
Practical and Efficient Model Extraction of
Sentiment Analysis APIs

Weibin Wu∗, Jianping Zhang†, Victor Junqiu Wei‡, Xixian Chen§, Zibin Zheng∗, Irwin King†, Michael R. Lyu†
∗School of Software Engineering, Sun Yat-sen University

†Department of Computer Science and Engineering, The Chinese University of Hong Kong
‡Department of Computing, The Hong Kong Polytechnic University

§Tencent

{wuwb36, zhzibin}@mail.sysu.edu.cn, {jpzhang, king, lyu}@cse.cuhk.edu.hk

wjqjsnj@gmail.com, cxxnju@hotmail.com

Abstract—Despite their stunning performance, developing deep
learning models from scratch is a formidable task. Therefore,
it popularizes Machine-Learning-as-a-Service (MLaaS), where
general users can access the trained models of MLaaS providers
via Application Programming Interfaces (APIs) on a pay-per-
query basis. Unfortunately, the success of MLaaS is under
threat from model extraction attacks, where attackers intend
to extract a local model of equivalent functionality to the target
MLaaS model. However, existing studies on model extraction of
text analytics APIs frequently assume adversaries have strong
knowledge about the victim model, like its architecture and
parameters, which hardly holds in practice. Besides, since the
attacker’s and the victim’s training data can be considerably
discrepant, it is non-trivial to perform efficient model extraction.
In this paper, to advance the understanding of such attacks,
we propose a framework, PEEP, for practical and efficient
model extraction of sentiment analysis APIs with only query
access. Specifically, PEEP features a learning-based scheme,
which employs out-of-domain public corpora and a novel query
strategy to construct proxy training data for model extraction.
Besides, PEEP introduces a greedy search algorithm to settle an
appropriate architecture for the extracted model. We conducted
extensive experiments with two victim models across three
datasets and two real-life commercial sentiment analysis APIs.
Experimental results corroborate that PEEP can consistently
outperform the state-of-the-art baselines in terms of effectiveness
and efficiency.

Index Terms—model extraction, sentiment analysis APIs, active
learning, architecture search

I. INTRODUCTION

Recent years have witnessed the fantastic accomplishment

of deep neural networks (DNNs) in tackling a growing array

of challenging tasks [1]–[3]. It leads to an exploding demand

for the deployment of deep learning models in products to

embrace the technological advance [4]. Machine-Learning-as-

a-Service (MLaaS) thus gains ever-increasing prevalence [5],

[6]. On the one hand, MLaaS providers make their advanced

trained models partially accessible by offering prediction APIs

to users. These vendors can monetize their service on a pay-

per-query basis. On the other hand, general subscribers with

limited expertise in deep learning can simply upload data of

interest via MLaaS APIs and directly obtain the final analysis

results on these data, eliminating the burden of building an

expensive model from scratch.

The confidentiality of the trained models underneath MLaaS

APIs plays a central part in the prosperity of MLaaS [7], [8].

First of all, like traditional software, deep learning models rep-

resent the intangible assets of the developers. Developing deep

learning models generally requires a tremendous investment of

time, money, and human efforts, originating from collecting

and annotating enormous training data to engineering and

tuning model architectures and parameters. It is thus in the

best interest of MLaaS providers to hold the copyright of their

MLaaS model to profit from its commercial value and maintain

a competitive edge. Besides, in security and privacy-sensitive

applications, exposing white-box access to the MLaaS models

can facilitate evasion attacks [9]–[11] and incur a disastrous

privacy breach [12].

Unfortunately, model extraction can pose a severe threat

to the confidentiality of MLaaS models. Model extraction,

also known as functionality stealing, is a kind of attack

where hackers endeavor to extract a functionality-equivalent

local model from the victim API [13]–[15]. More concretely,

functional equivalence means that the output of the extracted

model can match that of the target MLaaS model in the

original problem domain of the victim [16], [17]. As such,

legitimate users cannot differentiate the extracted model from

the victim one, when only given query access to both of

them [18], [19].

However, it is challenging to mount model extraction attacks

against real-world MLaaS APIs, especially those for natural

language processing (NLP) tasks. First, since MLaaS providers

encapsulate the trained deep learning models into black-box

APIs, attackers usually have limited knowledge about the

target model, such as its architecture, parameters, and training

data. Second, the admissible action of the adversaries is

heavily restricted. They should behave like legitimate users.

Therefore, only query access to the target MLaaS model

is permitted. Third, query efficiency is also a fundamental

criterion for a successful model extraction attack, since ex-

cessive queries may incur a prohibitive expense and make

model extraction more detectable. Fourth, compared to models

tailored for computer vision tasks, the discrete input nature

of NLP models further complicates model extraction, since

attackers cannot arbitrarily manipulate their query samples to

524

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00054

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

54

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

Train

MLaaS Provider ()

Label 1

Label 2

Query Predict

Train

Attacker ()

Similar Functionality

Extracted Model Proxy Training Data

Secret Data Victim Model

Construct

Proxy Training Source

Fig. 1: Illustration of our model extraction scheme. In each

iteration, we first adaptively select unlabeled samples from

the proxy training source to query the victim model. We then

employ the resultant proxy training data to learn an extracted

model.

extract useful information about the target model [20].

Existing studies on model extraction of NLP APIs have two

primary deficiencies. First, some suffer from limited practical-

ity. They assume that adversaries know the architecture of the

target MLaaS model and sometimes even the parameters of

the pre-trained encoder employed by the victim. Therefore,

adversaries can exploit the same architecture and pre-trained

encoder as the victim [16], [20], [21]. As such, the model

extraction task is reduced to extracting one feedforward layer’s

parameters of the victim. However, since MLaaS providers

scarcely disclose the internals of their models, such assump-

tions hardly hold in practice. Second, query efficiency is not

yet satisfactory. Most existing proposals apply random sam-

pling to select query data for training the extracted model [20],

[22], [23]. Some borrow the sampling strategy from the active

learning literature [24], [25] to improve query efficiency [17].

