 1.

For other types of parameters (e.g., block), AUTOLOG re-
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Fig. 3. The simplified execution graphs for methods in Listing 1.

places them with a dummy token (i.e., <*>) since they are

typically removed during preprocessing for anomaly detection

models [35], [36].

3) Acquiring Log-related Execution Paths: Log sequences

generate along with software run-time, reflecting the control-

flow paths and execution states [25], [37]–[39]. However,

obtaining the order of realistic log events by enumerating

execution paths from the entire application can be challenging

due to their huge size [40]. To solve this issue, AUTOLOG con-

structs and traverses the small-scale execution graph for each

method in the CG′ to enable scalability.

Particularly, AUTOLOG builds an execution graph with con-

trol flow information for each method and links the invocation

with the corresponding method in the entry and exit points.

Each node in the execution graph represents an executed

activity, and the edge represents the relationship between two

activities in the temporal order.

Afterwards, AUTOLOG traverses each execution graph and

only records log-related execution paths (LogEPs) for each

method, which includes the invocations and logging activities
(i.e., logging statements). The invocation is noteworthy be-

cause a log sequence in a method can be interrupted by another

log sequence introduced by the invocation. AUTOLOG derives

LogEPs for each method by using three strategies. Fig. 3

depicts the execution graphs for four methods of Listing 1

to illustrate the strategies.

) Strategy #1: For nodes that are both non-leaf nodes
and LogMethod in the CG′, AUTOLOG considers the

execution order of invocations and logging activities. In

our case, we obtain two LogEPs for methodA: [Log@1,
callB], and [Log@1, callC].

) Strategy #2: For leaf nodes in CG′ that are definitely Log-
Methods, AUTOLOG enumerates all possible execution

sequence of logging activities. This strategy is applied

to methodB and methodD, leading to the LogEP of

[Log@2] and [Log@3, Log@4], respectively.

) Strategy #3: For the non-leaf and non-LogMethod nodes

in the CG′, AUTOLOG records all possible invocation

sequences in execution. In this case, one LogEP is derived

for methodC: [callD] applying this strategy.

In AUTOLOG, loops (e.g., for, while) are viewed as paths

that are repeatedly traversed in a tail-recursive way and are

cycle-free. This crucial feature allows our approach to enu-

merate all possible execution paths. Nodes within the loop can

occur multiple times in a row to mimic the actual execution

sequences. When acquiring LogEPs, we mark the nodes (i.e.,

first and last node) in a loop with a special sign. For in-

stance, LogEP for methodA will be marked as: [Log@1start,
callBend], and [Log@1start, callCend].

Although LogEPs provide all possible executable paths,

there exist some paths that are not executable under any

input values. To avoid such infeasible paths, we conduct intra-

procedural constraint analysis following previous studies [25].

In specific, we gather all constraints for each LogEP and filter

out any LogEPs that contain unsatisfiable constraints. This

process makes the generated LogEPs more realistic. Using the

scalable traversal strategy, AUTOLOG obtains all LogEPs in

less than 1.5 hours in an HDFS system that includes 3,749

methods (pruned) and 2,535 logging statements.

D. PHASE3: Log Path Walking

This phase is devised with the goal of generating labeled

log sequences to simulate the actual application execution

by chaining LogEPs from each method. To achieve accurate

labels while saving annotation effort, AUTOLOG uses aseed-
propagation strategy that involves experts identifying a set of

anomaly LogEPs as seeds, followed by automatically prop-

agating the labels of these anomaly LogEPs to all acquired

LogEPs. Labeled log sequences are eventually generated by a

succession of random LogEP selection step which walks over

the invoked methods. The choice of LogEPs can be controlled

by setting specified data size, execution entrance and anomaly

rate, allowing a flexible dataset that simulates execution logs

in multiple scenarios.

