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Abstract. This paper points out some drawbacks and proposes some 
modifications to the conventional layer-by-layer BP algorithm. In particular, we 
present a new perspective to the learning rate, which is to use a heuristic rule to 
define the learning rate so as to update the weights. Meanwhile, to pull the 
algorithm out of saturation area and prevent it from converging to a local 
minimum, a momentum term is introduced to the former algorithm. And finally 
the effectiveness and efficiency of the proposed method are demonstrated by 
two benchmark examples. 

1   Introduction 

The error back propagation algorithm (EBP) was a major breakthrough in neural network 
research [1][2][3][4][5][6]. However, the basic algorithm is too slow for most practical 
applications. So researchers have proposed several variations of error back propagation 
that provide significant speedup and make the algorithm more practical [7][8]. To 
accelerate the EBP algorithm, some modified error functions, which are different from 
popular mean-squared errors (MSE’s), have been proposed [9]. 

In 1995, Ergezinger and Thomsen [10] proposed a layer-by-layer algorithm (LBL) 
which was based on a linearization of the nonlinear processing elements and the 
optimization of the EBP layer-by-layer. And in order to limit the introduced 
linearization error, a penalty term was added to the cost function. Commonly the 
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proposed layer-by-layer algorithms were decomposed into two parts:  a linear one and 
a nonlinear one. The linear part of each layer was solved through the least-square 
errors (LSE’s) or mean-squared errors (MSE’s). But the nonlinear parts were different 
in a certain extent, with some of which have to assign the desired input to the hidden 
targets, while some of them not, or some of which use a heuristic rule to define the 
learning rate, while some of them use an optimal one to define the learning rate 
[11][12]. 

Although these methods have showed a fast convergence through decreasing the 
possibility to a premature saturation [13][14], sometimes they still result in some 
inevitable problems. They may not converge to the desired accuracy or involve huge 
computational complexity due to target assignments at hidden layer. Essentially, these 
methods were used to define the learning rate so as to adapt the weights [15]. 

This paper proposes a new prospective to the conventional proposed layer-by-layer 
method. This method tends to overcome the stalling problem of the layer-by-layer 
algorithm with a heuristic method. And also the momentum terms are introduced to 
both the output layer and the hidden layer in order to accelerate convergence when the 
conjugate gradient is moving in a consistent direction.  

This paper is organized as follows. The following Section gives a brief review to 
the conventional layer-by-layer method. Section III introduces a new prospective to 
the learning rate, and the momentum method is also integrated into the algorithm. In 
Section IV, the improvement is demonstrated by two benchmark problems. Finally, 
Section V concludes this whole paper. 

2   Layer-by-Layer BP Algorithm 

We consider a single hidden-layer perceptron for the sake of simplicity. The 
activation functions for output layer and hidden layer are linear function and sigmoid 
function, respectively. The training patterns are described as 

( ) ( ) ( ) ( )
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The weights should be optimized in order to minimize the MSE at the output layer 
defined as: 
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2.1   Optimization of the Output Layer Weights 

With a fixed W and the desired output ( )pt , optimize V for minimizing the cost 

function outE : 
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2.2   Assign the Hidden Targets 

With the updated V, we assign the hidden targets denoted by ( )p
jz : 
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2.3   Optimization the Hidden Layer Weights 

We use the training patterns ( )p
ix and ( )ˆ p

jz  to define a new cost function at the hidden 

layer [9]: 
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and optimize W for minimizing hidE  as follows: 
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3   Modifications to the Conventional Algorithm 

We would like to make the learning rate larger at the initial stage, since then we will 
be taking large steps and would expect to converge faster. However, if we make the 
learning rate too large, the algorithm will become unstable. It is impossible for us to 
predict the maximum allowable learning rate for arbitrary functions, but fortunately 
for quadratic functions we can set an upper limit. 
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 Considering the output layer cost function: 
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It can be transformed to a quadratic function with respect to kjv : 

1
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The gradient of this quadratic function is ( )kj kjF v Av d∇ = + . Then A is called 

Hessian matrix of this quadratic function. Using a constant learning rateα , we obtain 
this expression according to the steepest descent algorithm: 

( 1) ( ) ( * ( ) )kj kj kjv epoch v epoch A v epoch dα+ = − + . (17) 

Or 

( 1) [ * ] ( )kj kjv epoch I A v epoch dα α+ = − − . (18) 

This linear dynamic system will be stable if the eigenvalues of the matrix 
[ * ]I Aα− are less than one in magnitude. We can express the eigenvalues of this 

matrix in terms of the eigenvectors of the Hessian matrix A. Suppose 

1 2{ , , }nλ λ λL and 1 2{ , , }nz z zL to be the eigenvalues and eigenvectors of the 

Hessian matrix. Then [ ] (1 )i i i i i i i iI Az z Az z z zα α αλ αλ− = − = − = − .               

So the eigenvectors of [ * ]I Aα−  are the same as the eigenvectors of A. 

Similarly, the eigenvalues of [ * ]I Aα−  are (1 )iαλ− . Naturally, we can obtain the 

following expression: 

(1 ) 1iαλ− < . (19) 

The eigenvalues must be positive so that the quadratic function can be guaranteed 

to converge to a stable minimum point. So Equ. (20) will be reduced to: 2
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In fact, the optimal learning rate always changes during different applications 
which makes it difficult to be set optimally. So the so-called optimal learning rate in 
the algorithm aforementioned does not always perform best. As long as we can find 
out the Hessian matrix, then calculate the eigenvalues so as to define the maximum 
stable learning rate, the algorithm tends to converge most quickly in the direction of 
the eigenvector corresponding to this largest eigenvalue.  