Nevertheless, these sampling approaches are geared to stan-

dard model training, where the query data source belongs to

the problem domain of interest. In contrast, attackers cannot

obtain the proprietary training data of the victim during model

extraction. Consequently, the training data of the attackers and

victims can be substantially disparate, which renders these

sampling strategies inefficient for model extraction.

Therefore, in this work, we attempt to further expose the

realistic threat of such attacks. Since sentiment analysis APIs

have a broad spectrum of applications in practice [26], [27]

and are popular offerings on diverse MLaaS platforms, we

focus on extracting sentiment analysis APIs in this paper. To

this end, we propose PEEP, a learning-based framework for

model extraction of sentiment analysis APIs.

Figure 1 illustrates the overall pipeline of PEEP, which is

an iterative query-and-training procedure. Specifically, since

the victim model’s training data (the secret data) are not

accessible, we first gather out-of-domain but publicly available

corpora as the proxy training source. Then in the query

phase of each iteration, with a novel sampling strategy that

pursues an exploration-exploitation trade-off, we adaptively

select instances from the proxy training source to query the

victim model. The resultant input-output pairs constitute the

proxy training data. In the subsequent training phase, we

exploit the proxy training data to learn an extracted model,
which aims to gradually extract the target model’s knowledge.

Besides, the architecture of the extracted model is settled by

a greedy search algorithm, where we greedily search for a

structure that possesses an appropriate capacity to efficiently

imitate the functionality of the target model.

We conducted extensive experiments to evaluate the effec-

tiveness and efficiency of PEEP. Concretely, we first launched

model extraction attacks in simulated black-box settings.

We targeted two top-performing victim models across three

datasets, which are tailored to analyze the sentiment of text

data from different domains. Experimental results show that

PEEP can markedly surpass the state-of-the-art baselines

in terms of effectiveness and efficiency. More importantly,

we validated PEEP with two real-life commercial sentiment

analysis APIs. Under a budget of only $1, we can extract

local replicas that obtain over 87.9% agreement with the

corresponding commercial APIs.

In summary, we would like to underscore the following

contributions of this work:

• We propose a framework called PEEP for Practical and

Efficient model Extraction of sentiment analysis APIs.

PEEP features employing out-of-domain public corpora

and a novel query strategy to construct proxy training

data for model extraction. Moreover, it applies a greedy

search algorithm to settle an appropriate architecture for

the extracted model.

• We performed extensive experiments to assess the ef-

fectiveness and efficiency of PEEP with two cutting-

edge victim models across three datasets. PEEP can

consistently outperform the state-of-the-art benchmarks

in terms of effectiveness and efficiency.

• We investigated the effect of possible defenses on the

performance of PEEP. Experimental results confirm that

only returning label predictions is not an effective defense

against PEEP.

• We further validated PEEP with two real-life commercial

sentiment analysis APIs. The results corroborate that our

model extraction attack can translate well to real-world

scenarios.

II. PROBLEM DESCRIPTION

In this section, we define the task that we endeavor to tackle

in this paper, namely, extracting the underlying model from

real-world sentiment analysis APIs. As depicted in Figure 1,

model extraction involves two parties: a victim V and an

attacker A. We elaborate on the victim’s system model and

the attacker’s threat model in Section II-A and Section II-B,

respectively.

525

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Model Extraction of Sentiment Analysis APIs.

Require: Proxy training source XA, sampling strategy π, and

candidate structure pool {FAm}
Require: Iteration number N , query budget B, and seed

sample size k0
1: FA ← GREEDYARCHITECTURESEARCH({FAm}) �

settle the architecture of FA via greedy architecture search

2: S(0) ← k0 instances randomly sampled from XA

3: D
(0)
A ← {(x, FV (x)) : x ∈ S(0)} � query the victim

model to label the selected samples

4: k ← B − k0
N − 1

5: for i = 1 to N − 1 do � iterative query-and-training

routine

6: F
(i−1)
A ← SUPERVISEDTRAINING(D

(i−1)
A) � train

the extracted model on D
(i−1)
A

7: XA ← XA − S(i−1) � remove already queried

samples

8: D̄
(i)
A ← {(x, F (i−1)

A (x)) : x ∈ XA} � use the

extracted model to label the remaining samples

9: S(i) ← π(D̄
(i)
A , k) � select k samples with strategy π

10: D
(i)
A ← D

(i−1)
A ∪ {(x, FV (x)) : x ∈ S(i)}

11: end for
12: return FA ← SUPERVISEDTRAINING(D

(N−1)
A)

A. The Victim’s System Model

The victim V is the provider of the target sentiment analysis

model FV . To develop FV , V first needs to gather sufficient

problem-specific data XV . Then V resorts to human experts

to label these data, which results in a secret dataset DV :=
{(xi, yi)}. Here yi denotes the ground-truth label of xi. DV

is further divided into disjoint training and test partitions,

denoted as Dtrain
V and Dtest

V , respectively. The victim finally

trains different models on Dtrain
V and selects the one that

attains the best performance on Dtest
V for deployment.

B. The Attacker’s Threat Model

1) The Knowledge of the Attacker: We assume that at-

tackers are aware of the target task of the victim model FV

(i.e., detecting sentiments in text), its expected input x (i.e.,

sentences within a certain length limit), and the semantic

meaning of the returned output y (i.e., the sentiment label

for the provided sentence). Without offering such necessary

information, it may even disable legitimate use, which violates

the motivation for publishing an MLaaS API.

Nonetheless, attackers do not have access to the secret

dataset DV of the victim. In general, these data may be

proprietary and confidential, for example, patients’ health

records. Moreover, attackers know nothing about the inter-

nals of FV , including its architectures, parameters, and input

feature representations.

2) The Admissible Action of the Attacker: We assume that

the attacker A interacts with the target MLaaS API like a

legitimate user. Therefore, attackers are only endowed with

query access to the victim model. Specifically, attackers can

only upload valid inputs (i.e., sentences) to FV , and acquire

predictions on them (i.e., sentiment labels). According to the

predefined interface of the target API, victims may offer extra

information about their label predictions on a given input, e.g.,

the estimated probability of an input sentence belonging to

each sentiment class. However, to make our attack strategy

more general, we propose to exploit the minimum information

that is indispensable for legitimate use in this paper. That is,

only sentiment label predictions are available to the adversary.