1) Seed Anomaly LogEP Annotation: Since identifying

anomalous logs is challenging and mostly relies on domain

expert knowledge, we adopt the human-annotation process

similar to existing log-based anomaly detection datasets [17],

[18], [21]. However, AUTOLOG differs from existing datasets

in that, it can automatically propagate labels from a set of

anomaly unit to the sequence-level, significantly improving

the annotation efficiency.

We use LogEP as an anomaly unit for expert labeling as it

is a small execution path reflecting the system behavior in a

period. The output of this step is a set of seed anomaly LogEPs

that must produce anomalies. To obtain anomaly LogEPs,

we design the annotation process with alerting statement
annotation and anomaly LogEP identification. The alerting

statement annotation is designed to filter out a large number of

normal logging statements (e.g., Log@1). To do so, we present

all logging statements, their corresponding code snippets as the

execution context, as well as the nearby comments inserted by

developers, for annotators to decide whether they are alerting

logging statements for an anomaly. Taking the HDFS system

as an example, we present the example alerting statements and

their corresponding potential anomalies in Table II. However,
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TABLE II
ALERTING LOGGING STATEMENTS EXAMPLES AND THEIR POTENTIAL

ANOMALY TYPES IN HDFS SYSTEM.

Anomaly Type Alerting Logging Statements Examples

Version mismatch
Layout version on remote node does not match this
node’s layout version.

Disk/Storage error
Unable to get json from Item.
Unexpected health check result for volume < ∗ >.

Dependency error
Unresolved dependency mapping for host .
Continuing with an empty dependency list

identifying alerting statements is not enough for profiling

system activities. Hence, anomaly LogEP identification aims

to further determine whether LogEP will certainly lead to

anomalies. To recognize anomaly LogEPs, we ask annotators

to manually check each LogEP that contains alerting state-

ments. The identified anomaly LogEP is considered anomaly

seeds for propagation in the next step.

2) Anomaly Label Propagation: To generate an effective

anomaly detection dataset, it is important to have labels at the

sequence-level even though the annotations are done at the

LogEP-level to save human effort. To this end, AUTOLOG uses

a strategy called seed propagation to propagate the labels

of seed anomaly LogEPs to other LogEPs, with the goal of

figuring out whether a LogEP is infected by the anomaly label.

The main idea is that: If a LogEP in one method contains an

anomaly (e.g., methodD), then all other LogEP invokes this

method (e.g., [callD]) may also induce an anomaly.

The propagation starts from the seed anomaly LogEPs

marked infected. The propagation is done recursively by

checking whether a LogEP contains other infected LogEPs

brought from invocations. After the propagation, infected Lo-

gEPs are likely to, but will not necessarily cause an anomalyz,

whereas others must be anomaly-free.

3) Generating Log Sequences: Given the LogEPs, AU-

TOLOG eventually generates each actual log sequence by

selecting and chaining the LogEPs in a top-down approach.

The top-down random walking process works as follows: It

starts at an entrance method and walks along invocations,

with one LogEP being randomly chosen at each walking

step. If an invocation exists in the current chosen LogEP,

AUTOLOG walks to the callee method and then chooses

a LogEP in the callee method. The logging statements in

all chosen LogEPs are chained according to the invocation

relationships to form the log sequence.

As one log sequence reflects the execution path of a single

thread, AUTOLOG generates a labeled sequence at each time

with two walking strategies and combines the sequences to

form the datasets for anomaly detection:

• To generate an anomaly log sequence, we always select

the infected LogEP in every step until we have selected

an anomaly LogEP that may contain alerting logging

statements.

• To generate a normal log sequence, we randomly select a

LogEP of each method but take a step back when select-

ing an anomaly LogEP, and re-choose another LogEP.

During the walking, invocations or logging statements

within the loop may occur successively more than once. The

log sequence generation process with random path selection

enables the flexibility of datasets. It can be decorated with

a set of hyper-parameters to generate more controllable log

sequences. For example, the component indicator (CI) controls

the starting point to simulate the execution path in a specific

component (e.g., storage component), and the anomaly rate

AR controls the anomaly ratio (#Anomaly Sequence
#All Sequence ) in the

generated dataset.

