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Abstract
Disaggregated memory (DM) is an increasingly prevalent
architecture in academia and industry with high resource uti-
lization. It separates computing and memory resources into
two pools and interconnects them with fast networks. Exist-
ing range indexes on DM are based on B+ trees, which suffer
from large inherent read and write amplifications. The read
and write amplifications rapidly saturate the network band-
width, resulting in low request throughput and high access
latency of B+ trees on DM.

In this paper, we propose to use the radix tree, which is
more suitable for DM than the B+ tree due to smaller read and
write amplifications. However, constructing a radix tree on
DM is challenging due to the costly lock-based concurrency
control, the bounded memory-side IOPS, and the complicated
computing-side cache validation. To address these challenges,
we design SMART, the first radix tree for disaggregated mem-
ory with high performance. Specifically, we leverage 1) a
hybrid concurrency control scheme including lock-free inter-
nal nodes and fine-grained lock-based leaf nodes to reduce
lock overhead, 2) a computing-side read-delegation and write-
combining technique to break through the IOPS upper bound
by reducing redundant I/Os, and 3) a simple yet effective re-
verse check mechanism for computing-side cache validation.
Experimental results show that SMART achieves 6.1× higher
throughput under typical write-intensive workloads and 2.8×
higher throughput under read-only workloads, compared with
state-of-the-art B+ trees on DM.

1 Introduction
Distributed range indexes are fundamental building blocks
of many applications, e.g., databases and key-value stores, to
conduct range queries [2, 21, 53, 57, 59]. To improve resource
utilization, many new proposals adopt the disaggregated mem-
ory (DM) architecture [53, 59]. DM can decouple computing
and memory resources into two elastic resource pools (i.e.,

*The work was mainly conducted when Xuchuan and Jiacheng were
interns at Huawei Cloud.

computing pool and memory pool) interconnected with high-
speed networks, e.g., remote direct memory access (RDMA)
connections [3, 9, 16, 19, 20, 27, 47]. In this way, a DM range
indexing system can utilize resources more efficiently.

Current DM index systems [53, 59] use B+ tree to build
range indexes, following the idea generally adopted in the
monolithic server solutions. However, B+ trees can bring se-
vere read and write amplification issues on DM. Specifically,
when reading or writing a key-value item in a B+ tree, one
should search the tree by traversing many nodes which con-
tain many useless keys and pointers since only one key is
the target. This inevitably amplifies the network bandwidth
consumption. As such network bandwidth is generally the bot-
tleneck of the DM architecture [23], the amplified bandwidth
consumption incurred by B+ trees exacerbates the bottleneck.
This issue will lead to low overall throughput and high access
latency. Our experimental study shows that it can dramatically
degrade the throughput of Sherman [53], the state-of-the-art
B+ tree index on DM. The throughput is 10.8× lower than the
theoretical bound of RNICs under the YCSB workloads [10].

In this paper, we propose that radix tree is a more suitable
tree index structure for DM. Compared with B+ trees, radix
trees have smaller read and write amplifications since they
do not store the entire keys in internal nodes. Moreover, the
state-of-the-art radix tree design, i.e., ART [32], further re-
duces read and write amplifications with an adaptive internal
node design. However, several challenges should be addressed
before radix trees become a high-performance, practical in-
dexing solution for DM.

(1) Lock-based concurrency control is expensive. Remote
lock operations are expensive on DM. However, the existing
ART design adopts a lock-based algorithm for concurrency
control [33], which contains many remote lock operations,
worsening the write performance. In addition, computing-side
caches are required on DM to reduce operation latency. The
traditional read-copy-update (RCU) scheme for radix trees
causes frequent changes in the addresses of cached nodes,
leading to cache thrashing.

(2) Redundant I/Os deteriorate the throughput. RNICs
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in the memory pool of DM have bounded IOPS (I/O per
second) [51]. However, radix trees have multiple small-sized
read and write operations when traversing and modifying
the tree index. Many of these read and write operations are
redundant when multiple clients on the same compute node
concurrently traverse the tree. These redundant I/Os on DM
waste the limited IOPS of RNICs and thus decrease the peak
throughput of radix trees.

(3) The complicated computing-side cache validation.
Tree indexes on DM typically adopt computing-side caches
to reduce access latency [56]. However, the structural features
of radix trees (e.g., path compression) incur many address
changes and metadata changes in radix tree nodes. These
changes add more cache invalidation situations and thus com-
plicate the cache design.

To address the above challenges, we propose SMART, a
diSaggregated-meMory-friendly Adaptive Radix Tree. First,
for better concurrency control, we present a hybrid ART con-
currency control scheme with a lock-free internal node design
and a lock-based leaf node design to achieve high perfor-
mance without cache thrashing. Second, for an IOPS break-
through, we propose a read-delegation and write-combining
(RDWC) technique to reduce computing-side redundant I/Os.
Third, for cache validation, we co-design SMART with an
ART cache, including a reverse check mechanism to handle
new cache invalidation situations of ART.

We implement SMART from scratch and evaluate it using
the YCSB benchmark [10]. Compared with Sherman [53], the
state-of-the-art B+-tree-based range index on DM, SMART
achieves up to 6.1× higher throughput and 1.4× lower la-
tency for typical write-intensive workloads and 2.8× higher
throughput with similar latency for read-only workloads. The
code of SMART is available at https://github.com/dme
msys/SMART.

In summary, this paper makes the following contributions:
• We propose that ART is a better tree index on DM, based

on theoretical analysis and experimental results.
• We present the first memory-disaggregated radix tree,

SMART, with three key designs for high performance,
including a hybrid ART concurrency control scheme, a
read-delegation and write-combining technique, and a
reverse check mechanism for cache validation.

• We implement SMART and evaluate it using YCSB
workloads [10]. The evaluation results demonstrate the
efficacy and efficiency of SMART.

2 Background
2.1 Disaggregated Memory Architecture
As shown in Figure 1, the DM architecture physically sep-
arates computing (e.g., CPUs) and memory (e.g., DRAM)
resources into two independent resource pools to address the
resource utilization issue in traditional data centers with mono-
lithic servers [18, 31, 42, 43, 46, 54]. In the DM architecture,
compute nodes (CNs) own powerful computing resources but

RDMA Network

abundant CPUs

scarce memory

scarce CPUs

abundant memory

Compute Nodes(CNs) Memory Nodes(MNs)

Figure 1: The architecture of disaggregated memory.

only have a small piece of memory serving as local caches.
In contrast, memory nodes (MNs) are equipped with masses
of memory but only own a few wimpy computing cores for
simple tasks such as establishing network connections and
allocating memory spaces.

A high-speed network with high bandwidth and low la-
tency, e.g., RDMA network, is a crucial component in the
DM architecture that interconnects CNs and MNs [12, 17].
RDMA network interface cards (RNICs) allow CNs and
MNs to communicate with each other using one-side verbs
(e.g., RDMA_READ, RDMA_WRITE, RDMA_CAS) or two-side
verbs (e.g., RDMA_SEND, RDMA_RECV). One-side verbs are
preferred on the DM architecture to enable computing-side
clients to operate directly on the disaggregated memory with-
out involving the weak CPUs on MNs.