3) The Goal of the Attacker: The goal of the attacker is

to extract a functionality-equivalent local model FA such that

given the same input in the problem domain of the victim

(XV), the label predictions of the extracted and victim models

can match [16], [17]. Since the secret test set (Dtest
V) is a

representative collection of data from XV , we employ Dtest
V

to estimate the functional similarity between FV and FA (i.e.,

their agreement SV A(D
test
V)):

SV A(D
test
V) =

1

|Dtest
V |

∑

x∈Dtest
V

1(FA(x) = FV (x)). (1)

Here 1(·) is the indicator function, and |Dtest
V | returns the

cardinality of the set Dtest
V . Higher agreement values signify

that FV and FA are more functionally similar.

III. METHODOLOGY

In this section, we detail our framework, PEEP, for model

extraction of sentiment analysis APIs. Algorithm 1 describes

the complete procedure of PEEP. The core part is an iterative

query-and-training routine to gradually refine the extracted

model, which alternates the query and training phases in

each turn. We explain the central query-and-training process

in Section III-A. In the query phase, we need to construct a

proxy training dataset DA, which we detail in Section III-B.

Then in Section III-C, we elucidate the training phase.

A. Query-and-Training Routine

The query-and-training routine of PEEP corresponds to

Lines 5–11 of Algorithm 1, which is inspired by the active

learning methodology [24], [28]. In summary,

1) We first randomly select some unlabeled seed instances

S(0) from the proxy training source XA. We then query

the target API to label these seed samples, which results

in a proxy training dataset D
(0)
A .

2) In the i-th iteration (i = 1, ..., N−1), we train an extracted

model F
(i−1)
A with D

(i−1)
A .

3) We employ F
(i−1)
A to annotate all instances in XA, exclud-

ing those already labeled by the victim model FV . It results

in a candidate dataset D̄
(i)
A .

4) We apply a sample strategy π to select a subset of samples

from the candidate dataset D̄
(i)
A , which constitutes the

unlabeled proxy training data S(i).

5) We query the victim model FV to label all samples in S(i).

We add the resultant annotated instances to the previous

proxy training dataset D
(i−1)
A .

526

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

6) We repeat Steps 2–5 to gradually refine the extracted

model.

B. Proxy Training Data Construction

Like the victim, attackers need to build a training dataset

(the proxy training dataset DA) before they can train an

extracted model. Since annotating is performed by querying

the victim model, the remaining tasks are gathering adequate

unlabeled samples (i.e., determining the proxy training source

XA) and selecting informative instances therein for query

efficiency (i.e., devising the sampling strategy π). We present

our solutions as follows.

1) Proxy Training Source XA: In practice, victims scarcely

release the problem domain data XV that they curated for

model development, since these data may be confidential, e.g.,

patients’ health records. Therefore, we propose to employ

publicly available corpora as the proxy training source XA,

which can be of different domains than XV .

2) Sampling Strategy π: We introduce a novel sampling

strategy π to select instances in XA, which are the most

informative for extracting models from the target API. We

then prioritize querying them to construct DA. It facilitates

reducing the number of queries we need before achieving the

desired agreement.

Our idea is to quantify the informativeness of each candidate

example in XA. As such, we can conveniently incorporate and

combine different metrics that can boost the query efficiency

of model extraction in our informativeness formula. Based on

the feedback information from the current extracted model, we

focus on two metrics in this work: uncertainty and diversity,

which we detail as follows.

Uncertainty champions samples that are close to the deci-

sion boundary of the current extracted model, which represents

an exploitation strategy. Such instances are the ones on which

the extracted model is most uncertain about its decisions.

Therefore, learning with these samples can quickly mold the

decision boundary of the extracted model. We adopt the fol-

lowing entropy-based formula [24] to calculate the uncertainty

of a sample x ∈ D̄
(i)
A :

Runcertainty(x) = −p̂A(x) · log p̂A(x). (2)

Here p̂A(x) represents the output probability vector of the

extracted model when given x.

However, since the victim’s problem domain data XV and

the attacker’s proxy training source XA may be materially

discrepant, there are numerous out-of-domain data in XA from

the perspective of the victim model FV . Without being trained

on these out-of-domain data, FV may be uncertain about its

predictions on these samples, even though their ground-truth

class probabilities can be high [29]. As a result, solely banking

on uncertainty sampling can over-exploit out-of-domain data

and impede the extraction of the victim’s knowledge in the

original problem domain.

Therefore, to complement uncertainty sampling, we intro-

duce another criterion when calculating a sample’s infor-

mativeness: diversity. Diversity advocates samples that are

distinct from the ones we have queried so far, which accounts

for the principle of exploration. We introduce diversity to

prevent the pure exploitation of a specific category of samples,

e.g., uncertain examples that may be out-of-domain for FV .

We characterize the diversity of an instance x ∈ D̄
(i)
A as:

Rdiversity(x) =

1

|D(i−1)
A |

∑

(xm,ym)∈D(i−1)
A

||L(k)
A (x)− L

(k)
A (xm)||2. (3)

Here L
(k)
A (x) is the feature representation of x output by the

k-th layer of FA. Compared to uncertainty sampling, diversity

sampling excels at mining data that may be closer to the

problem domain of FV . As a result, it can help the extracted

model to imitate the victim’s behavior in the original problem

domain.
We combine these two metrics to balance exploitation and

exploration during sampling, leading to the informativeness

formula of a sample x ∈ D̄
(i)
A that we employ:

R(x) = Runcertainty + λ ·Rdiversity. (4)

Here λ is a weight parameter to balance the contribution of

both terms. Therefore, in each iteration, the sampling strategy

π(D̄
(i)
A , k) will return k samples with the top informativeness

values from D̄
(i)
A .

C. Extracted Model Training
After obtaining the proxy training data, we learn an ex-

tracted model on them to approximate the decision boundary

of the victim model. Specifically, we need to determine the

architecture and training algorithm of FA, since these design

choices of the victim model are unknown to the attacker. We

describe our remedies as follows.
1) Greedy Architecture Search: We settle the structure

of FA via a greedy architecture search algorithm, which is

motivated by the studies on knowledge distillation [30]. We

expect that, for a successful model extraction attack, FA and

FV can be of different model types, e.g., XLNet [31] vs.