IV. IMPLEMENTATION

A. Experiment Environment

AUTOLOG has been implemented by 5,182 lines of Java

code with Soot [41], a Java bytecode optimization and analysis

framework. We run all experiments on Ubuntu 18.04. The

experiments are carried out on a machine with an Intel(R)

Xeon(R) Platinum 8255C CPU (@2.50GHz) with 128GB

RAM. We set the AR to be 3% and CI to be all possible

paths to ensure the coverage, unless otherwise specified.

B. Annotation

To ensure the correctness of annotation, we invite three

Ph.D. students who have at least two-year experience in

distributed system research and development, two of whom

annotate individually, and the other one works as an adju-

dicator to discuss the disagreements with annotators. They

are all allowed to access the Internet for searching answers.

The agreement score between annotators measured by Cohen’s

kappa [42] before adjudication is 0.841 and 0.834 in alert-

ing statement annotation and anomaly LogEP identification,

respectively. All annotators reach a consensus on the labels

after discussing them with the adjudicator.

V. EXPERIMENTS

We evaluate AUTOLOG using four research questions:

RQ1: How comprehensive are the datasets generated by

AUTOLOG?

RQ2: Is AUTOLOG scalable for real-world applications?

RQ3: How flexible are the datasets compared with passively-

collected datasets?

RQ4: Can AutoLog benefit anomaly detection problems?

A. Experimental Settings

1) Existing Datasets: To verify the effectiveness of AU-

TOLOG, we choose three widely-used publicly available

datasets collected from Java applications. We use D-sys and

AUTOLOG-sys to denote the baseline datasets collected from

system sys and collected by AUTOLOG, respectively. Details

of the datasets are illustrated as follows:

• D-Hadoop [17]. Hadoop is an open-source framework

designed to store and process large-scale data efficiently.

The dataset is collected via running two standard appli-

cations and injecting three types of failures for anomaly

detection.
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TABLE III
THE COMPARISON OF DATASETS FOR COMPREHENSIVENESS. D-COVERAGE IS REPORTED FOR THE SYSTEMS WITH PUBLICLY LOG DATASETS.

System Dataset # Log Event Logging Coverage D-Coverage Increment (↑)

Hadoop
D-Hadoop 242 242/3426 (7.1%)

219/242 (90.5%) 12x
AUTOLOG-Hadoop 2879 2879/3426 (84.0%)

HDFS
D-HDFS 30 30/1700 (1.8%)

27/30 (90.0%) 58x
AUTOLOG-HDFS 1367 1367/1700 (80.4%)

Zookeeper
D-Zookeeper 77 77/758 (10.2%)

77/77 (100%) 9x
AUTOLOG-Zookeeper 740 740/758 (97.6%)

Apache Storm AUTOLOG-Apache Storm 1754 1754/1887 (93.0%) - -
Flink AUTOLOG-Flink 1574 1574/1711 (92.0%) - -
Kafka AUTOLOG-Kafka 847 847/1002 (84.5%) - -

• D-HDFS [18]. HDFS is a distributed file system for large-

data storage, enabling high-throughput access to data.

D-HDFS is collected from a private cloud environment

executing benchmark workloads with labeled anomalies.

• D-Zookeeper [19]. Zookeeper provides a centralized ser-

vice to manage a large set of hosts (e.g., synchronization,

configuration information management). D-Zookeeper is

collected in a lab environment for log analysis without
labelling.

Since this paper presents the first methodology that actively

generates log datasets without deploying and running the

system, we compare AUTOLOG with all existing Java-based

log datasets in our research questions.
2) Evaluation Subjects: Apart from three projects associ-

ated with existing log datasets, we extensively evaluate the

effectiveness of AUTOLOG on the most popular 50 projects

from the Maven repository [43], with more than 10,000 usage

times for each. The selected projects include, but are not

limited to, distributed streaming platforms (e.g., Kafka), core

Java packages (e.g., Apache HttpClient), and unit testing

frameworks (e.g., JUnit). Among them, we present the detailed

result of three widely-studied distributed system projects be-

low and report statistical results for other projects.