2.2 B+ Trees on Disaggregated Memory

Tree indexes are critical for many applications requiring range
queries. All previously proposed tree indexes on DM are vari-
ants of the B+ tree, including FG [59] and Sherman [53]. FG
is the first RDMA-based index supporting DM. It uses a B-
link tree structure and completely leverages one-sided verbs
to perform index operations, with RDMA-based spin locks
for concurrency control. Since FG directly ports the spin-lock-
based concurrency control and B-link tree node designs on
monolithic servers to DM, its performance suffers from severe
network contention on lock retries and write amplification
on B-link tree nodes. Sherman [53] is the state-of-the-art B+
tree on DM that addresses the network contention and write
amplification issues of FG. First, it addresses the network con-
tention on lock-fail retires with a hierarchical on-chip lock
(HOCL) scheme. The network requests on lock-fail retries
are reduced with a local lock table shared among clients on
the same CN. The on-chip memory of RNICs is leveraged to
reduce PCIe transmissions further. Second, it mitigates the
write amplification by allowing fine-grained modification to
B+ tree nodes with a two-level version mechanism. There-
fore, Sherman achieves much better performance than FG.
However, Sherman still suffers from the natural performance
bottleneck of B+ trees, i.e., coarse-grained lock-based con-
currency control and inherent read amplification, which are
analyzed in Section 3.
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Figure 2: The optimization process from the basic radix tree to ART.
For clarity, hexadecimal partial keys are shown. NODE_256 is simply
an array of 256 pointers, which is not shown due to space limitation.

2.3 Radix Tree
The radix tree is another popular tree index structure. It stores
the segmented key in the top-down search path over the tree
rather than storing the whole key in the internal node. Specifi-
cally, each internal node in the radix tree consists of an array
of child pointers. Each pointer is associated with a segment of
bits of the whole key, called partial key, as shown in Figure 2.

Path compression. Path compression is an optimization
method for the radix tree to reduce tree height by removing
one-child internal nodes, and can be implemented in three
ways [32]: 1) The optimistic method simply abandons the par-
tial keys in the removed nodes and instead stores a depth value
to ensure the subsequent traversal process. 2) The pessimistic
method stores all the partial keys of the removed nodes in
the header of the subsequent node. 3) The hybrid method
integrates the two methods above by storing partial keys into
the fixed-sized header of the subsequent node, together with a
depth value to ensure the subsequent traversal if some partial
keys overflow from the header.

Adaptive radix tree (ART). ART [32] is the state-of-the-
art variant of the 8-bit-span radix tree, designed to optimize
the memory utilization of traditional radix trees. Traditionally,
an internal node of a radix tree has all 256 pointers represent-
ing all possible partial keys. Many pointers are empty due
to the sparse key distribution [32], wasting memory space
in these internal nodes. ART addresses the issue by propos-
ing four well-designed internal node structures with different
numbers of pointers, i.e., 4, 16, 48, and 256. It dynamically
chooses the best-fit internal node structure to save memory
space. As for concurrency control, ART is synchronized using
a lock-based algorithm, i.e., the read-optimized write exclu-
sion (ROWEX) protocol [33]. There are some proposed ART-
based indexes designed on monolithic servers [26, 29, 30, 37],
while none of them is designed for DM.

Table 1: Read and write amplification factors of different trees.

ART B+ Tree Sherman

Read M1+E
E = 1.10 M2+S·E

E = 32.7 M2+S·(M3+E)
E = 33.0

Write M1+E
E = 1.10 M2+S·E

E = 32.7 M3+E
E = 1.01

3 Analysis of Tree Indexes Built on DM
In this section, we first theoretically and experimentally com-
pare B+ trees with a vanilla ART (§ 3.1). We then present the
challenges of designing ART on DM (§ 3.2).

All the experiments in this section are conducted with 8
CNs and 1 MN, each equipped with a 100Gbps Mellanox
ConnectX-6 RNIC. Each CN launches 32 clients with one
shared 600MB cache. We use YCSB workloads [10] (includ-
ing 60 million entries) with 32-byte string keys and 64-byte
values, which is typical in real-world workloads [4, 58].

3.1 Motivations: B+ Tree vs. ART on DM
The main problem of B+ trees on DM is their severe read and
write amplifications. In internal nodes, the B+ tree stores the
whole keys. In leaf nodes, the B+ tree stores multiple keys
together. Without optimizations, the B+ tree needs to read and
write the entire nodes during each index operation, causing
serious read and write amplifications. In the following, we
first theoretically compare the read and write amplifications
of ART with the B+ tree and the write-optimized B+ tree (i.e.,
Sherman [53]). We then experimentally show the performance
impacts due to the read amplification.

3.1.1 Theoretical Analysis

The read and write amplification factors of different tree struc-
tures are shown in Table 1, respectively. We assume the in-
ternal nodes are cached and no node split occurs for brevity.
M1 and M2 denote the metadata size of the leaf node of the
radix tree and B+ tree, respectively. M3 denotes the size of the
additional metadata (i.e., entry-level versions) that Sherman
applied to each key-value item. S denotes the span size of the
B+ tree node. E denotes the key-value item size.

The amplification factor is defined as the ratio of bandwidth
consumption from the server and bandwidth returned to the
application. Without optimizations, when a client reads or
writes a single key-value item in a tree index, the whole leaf
node should be read or written. We use the same size of the
key-value item, i.e., 96 bytes, for all trees as an example.

The leaf node of the ART contains one item with its meta-
data. In our implementation, 10 bytes of metadata is enough
for each item in ART. The read and write amplification factors
are M1+E

E = 10B+96B
96B = 1.10.

The leaf node of the B+ tree contains S items together
with the metadata. The metadata at least includes two fence
keys (2 ·32B), a valid bit, a lock bit, a 1-byte level field, and
two 7-bit versions [53], i.e., 67 bytes in total. We use the
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(a) (b) (c) (d)

Figure 3: The read performances of Sherman and ART under the YCSB C workload (100% read). (a) The throughput bottleneck with no cache.
(b) The impact of key size and span size with no cache. (c) The peak throughput with various sizes of caches. (d) The latency deterioration with
excess requests.

default span size in Sherman, which is 32. The read and write
amplification factors are M2+S·E

E = 67B+32·96B
96B = 32.7.

For Sherman, each key-value item in the leaf node is sur-
rounded by a pair of 4-bit entry-level versions. Thus the read
amplification factor is M2+S·(M3+E)

E = 67B+32·(1B+96B)
96B = 33.0.

When writing an item without node splitting, the client only
requires to write back the modified item with its associated
entry-level versions. Thus the write amplification factor is
M3+E

E = 1B+96B
96B = 1.01.

3.1.2 Experimental Results

To show the impact of read amplification on the performance,
we compare the performances of Sherman and ART under
read-only workloads. The impact of write amplification is sim-
ilar. We observe that the amplification leads to low throughput
and high latency of B+ trees on DM.

Observation 1: The throughput of the B+ tree is bounded
by network bandwidth. The memory-side network bandwidth
is generally the performance bottleneck in the DM architec-
ture [23]. The read and write amplifications of B+ trees cause
more bandwidth consumption for each request, exacerbating
the network bottleneck and resulting in low throughput.

As shown in Figure 3a, with an increasing number of
clients, the limited bandwidth prevents the throughput of Sher-
man and ART from continually rising. With the same RNIC
bandwidth, Sherman has a lower peak throughput than ART
due to the severe read amplification. As shown in Figure 3b,
the larger the key size or the span size (i.e., the number of
keys stored in a leaf node) is, the larger the read amplification
is, which decreases the peak throughput of Sherman.

A computing-side cache is usually used for caching the
internal nodes of the B+ tree on DM. As shown in Fig-
ure 3c, with the increasing size of the cache, the through-
put of Sherman keeps bounded by the bandwidth bottle-
neck and finally saturates at 4.17 Mops/s. The bandwidth
consumption from the server equals the maximum network
bandwidth of 100 Gbps (12.5 GBps), and the bandwidth re-
turned to the application is 4.17 Mops/s ·96B = 0.39 GBps.
Thus the measured read amplification factor of Sherman is
12.5 GBps / 0.39 GBps = 32.1, which is close to our theo-

retical analysis in § 3.1.1.
In contrast, without the read amplification from leaf nodes,

the throughput of ART reaches about 45 Mops/s, which is the
IOPS upper bound of the RNIC we use. This indicates that
ART can make full use of the RNIC capacity and achieve the
best resource efficiency as DM desires.