BERT (Bidirectional Encoder Representations from Trans-

formers) [32], as long as their capacities are comparable with

respect to the target task of FV .
Therefore, we first determine the model types of FA (e.g.,

XLNet and BERT), which are suitable for the task of FV

as per domain knowledge. Then we engineer a candidate

structure pool {FAm}, which consists of M candidate struc-

tures. Besides, the candidate architectures of each model

type possess increasing complexity. As such, we simplify the

architecture search task into choosing a structure from {FAm}
for FA, which owns the most appropriate capacity for quickly

duplicating the functionality of FV .
To efficiently address this problem, we devise a greedy ar-

chitecture search algorithm, which is detailed in Algorithm 2.

In short,

1) We first prepare a proxy validation set Dval
A , which is

used to compute and compare the performance of different

candidate structures on model extraction.

527

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Greedy Architecture Search.

Require: Proxy training source XA, sampling strategy π, and

candidate structure pool {FAm}
Require: Iteration number C, proxy validation set Dval

A , and

sample size d

1: S(0) ← d instances randomly sampled from XA

2: Initialize S
(0)
Am ← S(0), for all m ≤M

3: Initialize D
(0)
Am ← {(x, FV (x)) : x ∈ S(0)}, for all m ≤

M

4: Initialize XAm ← XA, for all m ≤M

5: h← M − 1

C
� the number of candidates discarded in

each iteration

6: for i = 1 to C do
7: for each m in the index set of {FAm} do
8: F

(i−1)
Am ← SUPERVISEDTRAINING(D

(i−1)
Am) �

train the candidate model on D
(i−1)
Am

9: S
(i−1)
V Am ← 1

|Dval
A |

∑
x∈Dval

A
1(F

(i−1)
Am (x) =

FV (x)) � calculate the agreement

10: if i < C then
11: XAm ← XAm − S

(i−1)
Am

12: D̄
(i)
Am ← {(x, F (i−1)

Am (x)) : x ∈ XAm}
13: S

(i)
Am ← π(D̄

(i)
Am, d) � select samples with

strategy π

14: D
(i)
Am ← D

(i−1)
Am ∪ {(x, FV (x)) : x ∈ S

(i)
Am}

15: end if
16: end for
17: {FAm} ← REMOVE({FAm}, h) � discard h

candidate models with the lowest SV Am values

18: end for
19: return FA ← {FAm}

2) We separately train each candidate model structure from

{FAm} for one iteration. The training process of a candi-

date structure follows the query-and-training routine intro-

duced in Section III-A.

3) We compute the agreement between the victim and the

candidate models on the proxy validation set Dval
A . We

will discard h candidate models from {FAm} that attain

the lowest agreement values.

4) We iterate Steps 2–3 until there is only one structure left

in {FAm}. We will employ it as the selected architecture

of FA.

2) Training Algorithm: Although some particulars of the

training protocol may vary across different types of models,

we consistently adopt the cross-entropy loss as the training

loss function, which is a standard of practice for categorization

problems [33]. For model extraction, the extracted model is

trained to mimic the behaviors of the victim model FV . There-

fore, unlike regular model training, we modify the standard

cross-entropy loss as:

LCE(p̂V , p̂A) = −p̂V · log p̂A. (5)

Here p̂V and p̂A are the probability vectors predicted by the

victim and the extracted models, respectively. Since we assume

that the victim only returns final label predictions in this paper,

we exploit the one-hot encoding of its label prediction yV to

construct p̂V . As such, different from standard model training,

we treat the prediction of the victim model FV as the ground-

truth label.

IV. EXPERIMENTAL SETUP

A. Evaluation Metrics

As mentioned in Section II-B, we employ agreement to

assess the extent to which model extraction attacks are suc-

cessful. For PEEP, there are mainly three building blocks:

the design of the proxy training source, the sampling strategy

to select instances to be labeled, and the architecture search

algorithm to settle the structure of the extracted model. There-

fore, to evaluate these building blocks, we adopt the following

metrics based on agreement:

Effectiveness. Effectiveness aims to evaluate the perfor-

mance of a design of the proxy training source. We define

the effectiveness of a proxy training source as the obtained

agreement when running PEEP with the proxy training source,

under the maximum query budget considered in this paper (i.e.,

1K).

Efficiency. Efficiency aims to evaluate the performance of

a sampling strategy. Attackers apply a sampling strategy to

select the most informative query samples to maximize the

obtained agreement under a preset query budget. Therefore,

we define the efficiency of a sampling strategy as the obtained

average agreement across different query budgets (i.e., 0.2–

1K), when running PEEP with the sampling strategy. We set

the range of the query budgets to 0.2–1K so that we can

achieve results comparable to those reported in the state-of-

the-art baselines [17], [20].

Search time and the corresponding obtained agreement.
Search time and the corresponding obtained agreement aim to

evaluate the performance of an architecture search algorithm.

We define the search time of an architecture search algorithm

to be its execution time to settle a structure for the extracted

model. The corresponding obtained agreement is the obtained

agreement on the proxy validation set, when running PEEP

with the structure settled by the architecture search algorithm.

B. Research Questions

We structure the evaluation of PEEP into four research

questions as follows.

RQ1: What is the performance of our design of the proxy
training source and greedy architecture search algorithm?
In this RQ, we endeavor to evaluate the performance of our

design of the proxy training source and greedy architecture

search algorithm. The crucial hurdle for model extraction

is that attackers cannot access the secret data and internal

528

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

Dataset Classes
Training Test

Domain
Samples Samples

MR 2 8530 1066 Movie
SST2 2 67349 872 Movie
GitHub 3 4985 2137 GitHub

TABLE I: Statistics of the adopted datasets.

Victim Model Accuracy
MR-BERT 84.3
MR-XLNet 87.1
SST2-BERT 92.4
SST2-XLNet 93.6
GitHub-BERT 92.0
GitHub-XLNet 92.0

TABLE II: Accuracy (%) of the victim model on the corre-

sponding secret test set.

particulars of the victim model. Therefore, a practical model

extraction attack should first overcome this challenge.