• Apache Storm [44]. It is a distributed real-time compu-

tation system, allowing large-scale data processing and

high-velocity data streams.

• Flink [45]. Flink is a stream processing engine that can

handle scale system events with low latency.

• Kafka [46]. Kafka is a distributed event storage and

stream-processing platform applied in thousands of com-

panies.

3) Metrics:
• Coverage. Motivated by software testing studies [24],

[47], we evaluate the comprehensiveness of logging cov-
erage, which measures the percentage of the discovered

log events to the total log events designed in the appli-

cation ( #Log Event
#Total Log Event ). We also use D-Coverage to

evaluate the ratio of log events in existing datasets that are

covered by AUTOLOG (#Log Event Covered by AutoLog
#Log Event in Existing Dataset ).

• Execution Time. To validate the scalability of AUTOLOG,

we report the program execution time for each system,
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Fig. 4. The number of generated log messages and their corresponding real-
time logging coverage.

which includes the time for code analysis and data

generation in a single machine.

B. RQ1: How Comprehensive are the Datasets Generated by
AUTOLOG?

We evaluate the comprehensiveness of the dataset generated

by AUTOLOG regarding the number of log events, logging

coverage, and D-Coverage, illustrated in Table III.

Compared to the existing log datasets, AUTOLOG effec-

tively enhances the comprehensiveness of log events. Firstly,

AUTOLOG covers an average of 87.38% logging statements

over six systems, demonstrating its ability to capture logging

statements designed in code. The number of log events gener-

ated by AUTOLOG is 12x, 58x, and 9x is more than ex-

isting datasets collected from Hadoop, HDFS, and Zookeeper,

respectively. Regarding the missing parts, we analyze them

as follows. They mainly come from the restrictive call graph

construction phase [25], the limitation of logging statement

restoring [48] across different methods, and unreachable ex-

ecution paths that we have eliminated. Taking the restoring

process as an example, if the constant string msg is defined

outside methodD in Listing 1, AUTOLOG has difficulty restor-

ing the Log@4. Secondly, the experiment results illustrate

that AUTOLOG covers most of the log events in the existing
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TABLE IV
THE COMPARISON OF EXISTING DATASETS FOR SCALABILITY.

System Dataset # Message Execution Time # Messages/min (speed) Acceleration (↑)

Hadoop
D-Hadoop 394,308 NA NA

-
AUTOLOG-Hadoop 392,427 3.41 hours 1,918

HDFS
D-HDFS 11,175,629 38.7 hours† 4,813

15x
AUTOLOG-HDFS 11,376,233 2.62 hours 72,367

Zookeeper
D-Zookeeper 207,820 26.7 days† 6

2072x
AUTOLOG-Zookeeper 211,425 17 mins 12,436

Apache Storm AUTOLOG-Apache Storm 1,001,245 1.28 hours 13,037 -
Flink AUTOLOG-Flink 1,003,416 1.21 hours 13,821 -
Kafka AUTOLOG-Kafka 1,002,629 39 mins 25,708 -

† This is the collection time from its original paper. NA means the authors do not report the collection time.
“-” means the acceleration cannot be computed due to the unknown collection time of existing datasets.
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Fig. 5. The histogram of logging coverage and the number of log events over
50 popular projects.

dataset, achieving 219/242, 27/30, and 77/77 for Hadoop,

HDFS, and Zookeeper systems, respectively. The missing log

events mainly come from optional components of complicated

systems and different deployment settings on varied platforms.

Logging coverage implies the upper limit of the discovered

log events in AUTOLOG; ideally, generating log sequences for

enough time will eventually reach that coverage. Fig. 4 shows

the relationship between the number of real-time generated log

messages and its corresponding logging coverage in HDFS

system (denoted as real-time logging coverage). The results

indicate that AUTOLOG achieves its logging coverage after

generating approximately 350,000 messages.