Observation 2: The latency of the B+ tree is worsened by
early network congestion. Network congestion occurs when
computing-side requests saturate the bandwidth or IOPS up-
per bound of RNICs. As the number of clients keeps growing,
excess client requests need to queue up across the network,
which results in latency deterioration. The read and write am-
plifications make B+ trees consume the bandwidth rapidly,
expediting the process of network congestion.

As shown in Figure 3d, with the increase of throughput, the
latency of Sherman and ART is stable in the beginning and
then experiences a sudden surge due to the network conges-
tion. Moreover, with the same memory-side RNIC bandwidth,
Sherman has a much smaller inflection point (i.e., the through-
put threshold that triggers network congestion) than ART. As
a result, Sherman shows an extremely high latency with rela-
tively few clients. By contrast, ART has a high tolerance to
this latency deterioration thanks to its small amplifications.

3.2 Challenges: ART on DM
Even though ART has superiority under read-only workloads,
it suffers from significant challenges on DM under hybrid
read-write workloads.

Challenge 1: Lock-based concurrency control of ART
causes poor write performance. Existing ART adopts lock-
based algorithms to perform synchronization [33]. However,
lock operations are expensive on DM and lead to poor write
performance, as shown in Figure 4a. Specifically, unlike lo-
cal memory, each lock operation on DM requires additional
network transmission (e.g., RDMA_CAS). Furthermore, the
lock conflict mechanism (i.e., busy waiting) causes frequent
RDMA retries when failing to acquire a lock, which wastes
the limited IOPS of RNICs and reduces the throughput.

One feasible solution is to design lock-free algorithms.
However, lock-free design is not the best choice for ART as
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Figure 4: (a) The write performance of ART under the YCSB insert workload (100% insert) with no cache. (b) The performance degradation
caused by cache thrashing under the YCSB A workload (50% read + 50% update) with sufficient caches. (c-d) The inter-client redundant I/Os
on DM in terms of reads and writes.

well. Specifically, an out-of-place update scheme is required
for lock-free algorithms to update items larger than 8 bytes.
It atomically compares and swaps the corresponding 8-byte
addresses instead of modifying the items in place, as the latter
cannot be realized atomically. However, in high-concurrency
scenarios, a mass of out-of-place updates lead to frequent
changes in the addresses of items. This brings about the se-
vere cache coherence issue since the old addresses of the items
have been cached in other CNs. Even worse, in skewed work-
loads, the addresses of hot items are changed continuously
and repeatedly, resulting in cache trashing.

To verify this, we evaluate the two update schemes in ART
with the YCSB A workload,1 as shown in Figure 4b. The
out-of-place scheme brings about an average of 19.1% invalid
cached addresses of leaf nodes and thus results in a 44.5%
throughput decline compared with the in-place scheme.

Challenge 2: Inter-client redundant I/Os on DM waste
the limited IOPS of RNICs. As mentioned in Observation 1,
B+ trees suffer from bandwidth bottleneck, while ART can
break through the bottleneck and achieve the IOPS upper
bound of RNICs, with small read and write amplifications.

However, we find that there are redundant I/Os that waste
the limited IOPS of RNICs in the DM architecture, hinder-
ing ART from continually breaking through the IOPS upper
bound. Specifically, taking read operations as an example,
when several clients on the same CN read the same key-value
item concurrently, they send identical RDMA_READs across
the network. This is superfluous duplication of effort since all
these requests do the same transmission work.

To measure the extent of underlying inter-client redundant
reads, we launch various numbers of clients on the same CN.
Each client continuously issues 1KB RDMA_READs, with
their destination addresses following a Zipfian distribution
of skewness 0.99 (i.e., the same as YCSB’s). As shown in
Figure 4c, during each read time window, the average number
of redundant RDMA_READs increases with the number of
clients and achieves up to 0.48 with 64 clients, implying 48%
read performance improvement potential.

1To eliminate the impact of concurrency conflicts, we scatter the update
part of workloads among clients without intersection.

As for inter-client redundant writes, we issue constant
RDMA_WRITEs with lock-based concurrency control via
RDMA_CASes from each client. As shown in Figure 4d, dur-
ing each write time window (including lock acquirement and
release), the average number of redundant RDMA_WRITEs
grows and reaches up to 3.3, indicating around 330% write
performance improvement space with 64 clients. Interestingly,
the number of redundant writes is more than the read one since
redundant writes inevitably exacerbate the concurrency con-
flicts, leading to a longer write time window and thus more
redundant writes in return. The nearly exponential growth of
the redundant number of RDMA_CASes saturates the IOPS
upper bound rapidly and causes poor write performance.

Challenge 3: Structural features of ART deteriorate the
problem of computing-side cache invalidation. As presented
in § 2.3, path compression and adaptive nodes are two im-
portant structural features that reduce memory consumption
by reducing the tree height and the node size, respectively.
However, these two features introduce new cache validation
problems. For instance, adjustments on the parent-child re-
lationship of nodes may happen during insertion into com-
pressed nodes. The caches on other CNs still store the old
content of the parent node. If a client on those CNs does not
conduct a cache verification, it incorrectly reads the old child
node according to the outdated cache and thus fails to access
the newly inserted node. Similarly, node type changes are
invisible by the computing-side cache either, which may lead
to incomplete node fetching.

4 SMART Design
We propose SMART, a high-performance ART for DM. Fig-
ure 5 shows the overview of SMART. To improve the effi-
ciency of concurrency control (Challenge 1), we present a hy-
brid ART concurrency control scheme. The scheme contains a
lock-free internal node design and a lock-based leaf node de-
sign to achieve high write performance without cache thrash-
ing (§ 4.1). To save the limited IOPS of RNICs (Challenge 2),
we propose a read-delegation and write-combining (RDWC)
technique to eliminate inter-client redundant I/Os (§ 4.2).
To handle the cache validation (Challenge 3), we co-design
SMART with an ART cache (§ 4.3), including a reverse check
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Figure 5: The overview of SMART.

mechanism. Lastly, we summarize the operations (i.e., insert,
search, update, delete, scan) that SMART supports (§ 4.4).

4.1 Hybrid ART Concurrency Control
In this section, we first describe the data structures and con-
current operations of the hybrid concurrency control scheme
in SMART. We then introduce RDMA-related optimizations.

4.1.1 Data Structures

Lock-free internal node. As the addresses of internal
nodes change more infrequently, internal nodes do not cause
cache thrashing like leaf nodes. Hence, it is feasible for lock-
free internal nodes to achieve high performance. We modify
the internal nodes of ART as follows.

(1) Homogeneous adaptive internal node. As illustrated
in Figure 2, a naive ART stores partial keys and child pointers
separately. Such a heterogeneous design makes it hard to
design a lock-free algorithm since the separated partial key
and child pointer should be modified atomically. Besides,
it incurs additional read amplification due to the inflexible
fixed-sized internal nodes.

We come up with a homogeneous internal node design that
embeds the partial keys into slots. First, this enables a child
pointer to be modified together with its corresponding partial
key atomically, laying the foundation for lock-free algorithms.
Second, the read amplification can be reduced since internal
nodes can have an arbitrary number of slots.

As shown in Figure 6a, an internal node of SMART con-
sists of an 8-byte reverse pointer, several 8-byte slots, and an
8-byte header. The reverse pointer is used for cache validation,
which will be presented in § 4.3. As for each slot, apart from
the embedded 8-bit partial key and the 48-bit child pointer,
we add a 1-bit Lea f field to indicate whether the pointer is
pointing to a leaf node. When Lea f is set, a Lenlea f field is
provided, which is used to support variable-sized keys (§ 4.5).
When Lea f is unset, there is a 5-bit Typenode field to indicate

HeaderNODE_X: 

X slots

Partial Key Leaf Typenode Child Pointer

Partial Key Leaf Lenleaf Child Pointer

8bit

Slot Slot Slot

1bit 5bit 48bit

Slot:  

8B

2bit

8B

Depth Sizearray Array of Partial KeysTypenode

Reverse Pointer

Header: 

8B

8bit 5bit 3bit 6B

Leaf = 0 

Leaf = 1 

parent node 
child leaf / internal node

(a) The homogeneous adaptive internal node with the pessimistic 8-byte header.

