
Test Selection for Result Inspection via Mining Predicate Rules

Wujie Zheng, Michael R. Lyu
Computer Science and Engineering
Chinese University of Hong Kong
{wjzheng,lyu}@cse.cuhk.edu.hk

Tao Xie
Department of Computer Science
North Carolina State University

xie@csc.ncsu.edu

Abstract

It is labor-intensive to manually verify the outputs of a
large set of tests that are not equipped with test oracles.
Test selection helps to reduce this cost by selecting a small
subset of tests that are likely to reveal faults. A promising
approach is to dynamically mine operational models as po-
tential test oracles and then select tests that violate them.
Existing work mines operational models from verified pass-
ing tests based on dynamic invariant detection. In this pa-
per, we propose to mine common operational models, which
are not always true in all observed traces, from a set of un-
verified tests based on mining predicate rules. Specifically,
we collect values of simple predicates at runtime and then
generate and evaluate predicate rules as potential opera-
tional models after running all the tests. We then select tests
that violate the mined predicate rules for result inspection.
Preliminary results on the Siemens suite and the grep pro-
gram show the effectiveness of our approach.

1. Introduction

Testing involves three main steps: generating a set of

test inputs, executing those inputs on the program under

test, and then checking whether the test executions reveal

faults. Among these steps, test-input generation and test-

result inspection require intensive human labor. Recently,

there have been various practical approaches on automatic

test-input generation [10, 12, 13]. However, test-result in-

spection still remains a largely manual task (unless a priori

specification is available, which is uncommon). Sometimes

developers can use certain test oracles, such as assertions,

user-defined contracts [10], and memory monitoring tools.

But these oracles either require a large amount of manual

effort to construct, or are limited in checking specific kinds

of faults.

Test selection helps to reduce this cost by selecting a

small subset of tests that are likely to reveal faults. A

promising approach is to dynamically mine operational

models as potential test oracles and then select tests that

violate them. Existing approaches such as DIDUCE [4],

Jov [14], and Eclat [9] mine operational models from ver-

ified passing tests based on dynamic invariant detection.

For example, Jov and Eclat mine operational models using

Daikon [3] from a set of manually written passing unit tests

whose results are verified with manually written assertions.

Due to nontrivial effort for writing the assertions, the num-

ber of these existing passing unit tests is often limited. It

is well known that operational models mined from a lim-

ited number of data samples could be noisy and thus many

model violations could be false positives. DIDUCE mines

models from normal execution of long-running applications

and relaxes the models gradually. At the beginning of a pro-

gram run, many presumed operational models may be vio-

lated and a violation that reveals a fault can be overwhelmed

by the noise.

In this paper, we propose to mine common operational

models, which are not always true in all observed traces,

from a (potentially large) set of unverified tests. Our ap-

proach does not require an existing set of verified tests and

can avoid the noise caused by a small number of data sam-

ples. As a common operational model is not always true

over the whole set of tests, the type of Daikon inference

techniques does not work anymore. Alternatively, we may

generate and collect all the potential models at runtime and

evaluate them after running all the tests. However, such an

approach can incur high runtime overhead if Daikon-like

operational models, which are in a large number, are used.

To mine common operational models efficiently, we pro-

pose an approach based on mining predicate rules. Specifi-

cally, we collect values of simple predicates at runtime and

then generate and evaluate predicate rules as potential oper-

ational models after running all the tests. We use the predi-

cate schemes of Cooperative Bug Isolation (CBI) tools [6],

which have been used in statistical debugging. A predicate

rule is an implication relationship between predicates. Be-

fore describing the procedure of our approach, we first ex-

plain the motivation of mining predicate rules as potential

operational models with an example.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3494-7/09/$25.00 © 2009 IEEE Companion Volume219

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:19:52 UTC from IEEE Xplore. Restrictions apply.

1 int test(int x, int y)
2 {
3 if(x>0)
4 y = y-x ; // should be y=y-x+1;
5 if(y>0)
6 return y;
7 else
8 return 0;
9 }

An Example Program

P1: Line 3, x>0
P2: Line 3, x<=0
P3: Line 5, y>0
P4: Line 5, y<=0

Predicates

Test input Expected Output Actual Output Predicate Profiles
1. x=-1, y=0 0 0 P2, P4
2. x=0, y=1 1 1 P2, P3
3. x=1, y=0 0 0 P1, P4
4. x=1, y=1 1 0 P1, P4
5. x=1, y=2 2 1 P1, P3

Tests and Predicate Profiles

Figure 1. An example program

Figure 1 shows an example program, the associated

predicates, some tests, and their corresponding true predi-

cates. Assume that there is an “off-by-one” fault in Line 4.