RQ2: What is the performance of the proposed sampling
strategy? Attackers may also attempt to minimize the number

of queries to reduce the extraction cost and evade detec-

tion [13]. Therefore, in this RQ, we assess the performance of

our sampling strategy by calculating its efficiency.

RQ3: What is the effect of possible defenses on the
performance of PEEP? In this RQ, we aim to gain further

insight into the robustness of PEEP. Therefore, we investigate

whether PEEP is still effective against possible defenses. It

can shed light on the development of future defenses.

RQ4: Can PEEP be applied to extract models from real-
life commercial sentiment analysis APIs? In this RQ, we

seek to further validate the practical applicability of PEEP. By

evaluating the performance of PEEP with real-life commercial

sentiment analysis APIs, we can answer whether our frame-

work and findings can generalize well to real-world situations.

C. Victim Models

In this work, we target both simulated black-box sentiment

analysis APIs and real-world commercial sentiment analysis

APIs. We conduct all our experiments employing a server with

one NVIDIA GeForce RTX 2080 Ti GPU of 11GB memory.

1) Simulated Black-Box Sentiment Analysis APIs: In the

simulated black-box setup, we employ three characteristic

public datasets: Movie Review (MR) [34], Stanford Sentiment

Treebank (SST2) [35], and GitHub pull request and commit

comments (GitHub) [36]. Table I summarizes their statistics.

They are all tailored for the task of sentiment analysis but

come from different application domains. Specifically, MR

and SST2 consist of movie reviews, while GitHub comprises

sentences from the GitHub pull request and commit comments.

We exploit a prevailing paradigm in modern NLP systems

to build target models [20]. The target models’ structures are

a composition of a pre-trained language model (e.g., BERT)

and a task-specific output layer [32]. We consider two state-

of-the-art pre-trained and publicly available language models:

BERT-Base [37] and XLNet-Base [31]. Therefore, for each

secret dataset, we build two victim models, resulting in a total

of six victim models in the simulated black-box setting.

Specifically, we denote these victim models in the form

of secret dataset-model architecture. We employ the publicly

available trained parameters1 for these victim models except

SST2-XLNet, GitHub-BERT, and GitHub-XLNet. For SST2-

XLNet, GitHub-BERT, and GitHub-XLNet, we fine-tune the

pre-trained language model (BERT-Base2 or XLNet-Base3) on

the corresponding dataset. During fine-tuning, we apply an

AdamW optimizer [38] with default training configurations to

minimize the cross-entropy loss [33]. We fine-tune the models

for three epochs. Table II shows the accuracy of these victim

models on the corresponding secret test set.

2) Real-World Commercial Sentiment Analysis APIs: As

for real-world commercial sentiment analysis APIs, we target

two APIs provided by Google Cloud4 and Microsoft Azure5,

respectively. They are representative APIs for sentiment analy-

sis and possess cutting-edge performance. Both APIs take raw

text as input and outputs the corresponding sentiment label for

users. Note that both APIs also return confidence scores for

their decisions. Nevertheless, as in the simulated black-box

setting, we only exploit the top-1 label predictions for the

generality of our work.

D. Implementation of Our Framework

1) Proxy Training Source XA: For all of our experiments,

we randomly select and fix 30K samples from the publicly

available WikiText-103 corpus (Wiki) [39] as the proxy train-

ing source XA. Therefore, our proxy training source XA and

the secret datasets of the victims come from different domains.

2) Extracted Model Architecture: In our candidate structure

pool {FAm} for the extracted model, we consider three

model types: Bidirectional Long-Short Term Memory (BiL-

STM) [40], XLNet [31], and BERT [32], since such models

are adept at sentiment classification [41]. For each model

type, we engineer different candidate structures by changing

their capacities, e.g., increasing the number and size of hidden

layers.

Table III enumerates the candidate structure pool {FAm}
we adopt during the greedy architecture search. Particularly,

for XLNet-based models, we employ three publicly available

pre-trained models with varying complexity: XLNet-Tiny6,

XLNet-Base3, and XLNet-Large7. For BERT-based models,

we also employ three publicly available pre-trained mod-

els with varying complexity: BERT-Tiny8, BERT-Base2, and

BERT-Large9. We configure and randomly initialize the last

fully connected layer of these pre-trained models based on the

1https://huggingface.co/textattack
2https://huggingface.co/bert-base-cased
3https://huggingface.co/xlnet-base-cased
4https://cloud.google.com/natural-language/
5https://azure.microsoft.com/en-us/services/cognitive-services/

language-service/
6https://huggingface.co/sshleifer/tiny-xlnet-base-cased
7https://huggingface.co/xlnet-large-cased
8https://huggingface.co/prajjwal1/bert-tiny
9https://huggingface.co/bert-large-cased

529

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

Structure Hidden Size Layers
BiLSTM-1 150 1
BiLSTM-2 150 2
BiLSTM-3 150 3
BERT-Tiny 128 2
BERT-Base 768 12
BERT-Large 1024 24
XLNet-Tiny 128 2
XLNet-Base 768 12
XLNet-Large 1024 24

TABLE III: Candidate model structures considered during our

greedy architecture search.

Victim Model Use Random Text Our Method
MR-BERT 56.4 87.1
MR-XLNet 59.3 90.1
SST2-BERT 60.8 88.1
SST2-XLNet 65.8 86.1
GitHub-BERT 44.9 76.3
GitHub-XLNet 45.2 75.8

TABLE IV: Agreement (%) between the extracted and the vic-

tim models when employing different proxy training sources.

We denote each victim model in the form of secret dataset-

model architecture.

class number of the target model. For BiLSTM-based models,

we randomly initialize all the model parameters.

For simplicity, we determine the final structure of FA for

each secret dataset by conducting greedy architecture search

with MR-BERT, SST2-BERT, and GitHub-BERT as victim

models, respectively. We then employ the same architecture of

FA for all victims of the same secret dataset without model-

specific architecture search. We set the iteration number C =
4 and the sample size d = 100 for our greedy architecture

search algorithm. The proxy validation set Dval
A contains 30K

samples randomly selected from the WikiText-103 corpus. We

note that Dval
A and the proxy training source of the attacker

do not overlap.