ValidReverse Pointer
8B

Key ValueChecksum Lock
1bit 8B 1Bfixed size7bit

(b) The update-in-place leaf node with the rear embedded optimistic lock.

Figure 6: The structure of the internal node and the leaf node in
SMART. The reverse pointer and the in-header Typenode field are
used for cache validation.

the type of the following internal node. Note that SMART
mainly uses the Typenode to reduce the network bandwidth
consumption rather than memory consumption. When fetch-
ing an internal node, SMART can RDMA_READ only the
required number of slots according to the Typenode field, re-
ducing the read amplification and thus saving the network
bandwidth.

(2) Pessimistic 8-byte header of the internal node. We
choose the pessimistic method for path compression since
both the optimistic and hybrid methods need two tree traver-
sals to insert a nonexistent key. One entire tree traversal is
required to search for the nonexistent key since not all com-
pressed partial keys are stored in the header. The other traver-
sal executes the actual insertion. In contrast, the pessimistic
method can insert the nonexistent key through one traversal.

Besides, following previous designs [29, 33, 37], we fix the
header size to 8 bytes, which can be changed atomically. If
some partial keys overflow from the header, we store them
in an empty following node. Although this may increase the
tree height, we mitigate this with the help of cache (§ 4.3).

As shown in Figure 6a, a header consists of an 8-bit Depth
field, a 5-bit Typenode field, a 3-bit Sizearray field, and a 6-
byte array of partial keys. The Depth field indicates the start
position for matching the target key. The Typenode field is
used for cache validation, which will be illustrated in § 4.3.
The Sizearray field records the length of the partial key array,
where at most six partial keys can be stored.

Lock-based leaf node. In-place update schemes are pre-
ferred as it does not cause cache thrashing. To adopt the in-
place update, lock-based concurrency control for the leaf node
is required. This is acceptable since locks are fine-grained,
as each leaf node in the radix tree only contains one key-
value item. We design the leaf node structure as follows for
concurrency control.

(1) Checksum-based update-in-place leaf node. The in-
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Figure 7: A step-by-step example of inserting several new keys into SMART with 8-bit partial keys. For clarity, hexadecimal partial keys are
shown and reverse pointers are omitted. Each thick dotted box indicates an atomic CAS.

place update scheme overwrites the leaf node at the same ad-
dress, causing conflicts among readers and writers. To avoid
conflicts, we adopt an optimistic lock in each leaf node with
a checksum-based consistency check mechanism [40, 53],
where the fixed-sized key-value item in the leaf node is pro-
tected by a checksum. For write-write conflicts, an exclusive
lock is used to synchronize the writers. As for read-write con-
flicts, when a writer modifies the leaf node, the checksum is
re-calculated based on the new content of the leaf node and
written with the new content. The readers verify the checksum
after reading the leaf node. If the checksum verification fails,
the reader conducts a re-read.

(2) Rear embedded lock. To further reduce the overhead of
locks, we combine the lock release with the writing back of
the updated leaf node by embedding the lock into each leaf
node. Therefore, the two operations can be done via one single
RDMA_WRITE. Particularly, to avoid premature lock release,
we ensure that the lock release is always triggered after the
completion of writing back. We achieve this by placing the
lock at the rear of a leaf node, which leverages the in-order
delivery property of RNICs [12].

As shown in Figure 6b, a leaf node of SMART consists of
an 8-byte reverse pointer, a Valid bit, an 8-byte checksum, a
1-byte rear lock and a fixed-sized key-value item. The reverse

pointer is used for cache validation, which will be illustrated
in § 4.3. The Valid bit is used to indicate the deleted state.

4.1.2 Concurrent Operations
Based on the above structural modifications, we demonstrate
essential write-related sub-operations with a step-by-step ex-
ample, as shown in Figure 7. Except for the in-place leaf
update, all the sub-operations are lock-free. The complete
operation process will be described in § 4.4.

Normal insert. During an insert, the target partial key may
not be in the internal node yet. As shown in Figure 7b, after
the WRITE of the new leaf node (k4), the client CASes the
first empty slot in the node, together with the new partial key.
If the CAS fails, the client checks whether the return value
(i.e., a new value of the slot written by a concurrent client)
contains the target partial key. If yes, the client continues to
traverse the tree following the return pointer. Otherwise, the
client tries the insert again with the next empty slot.

Leaf split. If an existing leaf node is found during an insert,
a leaf split is needed as shown in Figure 7c. Specifically, the
client first calculates the rest of the longest common key prefix
of the two leaf nodes (k5 and k1). Then it allocates sufficient
sequentially-connected internal nodes to store the common
key prefix in their headers. The last internal node will contain
two child pointers pointing to the old and new leaf nodes. All
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internal nodes and the new leaf node can be written in parallel,
after which the client CASes the parent slot to point to the
first new internal node. If the CAS fails, the client continues
to traverse following the return pointer.

Header split. If a mismatching for in-header partial keys
is found, a header split is required as shown in Figure 7d.
Specifically, the client allocates a new NODE_4 pointing to
the split internal node and new leaf node (k6), with its header
storing the matched part of partial keys. The new internal and
leaf node can be written in parallel. Then the client CASes
the parent slot to make it point to the new internal node ( 1⃝).
If CAS succeeds, the redundant in-header old partial keys are
removed via an additional CAS ( 2⃝). Otherwise, the client
continues to traverse following the return pointer.

Note that the correctness of concurrent searches can be
guaranteed by the in-header Depth value, which indicates
the start position for matching the current key. A concurrent
search READs the parent node and then the child node. There-
fore, there are two situations of read-write conflicts. First, the
READ of the parent node occurs after the CAS of the parent
slot ( 1⃝), while the READ of the child node occurs before
the CAS of the split header ( 2⃝). In this situation, redundant
in-header partial keys are read, which does not affect the cor-
rectness. Second, the former READ occurs before the former
CAS ( 1⃝), while the latter READ occurs after the latter CAS
( 2⃝). In this case, the reader re-reads the parent slot if finding
partial keys missing according to the Depth value.

Node type switch. To avoid copy-on-write (COW) overhead
and additional cache coherence introduced by out-of-place
updates (Challenge 1), we conduct an in-place node type
switch. This is feasible thanks to the homogeneous adaptive
internal node design (§ 4.1.1). To be specific, we pre-allocate
the contiguous space of NODE_256 on MNs for each internal
node. This consumes a little additional memory but enables
lock-free operations during the node type switch. When nei-
ther a matching partial key nor an empty slot is found in the
current internal node, the client can try to CAS the follow-
ing empty slots one by one, whose addresses are behind the
node ( 1⃝) as shown in Figure 7e. After a successful CAS, the
current best-fit node type can be determined by the index of
the newly inserted slot. The client then tries to update the
two old Typenode values (on the header and the parent slot)
with the new one via two concurrent CASes ( 2⃝), making
the newly inserted leaf visible by subsequent search. If both
CASes succeed or fail with return values containing Typenode
values larger than/equal to the expected one, the node type
switch is finished. Otherwise, the client retries the CASes.

In-place leaf update. To update a leaf node, the client first
acquires the rear embedded lock in the leaf node. It then
WRITEs back the updated leaf node with the re-calculated
checksum and the unset lock, after which the in-place leaf
update is finished with the lock properly released.

4.1.3 RDMA-related Optimizations

To further optimize performance on DM, SMART adopts the
following RDMA-related optimizations [23].