Besides, we display the logging coverage (left) and the

number of generated log events (right) histogram over 50

popular Java projects in Fig. 5. The results demonstrate that

AUTOLOG achieves an average logging coverage of 87.77%,

which is superior to existing log datasets. Additionally, the

number of log events in different projects ranges from hun-

dreds to thousands, indicating that existing log datasets with

limited log events are inadequate.

AUTOLOG shows a significant improvement (9x-58x) on

the number of log events and can effectively cover 87.77%
logging statements on average over studied projects.

C. RQ2: Is AUTOLOG Scalable for Real-world Applications?

We evaluate the scalability of our log generation methodol-

ogy, which measures the time required for generating data. To

compare the scalability, we generated the same amount of data

in a single machine as existing public datasets and compared

the data collection time.

The result in Table IV indicates that AUTOLOG is efficient

in analyzing and generating log sequences from real-world

applications. It can produce messages at high speed, with a

range of 1,918 to 72,367 messages per minute. Moreover,

compared with the HDFS dataset that took 38.7 hours to

collect, AUTOLOG can generate the same amount of data

within 2.62 hours (15 times faster). This scalability is at-

tributed to the call graph pruning and intra-method LogEP

derivation steps, which decrease the number of methods for

analysis and solve the path explosion problem. Moreover,

because AUTOLOG is built on source code, deploying it into

a new system is effortless, unlike the long time required for

configuring and rerunning applications in existing passively-

collection methods. Additionally, we investigate the time spent

for execution path finding (Phase1 and Phase2) as LogEPs

can be reusable to generate log sequences multiple times. In

particular, we apply AUTOLOG on 50 Java projects and mea-

sure the execution time, ranging from 687 to 83,969 methods

in a project (as shown in Fig. 6). Our results demonstrate

504

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:01:34 UTC from IEEE Xplore.  Restrictions apply. 



103 104 105

Methods

0

20

40

60

T
im

e(
m
in
)

Fitting Curve

LogEPs Mining (Phase1 + Phase2)

Confidence Interval

Fig. 6. Time cost for acquiring LogEPs and the number of analyzed methods
over 50 popular projects.

TABLE V
THE COMPARISON OF LOG DATASETS FOR FLEXIBILITY.

Aspects D-HDFS D-Hadoop AUTOLOG

Data Size Partial Partial Complete

Component
Partial Partial CompleteIndicator

Anomaly Rate Deterministic Deterministic Non-deterministic

that AUTOLOG can analyze most projects within one hour,

indicating its practicality and efficiency.

Although we did not include the annotation time in Ta-

ble IV, AUTOLOG has an efficient seed-propagation labeling

strategy that requires less time than labeling each log sequence

in passively-collected datasets. For instance, independent an-

notators spent an average of 2 hours on alerting statement

annotation and 4 hours on anomaly LogEP identification for

1,367 log events in HDFS.

AUTOLOG considerably shortens the dataset generation time

(15x) compared with existing datasets. The promising path

finding time further manifests its scalability for real-world

applications.

D. RQ3: How Flexible are the Datasets Compared with
Passively-collected Datasets?

We assess the flexibility of AUTOLOG and its benefits

for log-based anomaly detection. In Table V, we compare

AUTOLOG with existing datasets regarding the flexibility over

data size, component-indicator, and anomaly rate.

Different systems require varying amounts of data for algo-

rithm development. For example, a large amount of data can

be exploited to build algorithms for distributed cloud systems

whereas naive systems only preserve a small amount of data to

study. AUTOLOG is capable of generating datasets of any size,

whereas D-HDFS and D-Hadoop have partial size restrictions

once they are released.

In addition, engineers may need to focus on specific com-

ponents’ functionality during software development and main-

tenance, which requires component-specific logs for anomaly

detection. While the existing datasets provide limited compo-

nent information, AUTOLOG is able to produce sequences of

component-indicator logs by starting to walk from constrained

entry nodes during generation.