It is well known that backpropagation with momentum updating is one of the most 
popular modifications to the standard algorithm. When a momentum term is added to 
the EBP algorithm, in which the weights change is a combination of the new steepest 
decent step and the previous one, the weight trajectory will be much smoother and the 
convergence will be faster. Intuitively, the momentum term can be also added to the 
layer-by-layer BP algorithm. 

Taking the output layer for example: 
When the momentum term is added to the algorithm, the weights are updated 

according to the description in literature [18]. 

( 1) ( ) (1 ) ( ) ( 1)kj kj kj kjv epoch v epoch v epoch v epochα α+ = + − ∆ + ∆ − . (20) 

Similarly, the hidden layer weights are updated according to the following formula: 

( 1) ( ) (1 ) ( ) ( 1)ji ji ji jiw epoch w epoch w epoch w epochα α+ = + − ∆ + ∆ − . (21) 

4   Simulation and Results 

4.1   Function Approximation 

In this section, a function approximation example was trained by a 1-3-1networks 
with 3 nodes in the hidden layer. The input data is denoted as P= -2,-1.6,-1.2…1.2, 
1.6,2, and the desired output data as T=sin (3.14*p/4), which are assigned to the input 
and output layer of the network respectively [16]. 

4.1.1   Fixed Learning Rate 
Fig. 1 and 2 show the MSE for the training patterns of the two methods for this 
function approximation example. 

It can be seen from Fig. 1 and 2 that our improved method can reduce the MSE 
dramatically than the previous method, and the previous method tends to reach a 
certain MSE and remains there for the rest iterations with little or no improvement, 
while the proposed algorithm can make huge progress to reduce the MSE throughout 
the entire training process. So our improved method can decrease the MSE to an 
acceptable level when the training process for the previous method traps into the 
saturation area. 
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Fig. 1. The MSE cures of previous and our 
improved methods for a fixed learning rate 
(0.11) at the output layer 

Fig. 2.  The MSE cures of previous and our 
improved methods for a fixed learning rate 
(0.44) at the hidden layer 

4.1.2   Incorporation of the Momentum Term 
In this subsection, we further demonstrate the efficiency and effectiveness of another 
momentum term method. This method is derived by incorporating the momentum 
term,α  into the weight updating formulae. Assume that the coefficient of α  for the 
output layer and the hidden layer were set to 0.88 and 0.70, respectively. 

 

 

Fig. 3. Learning curves of the MSE for the 
previous and the output momentum term 
methods for a function approximation 
example 

Fig. 4. Learning curves of the MSE for the 
previous and the hidden momentum term 
methods for a function approximation 
example 

Fig. 3 and 4 illustrate the improvement of the introduction of momentum term to 
the original method. Although the previous method converges at the earlier stage, it 
stops to a local minimum after a certain number of iteration. The proposed algorithm 
can prevent the training process from falling into the flat regions, and make the MSE 
decrease dramatically until the MSE converges to a noticeable small level 
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4.2   XOR Problem 

For an XOR problem, the network consists of two input nodes, there hidden nodes, 
and one output node. 

4.2.1   Fixed Learning Rate 
In the case of fixed learning rate, we use XOR to conduct some computer simulations. 
It can be found that the sum-square-errors of the previous algorithm cannot converge 
to an acceptable level but our proposed method can do. Fig.5 depicts a comparison of 
the MSEs for the standard EBP algorithm and the proposed algorithm, where the 
learning rate in the standard EBP method was set to 0.02 and the one for the hidden 
layer of the proposed method was set to 0.45. 

 

Fig. 5. Learning curves of the MSE for the standard EBP and our proposed methods for the 
XOR problem 

We observe that the training process is easily trapped into saturation area for the 
standard EBP algorithm, while the proposed method of a fixed learning rate can 
converge over the whole learning procedure until it reaches to an acceptable level.  

4.2.2   Incorporation of the Momentum Term 
In addition, we also use XOR problem to verify our proposed momentum term 
method. Figs. 6 and 7 demonstrate the improvement of the proposed method over the 
standard EBP algorithm, where the coefficient of α  for the output layer (Fig.6) and 
the hidden layer (Fig.7) were set to 0.80 and 0.60, respectively. 

Fig. 6 and 7 show that our proposed method can prevent the training process falling 
into the flat regions, and make the MSE decrease dramatically until the MSE 
converges to a noticeable small level, while the standard EBP method stops to a local 
minimum after a certain number of iterations in spite of convergence at the early 
stage. So the proposed algorithm with a momentum term can meet a stringent demand 
in accuracy. 
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Fig. 6. Learning curves of the MSE for the 
momentum term and the standard EBP 
methods for XOR problem 

Fig. 7. Learning curves of the MSE for the 
momentum term and the standard EBP 
methods for XOR problem 

5   Conclusions 

This paper proposed some modifications to the conventional layer-by-layer BP 
algorithm so as to accelerate the learning process and reduce the possibilities to be 
trapped into the saturation area. To prove the efficiency and effectiveness of the 
proposed method, we trained a MLP network with a function approximation example 
and the XOR problem. In all the experiments, the proposed algorithm had 
demonstrated its improvement with orders of magnitude less than the previous 
algorithm in MSE. The modified method has also validated that the heuristic rule is 
sometimes better than the so-called optimal learning rate. So, much more research 
works about the optimal learning rate for a specific algorithm has to be done. What’s 
more, when the momentum term is added into the algorithm, it can lead to the 
convergence from a local minimum to a global one, and reduce the MSE significantly. 
So the momentum term functions are well suitable not only to the standard BP 
algorithm but also to the layer-by-layer algorithm. 
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