Inline write. For small-sized WRITE (e.g., writing internal
nodes smaller than NODE_16 or leaf nodes), the INLINE flag
is set, enabling the RNIC to encapsulate payload into the work
queue entry (WQE) and thus reducing PCIe overhead.

Unsignaled verbs. As for writing commands allowing asyn-
chronous execution (e.g., CAS of the header during header
split), SMART unsets the SIGNALED flag to reduce the over-
head of polling RDMA completion queues.

Doorbell batching. If a client issues multiple WQEs to the
same queue pair (e.g., to the same MN), a doorbell batching
is conducted to reduce PCIe overhead.

4.2 Read Delegation and Write Combining
SMART proposes the read-delegation and write-combining
(RDWC) technique on DM to eliminate inter-client redun-
dant I/Os in terms of reads and writes, respectively, to break
through the IOPS upper bound.

Hash-based local locks. The inter-client redundant I/Os
on each CN occur among the concurrent read and write oper-
ations on the same key or address. Therefore, computing-side
local locks are needed to collect the concurrent operations.

We maintain the local locks in each CN as a table, similar
to the local lock table of HOCL in Sherman [53]. However,
unlike Sherman, which maintains each local lock for a coarse-
grained global lock, SMART maintains each local lock for
a key (i.e., fine-grained leaf node). It is challenging to store
all such locks in each limited computing-side memory. To
address this, we use hash-based local locks, where a lock
corresponds to a set of keys with the same hash value.

We dynamically maintain a unique key in each local lock
to solve the hash-conflict problem of our hash-based scheme.
Specifically, the first client who acquires a local lock success-
fully will record its target key as the unique key of this local
lock. The subsequent clients who fail to acquire this local
lock will conduct a hash-conflict check by comparing their
target key with the unique key. If the target key is exactly the
same as the unique key, the client can be involved in the read
delegation or write combining. Otherwise, a hash conflict is
found, and the client should execute a normal remote read
or write on its own for correctness. The unique key is freed
when the first client releases the local lock.

Read delegation. To reduce inter-client redundant I/Os for
reads, a delegation client can be elected on each CN to execute
the same read, and then share its RDMA_READ result with
other waiting clients. The first client who acquires the local
lock successfully is the delegation client and the subsequent
clients who fail to acquire the lock are the waiting clients.
The relationship between the delegation client and the waiting
clients is similar to that between the first cache miss and the
subsequent delayed cache hits in the cache system [5].
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Figure 8: The processes of the read delegation and the write combining on SMART respectively.

We implement this as shown in Figure 8a. After acquir-
ing the corresponding local lock successfully, the delegation
client records its target key as the unique key and then con-
ducts the remote tree search (i.e., including cache search, tree
traversal, and leaf node read), which is the time window of
read delegation ( 1⃝). During the time window, the subsequent
clients failing to acquire the local lock first execute the hash-
conflict check by comparing their target key with the unique
key. If a hash conflict is found, the client executes a normal
tree search by itself ( 2⃝). Otherwise, it pushes itself into a
read-waiting queue and waits for the search result from the
first client ( 3⃝). Finally, the delegation client shares its search
result with the waiting clients and releases the local lock.

Write combining. Write combining (WC) is a normal
technology in modern processors [11]. When a processor
intends to issue multiple writes to the same memory region
in a small time window, it combines the writes into a single
burst write so as to save the system bus bandwidth. This idea,
also known as write coalescing, is applied to many storage
systems [22, 28, 50]. Inspired by this, we find it feasible to
conduct a WC on each CN. When clients intend to make
several concurrent key-value writes to the same memory-side
key or address, they can combine the writes into a single
consensus write so as to save the network bandwidth and the
limited IOPS of RNICs.

We implement WC on DM as shown in Figure 8b. A client
that succeeds in acquiring the corresponding local lock first
records its target key as the unique key and writes its new
value into the write combining buffer (WCB), and then con-
ducts the remote tree insert or update ( 1⃝). Differently, the
time window of write combining is the former partial period
of tree insert or update (i.e., cache search, tree traversal, and
lock acquirement on leaf node). After that, the client reads
the combined consensus result from WCB and then makes a
RDMA_WRITE to write back the result and release the remote
lock. Finally, the client releases the local lock. During the
write-combining time window, the subsequent clients first
perform the same hash-conflict check. If a hash conflict is
found, the client performs a normal tree insert or update on its
own ( 2⃝). Otherwise, it first writes its expected value into the

WCB (with local lock-based concurrency control), making
the value visible to the first client. Then the client pushes
itself into a write-waiting queue to wait for the completion of
the remote write ( 3⃝).

Put both together. Naively putting read-delegation and
write-combining together may introduce incorrect read results
when a client reads a key-value item after writing it. Specifi-
cally, the latter read may be delegated by a client whose read
happens before the write operation. In this case, the old value
(i.e., the value of the item before the client’s write) is returned
to the read operation that happens after the write, breaking the
causality of the read and write. We use the same time window
for read-delegation and write-combining to address this issue.
In this way, the write and read operations with causal relations
are included in two non-overlapped time windows, and thus,
the above issue can be avoided. To achieve this, we let readers
and writers operating on the same key fairly acquire the same
local lock, where the winner decides the time window. Each
local lock is associated with two waiting queues, i.e., a read
queue and a write queue, so as to conduct read delegation and
write combining exclusively and concurrently. In our imple-
mentation, 4M 32-bit local locks are sufficient on each CN,
consuming only nearly 3% of cache size.2

4.3 ART Cache
ART-indexed cache. To reduce remote access during tree

traversal, a memory-efficient ART-indexed cache is designed
on each CN to store partial internal nodes of SMART. To
be specific, utilizing the feature that each radix tree node
(excluding header) can be uniquely identified by a key prefix,
we adopt a local ART on each CN to index the cached internal
nodes. As shown in Figure 9, each leaf node (i.e., cache entry)
of the local ART contains the snapshot of a traversal context
(i.e., the content of an internal node being read from MNs, the
Depth value, and the address of the node).

Cache invalidation situations. Since we cache the slots of
the internal nodes in clients, changing the slots in the disag-
gregated memory leads to cache invalidation. We analyze all

2Note that with N clients in each CN, there are at most N dynamically-
allocated WCBs and unique keys at the same time, whose memory consump-
tion (i.e., size of N key-value items) is negligible.
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operations that change the slots (i.e., slot insert, update, and
delete) and find there are only three types of cache invalida-
tion in the current SMART design, i.e., Type 1: adjustments
on the parent-child relationship, Type 2: node type changes,
and Type 3: deleted nodes. Specifically:

For slot insert, inserting a new slot does not affect the client
cache since the new slot is not in the client cache.

For slot update, it contains four situations according to the
structure of slots in Figure 6a (note that the Partial Key field
keeps unchanged until deleted):

• Updating the Child Pointer field. This type of cache
invalidation corresponds to Type 1.

• Updating the Typenode field. This type of cache invalida-
tion corresponds to Type 2.

• Updating the Lea f field. Since leaf nodes have differ-
ent addresses from internal nodes, the Leaf field update
should be combined with a Child Pointer update. Thus
this type of cache invalidation corresponds to Type 1.

• Updating the Lenlea f field. This field keeps unchanged
since SMART is currently designed for fixed-sized leaf
nodes. The support for variable-sized leaf nodes will be
discussed in § 4.5.

For slot delete, this type of cache invalidation corresponds
to Type 3.

Reverse check mechanism. To handle the above three
types of cache invalidation situations, we design a reverse
check mechanism specifically for SMART, as existing solu-
tions on B+ trees are infeasible for ART. We store the check
information in remote internal and leaf nodes. A mismatch
between check information and cache content indicates an
outdated cache entry, which will be invalidated.