3) Training Configurations: We experimentally set k0 =
0.1B and N = 10 without fine-tuning for simplicity. We apply

an AdamW optimizer [38] with default training configurations

and a batch size of 32. We train the extracted model for three

epochs. The weight parameter λ is settled by a grid search.

We employ the logit layer of the extracted model to compute

the feature representations of samples in Eq. (3).

E. Benchmark Strategy

We compare our framework with state-of-the-art base-

lines [17], [20] in terms of the design of the proxy training

source XA and the sampling strategy π. Specifically, Krishna et

al. [20] proposed to employ random text as the proxy training

source XA. They will randomly sample words from the

WikiText-103 vocabulary [39] to construct query sentences.

The sampling strategy of Pal et al. [17] is to prioritize querying

instances with higher uncertainty values (Eq. (2)), which

corresponds to a pure exploitation scheme during sampling.

Candidate Structure
Step

Stop Step
1 2 3 4

BiLSTM-1 54.9 56.5 62.1 61.7 1
BiLSTM-2 55.8 63.2 63.7 63.2 3
BiLSTM-3 55.8 58.8 61.4 61.4 2
BERT-Tiny 54.7 57.6 59.2 62.8 1
BERT-Base 66.1 74.1 76.0 75.1 4
BERT-Large 65.7 74.6 76.0 74.8 4
XLNet-Tiny 55.8 57.8 58.3 58.4 2
XLNet-Base 67.7 69.3 75.6 76.8 -
XLNet-Large 55.7 62.8 64.4 65.8 3

TABLE V: Agreement (%) between the extracted model and

the victim model (MR-BERT) on the proxy validation set

after each query-and-training iteration during the grid/greedy

architecture search procedure. “Stop Step” indicates the step

after which the candidate structures are removed from {FAm}
during our greedy architecture search process.

To validate our greedy architecture search algorithm, we

consider a naive grid search algorithm as the baseline. The

baseline will first completely train all the candidate model

structures. Then it selects the top performer among them as

the final extracted model. Specifically, we directly adopt each

candidate model structure in Table III as the structure of FA

and then run PEEP to conduct model extraction. We note

that the grid search baseline is capable of discovering the

best architecture in the considered candidate structure pool.

For a fair comparison, we employ the grid search algorithm

to settle the structure of FA under the same setting of our

greedy search algorithm. Specifically, we set the query-and-

training iteration number C = 4 and the sample size in each

iteration d = 100. The grid search algorithm also performs

model extraction against the same victim models as our greedy

search algorithm.

V. EXPERIMENTAL RESULTS

A. RQ1: What is the performance of our design of the proxy
training source and greedy architecture search algorithm?

We first evaluate our design of the proxy training source XA.

To this end, we compare the effectiveness of different proxy

training sources. Specifically, given a proxy training source,

we run PEEP under a fixed query budget of 1K. We then

compare the obtained agreement of the models extracted with

different proxy training sources.

Table IV reports the model extraction results when employ-

ing different proxy training sources. We denote each victim

model in the form of secret dataset-model architecture. “Use

Random Text” corresponds to the technique of Krishna et

al. [20]. We can consistently achieve higher agreement in all
cases. Notably, in terms of the obtained average effectiveness

across all victims, our construction of the proxy training source

XA exceeds the benchmark design [20] by over 28.5%. The

advance confirms that PEEP is significantly more effective

than the state-of-the-art baseline [20], in terms of the design

of the proxy training source.

530

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

MR SST2 GitHub

Settled Grid XLNet-Base XLNet-Base XLNet-Base

Structure Greedy XLNet-Base XLNet-Base XLNet-Base

Search Grid 3.4 3.4 2.6

Time Greedy 2.8 2.9 2.2

TABLE VI: The final structure settled by different architecture

search algorithms and their search time (in hours).

We then validate our greedy architecture search algo-

rithm. Table V demonstrates the grid/greedy architecture

search procedure when the victim model is MR-BERT. Ta-

ble VI summarizes the final structure settled by different

architecture search algorithms and their search time. The

results show that the final structures settled by the grid search

and our greedy search algorithms are the same. It confirms that

our greedy search algorithm can discover the architecture that

can obtain the highest agreement on the proxy validation set

among all the candidate ones. Besides, in terms of the search

time, it costs about 3.1 hours on average to settle the best

structure with the grid search algorithm. In contrast, our greedy

search scheme only takes about 2.6 hours on average, which

is about 1.2 times faster than the naive grid search algorithm.

B. RQ2: What is the performance of the proposed sampling
strategy?

In this RQ, we compare the performance of different

sampling strategies. To this end, we run PEEP with dif-

ferent sampling strategies: random sampling, diversity sam-

pling, uncertainty sampling [17], and our sampling strategy.

Specifically, random sampling will randomly select samples

to query. Diversity sampling prioritizes querying samples with

higher diversity values (Eq. (3)), while uncertainty sampling

prioritizes querying samples with greater uncertainty values

(Eq. (2)). For each victim model, we vary the query budget B
from 0.2K to 1K and compare the obtained agreement of the

models extracted with different sampling strategies.

Table VII presents the model extraction results when apply-

ing different sampling strategies. We can consistently achieve

higher agreement under the same query budget in all cases.

Remarkably, in terms of the obtained average efficiency across

all victims, our sampling technique outperforms the base-

line [17] by over 2.1%. The performance gain verifies that

we are considerably more efficient than the state-of-the-art

benchmark [17], in terms of the sampling strategy.

To examine the significance of the performance difference

between PEEP and the state-of-the-art baseline [17], we repeat

the experimental evaluation as in Table VII and conduct two-

tailed t-tests, which are widely used to determine if there is

a statistically significant difference between the means of two

groups [42]. The null hypothesis is that the mean agreements

obtained by PEEP and the baseline are equal. Experimental

results show that p-values are less than 0.05 for all tests.

Therefore, the null hypothesis is rejected, which confirms that

there is a significant difference between the performance of

PEEP and the state-of-the-art baseline.