Moreover, different systems have different fault-tolerance

abilities, which affect the potential anomaly rates in collected

logs. Existing datasets (e.g., D-HDFS) have fixed numbers of

anomaly sequences, requiring researchers to filter out some

anomaly sequences or significantly lower the number of nor-

mal sequences to increase the anomaly rate in a deterministic

way [23]. However, AUTOLOG can produce a huge amount of

various sequences iteratively, introducing the unseen patterns

and increasing the flexibility for anomaly detection.

AUTOLOG effectively generates datasets with more flexibil-

ity of utilization (i.e., data size, component, anomaly rate)

than existing datasets, allowing imitating a wider range of

sophisticated application scenarios.

E. RQ4: Can AutoLog Benefit Anomaly Detection Problems?

This RQ explores how AUTOLOG helps to resolve log-

based anomaly detection. In particular, we train state-of-

the-art (SOTA) detectors on AUTOLOG and evaluate their

performance. This section takes HDFS2 to evaluate models

on real-machine-generated logs D-HDFS (denoted as D) and

AUTOLOG-HDFS (denoted as AUTOLOG) from the same

software version, followed by a performance discussion.

1) Settings: We select the following representative log

anomaly detection models for evaluation: (1) LogRobust [35],

which leverages a bi-directional LSTM network (bi-LSTM)

with an attention mechanism to learn the importance of

each log for tackling unstable log patterns. (2) CNN [36],

which transforms the log sequence to a trainable matrix,

then applies a Convolutional Neural Network (CNN) for

log-based anomaly detection. (3) Transformer [49], which

applies a Transformer encoder to learn context information to

distinguish the anomaly logs from normal logs. When using

AUTOLOG, we set the anomaly rate (3%), and data split ratio

(train: test = 8: 2) to be the same as the original D.

Following previous research work [35], [50], we adopt

Precision (P), Recall (R), and F1 to evaluate the performance.

Precision is calculated by the percentage of log sequences

correctly identified with anomalies over all sequences that are

recognized with anomalies. Recall is calculated by the percent-

age of log sequences correctly recognized with anomalies over

the actual anomaly sequences. F1 Score (F1) is the harmonic

mean between Precision and Recall.

2) Results: Table VI presents the performance of different

anomaly detection models on two datasets. First, we evaluate

models on the real-world dataset D (test set). We observe that

models trained with AUTOLOG perform consistently better
(1.93% of F1 on average) than trained with D (train set).

CNN can achieve an F1 score of 0.978 after training with

AUTOLOG, even surpassing the SOTA performance by 1.1%.

We analyze the reason for performance improvement after

training on AUTOLOGas follows. AUTOLOG generates more

comprehensive log events by imitating a more varied system

behavior. Once an anomaly detector has seen such diverse log

2Other widely-used anomaly detection datasets (e.g., BGL) are not gener-
ated from open-sourced software.
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TABLE VI
COMPARISON OF THE ANOMALY DETECTION MODELS OVER TWO

DATASETS D AND AUTOLOG.

Train set D AUTOLOG

Test set Approach P R F1 P R F1

Transformer 0.889 0.904 0.896 0.892 0.996 0.941
D CNN 0.936 0.995 0.965 0.959 0.997 0.978

LogRobust 0.942 0.994 0.967 0.947 0.988 0.967

Transformer -† 0.723 0.755 0.739

AUTOLOG CNN -† 0.697 0.790 0.741

LogRobust -† 0.673 0.875 0.761

†The large amount of unseen events will lead to considerably poor
performance.

events in its training phase, it can effectively detect the anoma-

lies in production environments. The result demonstrates that

AUTOLOG is effective in generating realistic log sequences,

which can help models learn more varied system behavior and

improve anomaly detection accuracy.