(1) Adjustments on the parent-child relationship. We store
a reverse pointer in the front of each node to point to its
parent, as shown in Figure 6. If the client reads a remote node
according to a cached pointer, it checks whether the reverse
address is equal to the node address in the cache entry. If not,
a mismatch is found, which indicates that a newly inserted
node (e.g., caused by leaf split or header split) is invisible to
the client due to the outdated cache entry.

(2) Node type changes. We design a Typenode field in the
header of each node to indicate the current type of the node,
as shown in Figure 6a. If the client reads a remote node
according to a cached pointer, it checks whether the in-header

Typenode value being read is the same as that in the cached
slot. If not, and the in-header Typenode value is larger than the
cached one, read the rest of the remote node.

(3) Deleted nodes. We set the in-header Typenode value to
zero to indicate the deleted state of an internal node. As for a
deleted leaf node, the Valid bit is unset.

4.4 Operations
All operations first search in the cache for the deepest slot
that is matched by the prefix of the target key. If none of the
cached slots hits, start the traversal from the tree root slot.

Search. The client first reads the node according to the slot,
after which a reverse check is conducted to check if the cache
entry expires. If yes, invalidate the cache entry and retry this
search. As for a leaf node being read, the target item is found
if its key is the same as the target key. Otherwise, it does not
exist. As for an internal node, if all the in-header partial keys
are matched, and the next target partial key can be found in a
slot, read the next node along the child pointer in the slot and
repeat the process. Otherwise, the target item does not exist.

Insert/Update. The client first reads the node and conducts
a reverse check like the search. After that, as for a leaf node,
if its key is the same as the target key, execute an in-place leaf
update. Otherwise, a leaf split is needed. As for an internal
node, if a mismatching for the in-header partial keys is found,
conduct a header split. Otherwise, turn to search among the
slots. If the current target partial key can be found in a slot,
read the next node along the corresponding child pointer in the
slot and start the process again. Otherwise, conduct a normal
insert with the next empty pointer slot. If no empty slot can
be found, a node type switch is needed.

Delete. Delete operations have a similar process as insert
operations. A normal delete clears the slot pointing to the
target leaf node via RDMA_CAS and unsets the Valid bit of
the deleted leaf node. Opposite operations of leaf split and
header split are conducted for path compression.

Scan. At each level of traversal, the client conducts par-
allel RDMA_READs to fetch all nodes inside the target key
range. For each RDMA_READ, the client processes the node
being read in the same way as the search operation, with an
additional comparison between partial keys and target key
range to exclude unwanted concurrent search paths. Like
many other existing tree indexes [53, 59] on DM, SMART
does not guarantee the scan is atomic with concurrent insert
or update operations.

4.5 Discussion
Support for variable-sized keys and values. SMART

currently supports fixed-sized keys and values. For variable-
sized keys and values, the optimizations of update-in-place
leaf node and rear embedded lock in SMART are no longer
applicable. Instead, SMART can use the RCU scheme to
out-of-place update the leaf node to support variable-sized
keys and values. The search, insert and delete operations on
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variable-sized key-value items are the same as that on fixed-
sized ones.

As for the leaf node structure, SMART can follow the de-
sign in RACE [60]. As shown in Figure 10, the leaf node
structure includes a Lenkey field and a Lenval field, which in-
dicate the sizes of the following Key and Value fields, respec-
tively. SMART can use the 7-bit Lenlea f field in the parent
slot and a pre-configured length_unit value to indicate the
length of the leaf node. The maximum length of a leaf node
is 27 · length_unit. When a key-value item exceeds the max-
imum length, SMART can store the remaining content in a
second key-value block linked to the leaf node.

Moreover, the cache validation mechanism (§ 4.3) can be
extended to support variable-sized leaf nodes with a new
cache invalidation situation, i.e., Type 4: leaf node length
changes. When a client reads a remote leaf node according
to a cached slot, it checks whether the sum of the Lenkey and
Lenval values equals the Lenlea f · length_unit value. If not,
the cached slot is invalid.

Generality of techniques in SMART. Some techniques
in SMART can also be applied to other kinds of indexes.
Particularly: 1) The RDWC technique can benefit any tree in-
dexes since it is transparent to the lower-level index structures.
When applied to other index structures, it brings about the
same performance improvement as applied to ART. 2) The
reverse check mechanism can benefit any radix-tree-based in-
dexes. It is designed to handle the cache validation problems
caused by ART’s features. 3) The rear embedded lock can be
adopted in any lock-based structures on DM to save one RTT.

The first lock-free ART design. A pure lock-free ART can
be formed with the lock-free node design in Figure 6a and a
lock-free leaf node design with a traditional RCU scheme. To
our knowledge, this is the first lock-free ART design. In our
implementation, SMART can degenerate into the pure lock-
free ART by disabling the optimizations of update-in-place
leaf node and rear embedded lock.

5 Evaluation
5.1 Experimental Setup

Testbed. We run all experiments on 16 physical machines
(16 CNs and 2 MNs)3 on the Clemson cluster of Cloud-
Lab [13]. Each machine has two 36-core Intel Xeon CPUs,
256GB of DRAM, and one 100Gbps Mellanox ConnectX-6
IB RNIC. Each RNIC is connected to a 100Gbps Ethernet
switch. Each MN owns 64GB DRAM and 1 CPU core for
network connection and memory allocation. Each CN owns

3Like Sherman [53], we make two physical machines act as both CN and
MN to save machine resources.

4GB DRAM and 64 CPU cores, where each core can serve as
a client. The MNs register memory with huge pages to reduce
page translation cache misses of RNICs [12].

Workloads. Without explicit mention, we use the index mi-
crobench [55] to generate YCSB [10] workloads like previous
work [6,26,39]. We evaluate SMART with 6 YCSB core work-
loads: A (50% read, 50% update), B (95% read, 5% update),
C (100% read), D (latest-read, 95% read, 5% insert), E (95%
scan accessing up to 100 items, 5% insert) and an additional
LOAD (100% insert) workloads, using the default Zipfian
distribution for all workloads except for YCSB LOAD and D.
For most workloads, we test 2 key types, i.e., integer (8-byte)
and string (32-byte). For string workloads, we use 125 million
publicly available email addresses [15] and conduct a com-
mon pre-processing (i.e., swap username and domain fields of
email addresses) like previous work [32, 38, 39, 55]. We use
8-byte values consistent with prior work [6, 24, 38, 41, 53, 56].
For each workload, we populate 60 million keys before con-
ducting 60 million operations, except for the LOAD test.

Comparisons. We compare SMART with two state-of-the-
art tree indexes, i.e., Sherman [53] and ART [32]. We use
the default configuration of Sherman (e.g., a span size of 32
for long key) with all optimizations enabled (e.g., on-chip
memory). Since ART is not designed for DM, we port it to
DM by re-implementing it from scratch (as mentioned in § 3),
including its synchronization design (i.e., ROWEX [33]). For
better baseline performance, we apply the HOCL of Sherman
to ART and any other baselines of SMART. Coroutines are
used in each client to hide RDMA polling overhead.

5.2 Performance Comparison
Figures 11 and 12 present the throughput-latency curves of
the three indexes with integer and string keys respectively,
using various numbers of clients (16 at least and 896 at most,
evenly distributed across 16 CNs). Without loss of generality,
we discuss the performance of integer keys in the following.

Search-only workload (YCSB C). For the YCSB C work-
load, SMART outperforms Sherman by 2.8× due to no leaf
read amplification, as mentioned in § 3. Moreover, it outper-
forms ART by 1.2× due to the read delegation mechanism
for reducing redundant I/Os. It is worth noting that SMART
achieves up to 96M requests per second, which breaks through
the total IOPS upper bound of memory-side RNICs (about
90 Mops in total with the two MNs). This is because the
read delegation can perform concurrent duplicated reads with
only one delegated read. Besides, the similar P99 latency
of SMART and ART shows that the read delegation causes
near-zero overhead.