The program would fail if x > 0 ∧ y ≥ x. The program is

trivial but it illustrates a case where a failure is caused by a

fault under some triggering conditions. In passing tests, the

program should satisfy a precondition x ≤ 0∨y < x, which

is a real operational model. We observe that a failure is not

likely to be predicted by the violation of a single predicate.

Each of P1 ∼ P4 is not a necessary condition to satisfy the

real operational model, and their violations may not indicate

failures. On the other hand, the predicate rule P1 ⇒ P4
corresponds to a precondition x ≤ 0∨ y ≤ x, which is sim-

ilar to and weaker than the real operational model. Since

P1 ⇒ P4 is weaker than the real operational model, its

violation should also lead to the violation of the real oper-

ational model and indicate a failure, such as Test 5. This

example shows that predicate rules, which model relation-

ships between predicates, may be good approximations of

real operational models (not necessarily the same as the real

models) to be used in test selection.

The procedure of our approach is as follows. We collect

two values of a predicate y: true and false, which are respec-

tively denoted as y and !y for simplicity. For each predicate

y, we mine the rules X ⇒ y and X ⇒!y, where X is a

conjunction of other predicates. These rules model the im-

plication relationships between predicates. A rule X ⇒ y
is evaluated by its confidence, which is defined as the ra-

tio between the number of tests that satisfy X ∧ y and the

number of tests that satisfy X . When a rule’s confidence is

not equal to 1, the higher the rule’s confidence is, the more

suspicious its violations are in indicating a failure. We then

select tests that violate the mined predicate rules for result

inspection.

We have conducted a set of experiments on the Siemens

suite and the grep program in the SIR repository [1]. Pre-

liminary results show that our approach is effective in se-

lecting a small subset of tests that have high fault-detection

capability.

2. Related Work

The implementation of our approach is based on the

Cooperative Bug Isolation (CBI) tools [6]. CBI uses

lightweight instrumentation to collect feedback reports that

contain truth values of predicates (simple Boolean expres-

sions at various program points) in executions. There ex-

ist several statistical-debugging approaches that use CBI to

collect many such feedback reports and then find predicates

that are predictive of observed failures such as crashing.

Moreover, Nainar et al. [7] showed that the conjunctions of

two predicates may be predictive of observed failures and

can be used to help fault localization. Correspondingly, the

predicates may follow some rules in the passing tests. This

study inspires our work to mine predicate rules as poten-

tial operational models to select tests. Different from pre-

vious work on statistical debugging, our approach is based

on unsupervised learning because all tests are unverified or

unlabeled.

There exist a number of approaches for test selection

based on mining operational models. Xie and Notkin [14]

developed an operational violation approach called Jov for

unit-test selection. They mined operational models using

Daikon [3] from a set of manually written passing unit tests

and selected automatically generated test inputs that vio-

lated the operational models. Pacheco and Ernst [9] devel-

oped a similar tool named Eclat, which further distinguishes

illegal and fault-revealing inputs with some strategies. Han-

gal and Lam [4] developed DIDUCE that extracts opera-

tional models dynamically from long-running program ex-

ecutions. These existing approaches mine operational mod-

els from verified passing tests, whereas our approach mines

common operational models from a set of unverified tests.

There also exist some approaches for test selection

based on mining algebraic models or clustering. Xie and

Notkin [15] developed an approach for automatically iden-

tifying special and common unit tests based on algebraic

models. Their approach selects a test as a special test if the

test exercises a certain program behavior that is not exhib-

ited by most other tests. Although our approach shares a

similar rationale with their approach, our approach mines

operational models instead of algebraic models, which are

applicable only in object-oriented unit testing. Dickinson et

al. [2] used clustering analysis to partition executions based

on structural profiles, and employed sampling techniques to

select executions from clusters for observations. Our ap-

proach not only selects tests but also mines potential opera-

tional models that may guide result inspection.

220

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:19:52 UTC from IEEE Xplore. Restrictions apply.

There has been a lot of work on regression test selec-

tion [8] and test case prioritization [11]. Although these

techniques also select a small number of tests that are likely

to reveal (regression) faults, their objectives are quite differ-

ent from ours. These techniques aim at reducing the time of

running test cases, while our work aims at reducing the ef-

fort of result inspection when test oracles are not available.

3. Approach

This section presents the proposed test selection ap-

proach. We first mine predicate rules as potential opera-

tional models and then select tests that violate them for re-

sult inspection.