In terms of the achieved average agreement across different

query budgets, we make the following observations when we

zoom in on each secret dataset: First, our method is the

most efficient sampling strategy across all secret datasets. We

outshine the state-of-the-art baseline [17] by around 3.5%,

1.5%, and 1.3% on the MR, SST2, and GitHub datasets,

respectively. Second, random sampling is the least efficient

sampling strategy over all datasets. It verifies that both the

uncertainty and diversity metrics in our informativeness defini-

tion (Eq. (4)) can boost query efficiency. Therefore, combining

both of them, as we do, can achieve the best performance.

Third, comparing different secret datasets, extracting models

tailored for the GitHub dataset seems to be the most arduous

task for all sampling methods.

To investigate the reason for these sampling methods’

discrepant performances on different datasets, we display some

example sentences from each dataset in Table VIII. We can

see that the samples from the GitHub dataset are sentences

from GitHub pull request and commit comments, which are

colloquial and often contain code snippets. By contrast, the

sentences from the MR and SST2 datasets are movie reviews,

which are more formal and comprise natural language text.

Recall that we employ samples from the Wiki dataset as the

proxy training source, which also consists of natural language

sentences. Since the sentences in the GitHub dataset are

considerably different from those in the other datasets, the

performance of model extraction on the GitHub dataset is

relatively lower than that under the other situations.

C. RQ3: What is the effect of possible defenses on the perfor-
mance of PEEP?

In this RQ, we examine the effect of possible defenses on

the performance of PEEP. We note that for the generality of

our work, we assume that only the top-1 label predictions

of the victim are available in previous experiments. Actu-

ally, popular MLaaS providers, such as Google Cloud and

Microsoft Azure, also offer confidence scores for their label

predictions. Therefore, reducing the returned information can

be a possible defense deployed by the victim to prevent model

extraction [13]. It motivates us to further investigate whether

such a strategy can be an effective defense against PEEP.

To this end, we measure the performance variations of

PEEP induced by this defense methodology. Specifically, when

the victim also outputs a full probability vector, we can

directly feed it to the training loss function (Eq. (5)) to guide

the learning of the extracted model. We then compare the

performance of the resultant extracted models with that in our

previous experiments.

Table IX shows the effect of employing different outputs

of the victim model on PEEP, under a fixed query budget

B = 1K. We can see that only employing the label predictions

actually helps to improve the performance of PEEP across all

victims.

Different from knowledge distillation [30], in the setting of

model extraction, the attacker’s proxy training dataset and the

victim’s secret dataset are from different domains. Therefore,

531

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

Sampling Strategy 0.2K 0.4K 0.6K 0.8K 1K

Random 74.9 75.5 78.2 80.2 80.5
Uncertainty 80.4 80.7 79.9 83.9 83.7
Diversity 74.1 78.1 78.3 80.0 82.5
Our Method 81.7 84.8 83.9 87.6 87.1

(a) MR-BERT

Sampling Strategy 0.2K 0.4K 0.6K 0.8K 1K

Random 53.9 72.3 78.9 83.9 84.7
Uncertainty 71.9 81.9 82.1 85.9 86.9
Diversity 70.2 74.6 81.9 84.4 85.2
Our Method 78.4 85.4 84.9 88.4 90.1

(b) MR-XLNet

Sampling Strategy 0.2K 0.4K 0.6K 0.8K 1K

Random 56.1 68.3 81.4 82.4 82.2
Uncertainty 80.7 82.6 84.2 87.1 87.3
Diversity 69.0 70.7 86.5 85.8 85.7
Our Method 82.1 84.2 88.0 87.8 88.1

(c) SST2-BERT

Sampling Strategy 0.2K 0.4K 0.6K 0.8K 1K

Random 56.1 68.3 82.0 82.8 82.3
Uncertainty 79.7 81.2 83.2 85.7 85.2
Diversity 61.9 70.7 83.5 83.8 83.1
Our Method 81.0 82.5 86.1 86.4 86.1

(d) SST2-XLNet

Sampling Strategy 0.2K 0.4K 0.6K 0.8K 1K

Random 58.7 68.3 68.9 68.2 70.1
Uncertainty 63.4 76.7 75.0 76.1 75.5
Diversity 62.3 72.5 70.5 72.9 74.9
Our Method 66.0 77.8 76.3 76.9 76.3

(e) GitHub-BERT

Sampling Strategy 0.2K 0.4K 0.6K 0.8K 1K

Random 62.5 63.5 64.1 66.8 67.1
Uncertainty 71.5 72.4 73.2 73.5 73.0
Diversity 67.0 68.9 71.9 71.7 70.9
Our Method 72.9 73.8 73.7 74.0 75.8

(f) GitHub-XLNet

TABLE VII: Agreement (%) between the extracted and the victim models when applying different sampling strategies.

Dataset Example Sentence

Wiki
Lieberstein and Jennifer Celotta were named the
series showrunners for the fifth season.

MR
a masterful film from a master filmmaker , unique
in its deceptive grimness , compelling in its
fatalist worldview .

SST2 is pretty damned funny .

GitHub
Well, it would be safer to use ‘assoc = Hash.new
{ |h,k| h[k] = [] }‘

TABLE VIII: Example sentences from different datasets.

Victim Model Probability Top-1 Label
MR-BERT 80.3 87.1
SST2-BERT 83.7 88.1
GitHub-BERT 73.7 76.3

TABLE IX: Agreement (%) obtained by our framework when

employing different outputs from the victim model.

during model extraction, the information provided by the

victim model’s full probability output may be noisier than that

provided by its label prediction. As a result, employing the

victim model’s full probability output does not achieve better

model extraction results than employing only the label predic-

tion. Besides, when normally training a model, developers only

need data annotated with labels. Therefore, as confirmed by

the experimental results, it is not an effective defense against

PEEP to reduce the returned information of the victim model

(i.e., only returning the label prediction).

D. RQ4: Can PEEP be applied to extract models from real-
life commercial sentiment analysis APIs?

To further validate the practical applicability of PEEP,

we perform model extraction against commercial sentiment

analysis APIs offered by Google Cloud4 and Microsoft Azure5.