Insert workload (YCSB LOAD, D). For the YCSB LOAD
workload, SMART outperforms Sherman and ART by 1.6×,
1.5× in throughput and achieves 1.4×, 1.5× lower P99 la-
tency respectively. This can be attributed to the design of
the lock-free internal nodes. Specifically, both Sherman and
ART have low throughput and high latency due to the node-
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Figure 11: The performance comparison of tree indexes on DM under YCSB workloads of integer keys.
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Figure 12: The performance comparison of tree indexes on DM under YCSB workloads of string keys.

Figure 13: The scalability of
tree indexes under the YCSB
A workload of integer keys.

Figure 14: The performance of scan un-
der the YCSB E workload of integer
keys with different value sizes.

grained locks, which introduce additional RTTs with frequent
lock-fail retries, thus wasting the limited IOPS of RNICs in
write-intensive scenarios (i.e., 50% insert). Interestingly, with
string workloads, the latency of ART becomes much worse
since the smaller set of string partial keys (e.g., alphanumeric
characters) aggravates concurrency conflicts.

For the YCSB D workload, SMART achieves 2.4× and
1.4× higher throughput and 1.1× and 1.8× lower P99 latency,
compared with Sherman and ART respectively. With fewer
write conflicts (i.e., only 5% insert), read and write amplifi-
cations become the main reason for the poor performance of
Sherman. ART still has a high tail latency since concurrent
writes cause cache misses, leading to remote tree traversals
and thus continuous lock operations on the remote tree.

Update workload (YCSB A, B). Compared with Sher-
man and ART, SMART gains 6.1× and 3.4× improvement

in throughput and 1.4× and 1.3× reduction in latency for
YCSB A, and achieves 2.4× and 1.8× higher throughput and
1.1× and 1.7× lower P99 latency for YCSB B, respectively.

Unlike the insert workload, YCSB A and B follow a Zipfian
distribution of skewness 0.99, indicating a high amount of up-
date concurrency conflicts. Consequently, Sherman performs
poorly with YCSB A due to its coarse-grained, lock-based
concurrency control. ART performs better than Sherman since
update operations do not modify the partial key fields and
thus do not need to acquire locks. However, the out-of-place
update scheme used by ART causes cache thrashing, resulting
in huge cache-miss overhead and thus much higher latency
than SMART. Note that the cache thrashing also impacts
search performance, leaving a poor performance of ART on
YCSB B (with only 5% update). As shown in Figure 13, ART
experiences performance collapse with increasing clients due
to severe cache thrashing. In contrast, SMART shows excel-
lent scalability due to the cache-friendly in-place leaf node
design and fine-grained concurrency control.

Scan workload (YCSB E). We evaluate the performance
of scan operations with 128 clients using varying value sizes
as shown in Figure 14. For a small value size (e.g., 8 bytes),
SMART shows poorer performance than Sherman since the
small-sized leaf nodes saturate the memory-side IOPS upper
bound, which is an inherent shortcoming of radix trees. How-
ever, for a value size larger than 64 bytes, which is common in
real-world workload [4,58], the scan performance of Sherman
becomes worse than SMART since the large-sized leaf nodes
rapidly saturate the bandwidth bottleneck.
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Figure 15: The factor analysis of overall performance on SMART.

5.3 Factor Analysis for SMART Design
Figure 15 presents the factor analysis on SMART. We start
with the naive ART and apply each proposed technique one
by one. We use 16 CNs (each launches 24 clients) and integer
keys for experiments in this section.

+ Lock-free internal node. The lock-free internal nodes
mainly contribute to the insert workload. With YCSB LOAD,
it brings 1.5× improvement in throughput and 1.8×/1.4× re-
duction in P50/P99 latency. Unlike ROWEX, lock-free inter-
nal nodes eliminate expensive lock overhead during insertion
and thus improve performance.

+ Update-in-place leaf node. In-place update scheme
mainly contributes to the update workload. It achieves 1.5×
improvement in throughput and 1.4×/1.7× reduction in
P50/P99 latency with YCSB B. The in-place update scheme
alleviates the cache coherence problem, as the addresses of
the cached leaf nodes never expire until being deleted.

+ Rear embedded lock. The rear embedded locks further
optimize the in-place update scheme. It eliminates the lock-
releasing overhead, saving one RTT during each update. With
YCSB A, it improves throughput by 3.0× and reduces tail
latency by 11.3×.

+ Read delegation. The read delegation mechanism con-
tributes to the search workload. It brings 1.1× throughput
improvement and 1.3× tail latency reduction with YCSB C.
It eliminates superfluous reads and thus saves network I/O
consumption, so as to support more client requests.

+ Write combining. The write combining mechanism
mainly contributes to the write-intensive workload. It im-
proves the throughput by 1.1× and reduces tail latency by
1.3× with YCSB A.

As the RDWC technique can reduce concurrency conflicts
similar to HOCL, we compare their efficiency by applying
them on SMART respectively. As shown in Figure 16, when
applying the primitive HOCL design, SMART shows poor
performance with an average of 0.76 lock-fail retry count,
due to the limited on-chip memory space (128MB per RNIC
in our evaluation) with only 2 MNs, which is insufficient for
a large number of fine-grained locks. With E-HOCL (i.e.,
integrating the rear embedded lock technique into HOCL),
SMART achieves much better performance with an average

Figure 16: The efficiency
comparison of HOCL, E-
HOCL and RDWC under
the YCSB A workload.

Figure 17: The factor analysis of cache
efficiency on SMART under the YCSB
C workload of string keys with differ-
ent cache sizes.

of 0.29 lock-fail retry count. However, despite the optimiza-
tion, HOCL still shows lower improvement efficiency than
RDWC, which can introduce a 26.2% higher throughput. This
is because RDWC saves not only the lock overhead but also
the superfluous bandwidth consumption of reads and writes.

As the design of RDWC is transparent to the lower-level in-
dex structures, it will lead to the same amount of performance
improvements on Sherman, i.e., 1.3× and 1.1× under write-
intensive and read-only workloads (Figure 15). Therefore,
after applying RDWC to Sherman, SMART can still achieve
4.7× (= 6.1/1.3) higher throughput under write-intensive
workloads and 2.5× (= 2.8/1.1) higher throughput under
read-only workloads.

Cache-related techniques. Some cache-related techniques
contribute to cache efficiency: 1) Homogeneous adaptive
internal node. Due to the homogeneous adaptive internal
node design, more fine-grained and flexible adaptive nodes
are available, saving cache space with smaller sizes of cached
nodes. 2) ART-indexed cache. Compared with a normal hash-
based cache index, ART-indexed cache can efficiently save
memory consumption of index keys without redundant key
prefixes stored. As shown in Figure 17, after applying the
above two techniques one by one, SMART achieves an in-
creasing cache hit ratio and overall throughput under each
specific limited cache size.

5.4 Sensitivity
In this section, we investigate how the workload skewness,
key size, and value size affect the performance of SMART.
We use 16 CNs with 16 clients each and integer keys for the
sensitivity evaluation.

Skew test. Figure 18a shows the performances of differ-
ent tree indexes on a generated Zipfian workload [35] (50%
search + 50% update) with various skewness. SMART per-
forms best under both slightly and highly skewed workloads.
Sherman shows a good performance in slightly skewed work-
loads, while having the poorest performance in highly skewed
workloads because of its coarse-grained lock-based concur-
rency control design. ART performs better than Sherman in
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(a) Skewness. (b) Key size. (c) Value size.

Figure 18: The sensitivity analysis.

highly skewed workloads due to the lock-free RCU scheme
but performs worst in slightly skewed workloads due to cache
thrashing. Note that the RDWC in SMART does not benefit
the overall throughput since the network bandwidth is un-
saturated. As the Zipfian skewness grows from 0.5 to 0.99,
the performance of ART and SMART decrease by the same
multiple (2.6×), and thus their performance gap is reduced.
The performance of Sherman decreases by 7.4×, indicating
the poor efficiency of coarse-grained lock-based design.