3.1. Mining Predicate Rules

We use CBI tools [6] to instrument the programs under

test and collect values of predicates. In particular, we use

two schemes:

• branches: At each conditional (branch), two predi-

cates are tracked, indicating whether the true or false

branches were ever taken.

• returns: At each scalar-returning function call site,

three predicates are tracked: whether the returned

value is < 0, == 0, or > 0.

For each predicate y, we mine the rules X ⇒ y and

X ⇒!y, where X is a conjunction of other predicates.

These rules model implication relationships between pred-

icates. A program that is not of poor quality should pass

most of the tests. Therefore, the predicate rules mined from

a set of unverified tests may be similar to the real models in

passing tests. To reduce complexity, our current implemen-

tation mines only the rules x ⇒ y and x ⇒!y, where x is a

single predicate. For each predicate y and any other predi-

cate x, we generate the rules x ⇒ y and x ⇒!y for evalua-

tion. We plan to use advanced data mining techniques such

as association rule mining to mine more general rules in our

future work.

There may be a large number of predicate rules. We are

interested only in the rules that are likely to be true oracles

and are violated by some tests. To evaluate the likelihood of

a rule to be a true oracle, we use the concept of confidence.

The confidence of X ⇒ y is defined as the ratio between

the number of tests that satisfy X ∧ y and the number of

tests that satisfy X . The confidence of X ⇒!y is defined as

the ratio between the number of tests that satisfy X∧!y and

the number of tests that satisfy X . We do not consider the

absolute frequency of a rule since a failure may be reflected

by the violation of a non-frequent rule. If a rule’s confi-

dence is 1, it can be omitted as there is no violation of this

rule. We then select a subset of rules that have high con-

fidences. More specifically, for each predicate y, we select

the most confident rule X ⇒ y and the most confident rule

X ⇒!y. Another possible way is to select the rules whose

confidences are higher than a preset threshold, whose value

may be application-dependent.

3.2. Test Selection

Given a set of predicate rules, selecting all the tests that

violate any of them may result in a large subset of the tests.

Instead, we select only a small subset of the tests that violate

all the predicate rules at least once. We select tests in a way

that the most confident rules are violated by the selected

tests first. Initially, the set of selected tests is empty. We

sort the selected predicate rules in the descending order of

confidence. From the top to bottom, if a rule is not violated

by any of the previously selected tests, we select the first

test that violates the rule. Finally, in a greedy way all the

selected rules can be violated by the selected tests. We also

rank the selected tests in the order of selection.

4. Preliminary Results

We have implemented the proposed approach and ap-

plied it to select tests in the Siemens suite [5] and the grep
program [1]. We next describe the experimental subjects

and the preliminary results.

4.1. Subjects

The first subject is the well known Siemens suite [5]. The

Siemens suite contains 130 faulty versions of 7 programs:

print tokens, print tokens2, replace, schedule, schedule2,

tcas, and tot info. The programs range in size from 170

to 540 lines and the numbers of tests prepared by previous

researchers range from 1,052 to 5,542. Each faulty version

has one manually injected fault. The 130 faulty versions

simulate a wide spectrum of realistic faults.

The second subject is the grep program, which is a unix

utility to search a file for a pattern. The source code of

version 2.4.1 is downloaded from the Subject Infrastructure

Repository [1]. It includes 13,358 lines of C code. The

downloaded software package also contains a suite of 470

test cases and 12 faults. Only 3 faults can be detected by

some test case in the suite in our environment. The three

versions with the faults are then used in our experiments.

4.2. Results

For test selection, we measure the number of selected

tests and their ability to reveal faults. A set of tests is said

to reveal a fault if the faulty program fails on one or more

of the tests. We want to reveal as many faults as possible

with a small number of selected tests. Table 1 shows the

results of our approach compared with the original test set.

We also use random sampling to select the same number of

tests. The random sampling is run 5 times and the average

result is presented as the baseline.

221

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:19:52 UTC from IEEE Xplore. Restrictions apply.

Table 1. Test selection in the Siemens suite

Program Original Test Set Our approach Random Sampling

#Tests #Failed #Tests #faulty #Tests #faulty

Tests versions versions

(avg) detected detected

print tokens 4130 69.1 41 6/7 41 2/7

print tokens2 4115 223.7 47 10/10 47 6.2/10

replace 5542 105.8 76 26/31 76 13.8/31

schedule 2650 87.7 33 6/9 33 2/9

schedule2 2710 32.8 41 6/9 41 2.8/9

tcas 1608 38.5 38 26/41 38 15.6/41

tot info 1052 82.6 23 17/23 23 16.2/23

all(avg) 2925 81.3 45 97/130 45 58.6/130

We observe that our approach can select a small subset of

tests that are likely to reveal faults. On average, only 1.53%

(45/2945) of the original tests are needed to be checked.