Second, we observe that state-of-the-art approaches perform

well in D dataset but can only reach an F1 score of 0.761

in AUTOLOG. We attribute the performance gap to the more

comprehensive log events (e.g., 1367 rather than 30) and

diverse sequential log patterns generated by AUTOLOG. This

highlights the need for further research on log semantic en-

coding and system behavior profiling to address the challenges

posed by complex log data in real-world deployments of

anomaly detection models.

AUTOLOG benefits anomaly detection detectors by providing

the training resource that allows existing models to improve

(1.93% on average) their performance consistentl. It is effec-

tive in generating more sophisticated and practical log data

than any existing Java log datasets. It can serve as a bench-

mark data generator and training resource for developing and

validating promising anomaly detection models.

VI. CASE STUDY

Fig. 7 exhibits a case from an HDFS user who tries

to delete blocks and encounters data loss issue3. The user

reports the log sequences from Datanode (left) and Namenode

(right). After matching this realistic log sequence in D-HDFS

and AUTOLOG-HDFS, we find that (1) both D-HDFS and

AUTOLOG-HDFS contain the sequence from Datanode, (2)

only AUTOLOG-HDFS can cover the sequence from Namen-

ode. In AUTOLOG, the acquired execution paths via pro-

gram analysis simulate how logging statements are executed

(recorded) in software to provide realistic log sequences in

block deletion. In addition, the case illustrates the compre-

hensiveness of logs produced by AUTOLOG. Although it is

impractical to configure and enumerate all system activities in

software for log collection, AUTOLOG addresses the issue by

actively analyzing all possible execution paths.

3https://issues.apache.org/jira/projects/HDFS/issues/HDFS-16829
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Fig. 7. User-reported log event sequences from HDFS.

VII. THREATS TO VALIDITY

We have identified the following four major threats to

validity. (1) Unpredictable exception handlers: A few run-time

behaviors, such as exception catching, cannot be thoroughly

analyzed without actually executing the program. A logging

statement can be severed from the execution path by the

exception handler. While exceptions can reflect anomalies,

these anomalies are relatively “easy” to be detected (e.g.,

keyword search). Existing log-based anomaly detection mainly

focuses on the remaining “difficult” anomalies. To mitigate

this threat, we can simulate run-time exception-catching be-

haviors by randomly selecting try-catch statements and setting

interruptions in the try body.

(2) Potential multi-thread intervention: AUTOLOG analyzes

execution paths and generates log sequences in a single thread.

Thus, the intervention and communication between multiple

threads may be neglected. However, we notice that modern

anomaly detection models [35], [36], [49] are developed for

single-thread analysis, which starts with separating different

threads based on their thread IDs. In this regard, the lack of

multi-thread log sequences will not hamper the evaluation of

existing anomaly detection models. In the future, we plan to

extend AUTOLOG to support multi-thread settings.

(3) Unresolved parameters: AUTOLOG uses a dummy token

to replace unresolved parameters (e.g., addresses, digits, ID

character strings) in the logging statements, which is supposed

to carry system behavior information. However, previous stud-

ies [8], [22] reveal that log event (without run-time parameters)

sequences are sufficient to capture system activities, and pa-

rameters may hinder deep learning-based detectors [35]. Even

though the unresolved parameters are specified with certain

values, they will be wiped out before feeding into anomaly

detection models. In any case, we regard parameters resolving

as an important future direction for their utilization in other

log analytics (e.g., log parser).

(4) Imprecise call graph: Generating precise call graphs

has been known as an open-challenging question in static

analysis community for a long time [48], [51], [52]. Soot [41]

uses Class Hierarchy Analysis (CHA) [53] to handle dynamic

dispatch (e.g., finding the callee), which has a relatively low

accuracy due to the polymorphism of Java. To mitigate the

impact of the imprecise graph, we refined the calling relation-

ship with context-insensitive pointer analysis that significantly

improves the precision of the call graph.
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VIII. RELATED WORK