Impact of key/value size. Figures 18b and 18c show the
impact of key size and value size on the performances of the
three tree indexes under YCSB C with sufficient caches. As
the key size grows from 8 to 256 bytes, SMART and ART
show a slight performance decline (1.3×), while Sherman
experiences a rapid drop in performance (14×). As the value
size grows from 8 to 1024 bytes, the performance declines of
SMART, ART and Sherman are 3.1×, 3.4× and 64×, respec-
tively. This is because, during each search, Sherman needs
to fetch the whole leaf node, whose size grows with key and
value size, causing the rapidly increasing consumption of net-
work bandwidth. On the contrary, SMART and ART only
need to fetch the fine-grained small-sized leaf node. Thus,
they are not bounded by the network bandwidth bottleneck,
showing a stable performance with varying key sizes and
value sizes. The performances of ART and SMART are close
since the read delegation in SMART does not benefit the
throughput under the unsaturated network. This is consistent
with the results shown in Figure 11d.

6 Related Work
Disaggregated Memory. The DM architecture is widely

discussed in the literature [3, 9, 16, 19, 20, 27, 47], which is
proposed to address the problem of a growing imbalance
between computing and memory resources. Many recent aca-
demic works have been conducted on DM. LegoOS [46]
designs a distributed operating system for disaggregated re-
source management. PolarDB Serverless [8] co-designs the
database and DM to achieve better dynamic resource provi-
sioning and faster failure recovery speed. Clover [52] explores
an efficient manner to build a key-value store on disaggre-
gated persistent memory (PM), with careful designs between
the data plane and the metadata/control plane. FUSEE [48]

designs a fully memory-disaggregated key-value store that
brings disaggregation to metadata management. ROLEX [34]
proposes a scalable RDMA-oriented learned key-value store
that dissociates the model retraining from data modification
operations. RACE [60] is an extendible RDMA-based hashing
index with lock-free remote concurrency control and efficient
remote resizing. Sherman [53] is a B+ tree index on DM with
RDMA-friendly software techniques to boost index write per-
formance. SMART focuses on building a fast, scalable radix
tree index on DM with small read and write amplifications.

RDMA-based Tree Indexes. Attracted by the high perfor-
mance of RDMA, there are increasing studies focusing on
RDMA-based tree indexes [1, 41, 45, 53, 59]. Many studies
conduct operations via remote procedure calls (RPCs), which
is unsuitable for DM due to weak memory-side computation
power. FG [59], designed as a B-link tree, is the first index
that completely leverages one-side verbs for write operations
and thus supports DM. Sherman [53] is the state-of-the-art
B+ tree index with several RDMA-friendly software tech-
niques. However, constrained by the structure of the B+ tree,
it suffers from low peak throughput and early latency dete-
rioration due to read and write amplifications. Besides, ex-
tending RDMA interfaces is another approach to design tree
indexes on DM, which offloads index write operations into
memory-side NICs via SmartNICs or other customized hard-
ware [1,7,14,25,36,44,49]. To our knowledge, SMART is the
first radix tree index on DM that achieves high performance
with commodity RNICs.

7 Conclusion

Based on a thorough theoretical and experimental analysis
of tree indexes built on DM, this paper points out the perfor-
mance bottleneck of B+ trees on DM due to severe read and
write amplifications and then presents SMART, the first radix-
tree-based index on DM. SMART addresses the challenges of
applying ART on DM, including a hybrid concurrency control
scheme to reduce lock overhead and avoid cache thrashing,
a read-delegation and write-combining technique to reduce
redundant I/Os, and a tailed cache validation mechanism. Our
evaluation results show that SMART outperforms the state-
of-the-art B+ tree on DM by up to 6.1× under write-intensive
workloads and 2.8× under read-only workloads.
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A Artifact Appendix
Abstract
The artifact provides the source code of SMART and auto-
mated scripts to reproduce all the experiment results in the
paper. The experiment results can show the superiority of
ART on DM compared with the B+ tree and demonstrate the
efficacy and efficiency of SMART we design.

Scope
Superiority of ART on DM. By reproducing the experi-

ments of Figure 3, the artifact can validate that the radix tree
is more suitable for DM than the B+ tree due to smaller read
amplification under read-only workloads.

Challenges of ART on DM. By reproducing the experi-
ments of Figure 4, the artifact can validate that ART suffers
from significant challenges on DM under hybrid read-write
workloads.

Efficacy and Efficiency of SMART. By reproducing the
experiments of Figure 11-18, the artifact can validate that
SMART can show better performance under YCSB work-
loads, compared with the state-of-the-art B+ tree on DM and
a naive ART design.

Contents
Source codes. The artifact contains source codes of

SMART and the compared baselines (e.g., ART). Specifically,
the source code of SMART contains the implementation of
our three key designs, i.e., the hybrid ART concurrency con-
trol scheme, the read-delegation and write-combining tech-
nique, and the reverse check mechanism for cache validation.

Automated scripts. The artifact also contains automated
scripts to reproduce all the experiment results in the paper,
i.e., Figure 3-4, 11-18. Each figure has a Python script to au-
tomatically reproduce and visualize the experimental results.

Hosting
The artifact is available at https://github.com/dmemsys
/SMART. Please use the latest commit version on the main
branch.

Requirements
The artifact is developed and tested using the r650 machines
on CloudLab. 16 r650 machines are needed to reproduce
all the results. Each r650 machine has two 36-core Intel
Xeon CPUs, 256GB of DRAM, and one 100Gbps Mellanox
ConnectX-6 IB RNIC. Each RNIC is connected to a 100Gbps
Ethernet switch.

Tutorial
Environment setup. To set up the environment, please

clone the source codes to the r650 machines. The necessary
dependencies can be installed using our provided shell scripts
in the artifact. Listing 1 shows the commands to set up the
experiment environment.

Listing 1: Commands to set up the environment.

1 # Get the source codes
2 git clone https://github.com/dmemsys/SMART
3 git clone https://github.com/River861/Sherman
4 # Set bash as the default shell
5 sudo su && chsh -s /bin/bash
6 # Install Mellanox OFED
7 cd SMART
8 sh ./script/installMLNX.sh
9 # Resize disk partition

10 sh ./script/resizePartition.sh
11 reboot
12 sudo su && resize2fs /dev/sda1
13 # Install libraries and tools
14 cd SMART
15 sh ./script/installLibs.sh
16 # Setup hugepages
17 echo 36864 > /proc/sys/vm/nr_hugepages

Workloads generation. The index microbench is used
to generate YCSB workloads, including two key types, i.e.,
integer and string. Listing 2 shows the commands to generate
all the workloads to reproduce the results.

Listing 2: Commands to generate all workloads.

1 # Download YCSB source code
2 cd SMART/ycsb
3 sudo su && curl -O --location https://github.

com/brianfrankcooper/YCSB/releases/
download/0.11.0/ycsb-0.11.0.tar.gz

4 tar xfvz ycsb-0.11.0.tar.gz
5 mv ycsb-0.11.0 YCSB
6 # Download the email dataset
7 gdown --id 1ZJcQOuFI7IpAG6ZBgXwhjEeKO1T7Alzp
8 # Start to generate all the workloads
9 sh generate_full_workloads.sh

Results Reproduced. The artifact provides a single batch
script to reproduce all the experiments. This script should
be run on a master node, which can directly establish SSH
connections to other nodes of the r650 cluster.

To reproduce the experiments, please set up the home_dir
and master_ip values in ./exp/params/common. json. Then
the script can be run. Listing 3 shows the commands. The
reproduced results will be saved automatically.

Listing 3: Commands to start all experiments.

1 sudo su && cd SMART/exp
2 # Run all the experiments
3 sh run_all.sh
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