Despite small sized, the selected tests can still reveal 74.6%

(97/130) of the faults, while the results of random sampling

technique can reveal only 45.4% (59/130) of the faults. We

also observe that for all the seven programs, our approach

is consistently better than the random sampling approach.

We next describe the experimental results on the three

versions of the grep program. The three versions fail 3, 4,

and 132 times running the 470 tests, respectively. Our ap-

proach selects 82, 86, and 89 tests for these versions, which

reveal all the 3 faults. In addition, for each version, there

is at least one failing test ranked in top 20. We also ran-

domly select 20 tests for each version. In the 5 times of

random selection, the selected tests never reveal the faults

of the first two versions but always reveal the faults of the

third version. Overall, our approach is effective in selecting

tests that have high fault-detection capability.

5. Conclusions and Future Work

We have proposed a novel approach for test selection

without a priori specification. We mine common opera-

tional models, which are not always true in all observed

traces, from a set of unverified tests based on mining pred-

icate rules. Specifically, we collect values of simple pred-

icates at runtime and then generate and evaluate predicate

rules as potential operational models after running all the

tests. We then select tests that violate the mined predi-

cate rules for result inspection. Preliminary results on the

Siemens suite and the grep program show that our approach

is effective in selecting tests that have high fault-detection

capability.

We plan to pursue several future directions for our new

approach. First, we plan to combine our approach with au-

tomatic test generation tools. Our current experiments are

based on existing test suites that are well prepared. It is

valuable to investigate how our approach can work on au-

tomatically generated test sets. In addition, we plan to ex-

plore how the mined operational models can help guide test

generation. Second, we plan to study the characteristics

of mined common operational models and compare them

with invariants mined by Daikon. It is also interesting to in-

vestigate differences between common operational models

mined from faulty versions and those mined from correct

versions. Third, we currently mine only rules containing

two predicates. We plan to explore mining more general

rules containing several predicates.

Acknowledgments
The work described in this paper was partially sup-

ported by a grant from the Research Grants Council of the

Hong Kong Special Administrative Region, China (Project

No. CUHK4158/08E), and partially supported by US ARO

grant W911NF-08-1-0443 and NSF grant CCF-0725190.

References
[1] http://sir.unl.edu/php/index.php.

[2] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:

the distribution of program failures in a profile space. In ESEC
/ SIGSOFT FSE, pages 246–255, 2001.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.

Dynamically discovering likely program invariants to support

program evolution. IEEE Trans. Software Eng., 27(2):99–

123, 2001.

[4] S. Hangal and M. S. Lam. Tracking down software bugs using

automatic anomaly detection. In ICSE, pages 291–301, 2002.

[5] M. Hutchins, H. Foster, T. Goradia, and T. J. Ostrand. Experi-

ments of the effectiveness of dataflow- and controlflow-based

test adequacy criteria. In ICSE, pages 191–200, 1994.

[6] B. R. Liblit. Cooperative Bug Isolation. PhD thesis, Univer-

sity of California, Berkeley, Dec. 2004.

[7] P. A. Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical de-

bugging using compound boolean predicates. In ISSTA, pages

5–15, 2007.

[8] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing

to large software systems. In SIGSOFT FSE, pages 241–251,

2004.

[9] C. Pacheco and M. D. Ernst. Eclat: Automatic generation

and classification of test inputs. In ECOOP, pages 504–527,

2005.

[10] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-

directed random test generation. In ICSE, pages 75–84, 2007.

[11] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prior-

itizing test cases for regression testing. IEEE Trans. Software
Eng., 27(10):929–948, 2001.

[12] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit

testing engine for C. In ESEC/SIGSOFT FSE, pages 263–

272, 2005.

[13] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input gen-

eration with Java PathFinder. In ISSTA, pages 97–107, 2004.

[14] T. Xie and D. Notkin. Tool-assisted unit test selection based

on operational violations. In ASE, pages 40–48, 2003.

[15] T. Xie and D. Notkin. Automatically identifying special and

common unit tests for object-oriented programs. In ISSRE,

pages 277–287, 2005.

222

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 30,2020 at 06:19:52 UTC from IEEE Xplore. Restrictions apply.