A. Logging Statements Generation

Recording the precise and concise logs in software becomes

a critical problem for logging practice as developers inspect

logs for software operation and maintenance. Logging state-

ments generation aims at suggesting developers in deciding

what to log, where to inject a log and at which log level.
A collection of studies are proposed to support developers in

logging activities. For where-to-log, [54] extracted syntactic

and semantic information from the code block level to suggest

the logging locations via a deep learning-based approach. For

log level, PADLA [55] is presented to dynamically adjust the

log level of a running system guided by the online phase

performance anomalies detection. Similarly, DeepLV [56] is

a neural approach that automatically suggests the log level by

incorporating the syntactic context (i.e., AST) and message

features (i.e., log message) from code. Regarding what-to-log,

several studies suggest the variables to log via source-code

analysis [25] and variable representation learning [57]. The

recent study [58] applied a Text-To-Text-Transfer-Transformer

(T5) model to generate complete logging statements and inject

them in the correct code location. The latest study [59],

inspired by the huge success of large language models (LLMs)

in natural language understanding and code intelligence tasks,

empirically analyzed how well LLMs in generating complete

logging statements. Instead of deciding on log statements in

code, AUTOLOG stands at a completely different perspec-

tive that automatically generates log sequences from existing

projects for the research and development community.

B. Data Synthesis

Data synthesis has been investigated in various domains

and modalities, such as time series and traces. Statistical

models [20] and generative models [60], [61] are two classical

methodologies to synthesize time-series data. For example,

TSAGen [20] is a univariate time-series synthesizer that

yields Key Performance Indicator (KPI) data with various

anomalies and controllable characteristics using a probability

distribution. Moreover, a few studies have been performed

to synthesize location traces to protect mobile users’ privacy,

including employing synthetic point injection in a trajectory

of a user [62], synthesizing differentially private trajectories

by variable-length n-grams [63] or hierarchical reference sys-

tems [64]. AUTOLOG differs from all above studies in the way

that it generates data from the code level to simulate execution

paths instead of synthesizing from existing data.

The only study related to synthesizing logs is LogRo-

bust [35], which enhances the existing dataset by randomly

shuffling, adding, and removing words in collected logs.

However, such a mutation-based synthesis strategy can hardly

reflect the real logging statements and their sequential patterns

that are not covered in data collection.

C. Log-based Anomaly Detection

Automated log file analysis enables to detect anomalous sys-

tem activities early and guides troubleshooting. The anomaly

detection task requires the model to identify whether there

exist anomalies in a short time of logs. Several machine

learning-based models (e.g., decision tree [65], support vector

machine [66]) are built to solve the task. Recent studies

demonstrate that the advanced deep learning-based mod-

els [67] achieve higher performance, such as LSTM [5], [35],

auto-encoder [68], and Transformer [49], [50].

Although plenty of efforts have been devoted to intelligent

log anomaly detection, log files are seldom made available

to the public, making it difficult for researchers to validate

new algorithms. The most widely-used log analysis dataset,

LogHub [19], only contains limited logging statement cov-

erage and thus cannot reflect the modern complex systems.

AUTOLOG, as a log dataset generation methodology, breaks

this bottleneck by efficiently providing a comprehensive and

controllable data source.

IX. CONCLUSION

Although log-based anomaly detection has been widely

studied, only a few approaches have been successfully de-

ployed in the real world because existing datasets suffer from

comprehensiveness, scalability, and flexibility limitations. To

overcome these limitations, this paper presents AUTOLOG,

the first automated log generation methodology for anomaly

detection, with three phases: logging statement probing, log-

related execution path finding, and log path walking. Extensive

experiments demonstrate that AUTOLOG produces compre-

hensive coverage of log events in application with scalability.

AUTOLOG is also equipped with hyper-parameters to gener-

ate log datasets in flexible data size, component indicator,

and anomaly rate. With our replication package released,

we believe AUTOLOG could be a starting point for active

dataset generation in the log analysis field, which provides

benchmarking data for building practical anomaly detection

algorithms.
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