Both APIs charge users no more than $1 per 1K queries, when

the total number of queries is below 1M. The price will then

decrease as the number of queries increases.

Unlike the simulated black-box setting, we cannot access

the internal test set Dtest
V of the victim model to evaluate

the performance of our method. Therefore, we first conduct

experiments to determine a proxy test set, which should be

similar to the original test set of the victim. Specifically, we

evaluate the accuracy of the API on several datasets and select

the one on which the victim can obtain the highest accuracy

as the proxy test set, since we expect that the victim model

can perform well on the original test set. After comparisons,

we choose to employ the test set of Yelp Reviews (Yelp) [43]

as the proxy test set, which is distinct from our proxy training

source.

The accuracy of Google Cloud API and Microsoft Azure

API on the proxy test set is 94.8% and 90.2%, respectively.

After settling the proxy test set, we perform model extraction

as in the simulated black-box setting. The extracted model

structure selected by our greedy search algorithm is XLNet-

Base for both APIs.

We first compare the effectiveness of different proxy train-

ing sources. Specifically, we run PEEP under a fixed query

budget of 1K with different proxy training sources to conduct

model extraction. Table X shows the results. Again, we can

consistently achieve higher agreement with both APIs. In

532

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

Victim API Use Random Text Our Method
Google 62.2 90.1
Microsoft 54.7 87.9

TABLE X: Agreement (%) between the extracted model

and the commercial sentiment analysis API when employing

different proxy training sources.

Sampling Strategy 0.2K 0.4K 0.6K 0.8K 1K

Random 76.9 82.9 84.4 86.9 87.0
Uncertainty 81.2 85.7 86.7 88.3 87.2
Diversity 76.5 84.5 83.2 86.8 86.8
Our Method 87.8 88.0 89.0 88.6 90.1

(a) Google

Sampling Strategy 0.2K 0.4K 0.6K 0.8K 1K

Random 83.0 84.0 85.4 85.6 85.7
Uncertainty 84.6 87.3 87.4 87.2 87.0
Diversity 85.8 87.5 86.7 86.4 86.6
Our Method 86.1 88.1 87.6 87.8 87.9

(b) Microsoft

TABLE XI: Agreement (%) between the extracted model

and the commercial sentiment analysis API when applying

different sampling strategies.

terms of the obtained average agreement across both APIs,

our construction of the proxy training source XA outshines the

baseline design [20] by about 30.6%. The advance confirms

that PEEP is significantly more effective than the state-of-the-

art benchmark [20], in terms of the design of the proxy training

source.

We then evaluate the efficiency of different query strategies.

The results are presented in Table XI. We can consistently

outperform the state-of-the-art baselines [17] in all cases by

over 1.8% on average. Notably, under a relatively restricted

budget (about $1 for 1K queries) for both APIs, we can

succeed in extracting models with a remarkable performance

(over 87.9% agreement). Therefore, our model extraction

framework can translate well to real-world scenarios.

VI. THREATS TO VALIDITY

The first threat to validity is regarding the typicality of the

considered NLP task and datasets. Sentiment analysis is a

critical task for many NLP applications, such as social media

monitoring and product analysis [44]. It is also a popular

offering on diverse MLaaS platforms. Therefore, we believe

that extracting models for sentiment analysis can serve as a

representative task to validate the performance of our attack.

Actually, sentiment analysis is a characteristic text classifi-

cation task, and our framework only cares about the input-

output behaviors of the target model. Therefore, PEEP should

generalize well to extract models for other NLP tasks. As

for the datasets, we have curated well-recognized datasets for

sentiment analysis in different application domains [34]–[36].

Since we evaluate PEEP on all of them, our evaluation results

should be generalizable to datasets from other application

domains. In our future work, we also plan to extend PEEP

to other NLP tasks and datasets.

The second threat to validity comes from the availability

of our proxy training source. As observed in Section V-A,

when there is a large domain gap between the attacker’s proxy

training source and the victim’s secret data (e.g., random

text vs. movie reviews), it will be difficult to perform model

extraction. If we employ public corpora that come from similar

domains with the victim’s secret data as the proxy training

source, the performance of model extraction can improve.

However, although for some victim models (e.g., models for

analyzing movie reviews), similar sentiment analysis corpora

are publicly available, there are some victim models whose

application domain data are not publicly available and low-

resource, e.g., conversations between doctors and patients.

Therefore, in this work, to ensure the availability of the proxy

training source, we do not employ a victim-specific proxy

training source that comes from a specific domain like movie

reviews. Instead, we exploit general-purpose corpora that are

publicly available. Based on our experimental results, although

our proxy training source is out-of-domain, our PEEP can still

effectively and efficiently extract models from the target APIs.

VII. DISCUSSION

The implications of our results for both practitioners and

researchers are as follows:

(1) We assume a more realistic setting than that in previous

studies, where attackers cannot access the particulars of the

target NLP software. Therefore, we expose the realistic threat

of model extraction to NLP software. Notably, we find that

under a budget of only $1, we can extract local replicas de-

livering over 87.9% agreement with the victim APIs. Besides,

we confirm that only returning the label prediction is not an

effective defense. We thus call attention to this new security

issue.

(2) We endeavor to make PEEP generally applicable to

different application domains, which is validated by our exper-

imental evaluations. Therefore, PEEP can be readily applied to

assess the vulnerability of NLP software and the corresponding

defenses to model extraction.

(3) This paper focuses on providing a strong benchmark

for evaluating the vulnerability of NLP software and the

corresponding defenses to model extraction in practice. Fur-

thermore, we believe that PEEP can help to develop defenses

against model extraction. For example, a potential defense

would be applying PEEP to calculate the informativeness of a

query sample and then blocking queries of highly informative

samples. We leave further exploration to future work.

Particularly, the implications for the software engineering

(SE) community are as follows:

(1) Like traditional software, developers also want to protect

the copyright of their NLP software. To this end, PEEP can

serve as a strong benchmark and help to develop defenses, as

mentioned above.

533

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

(2) To facilitate the development of software, sentiment

analysis software has been frequently used in the SE commu-

nity to analyze the sentiment of various textual data [2], [26],

[45] (e.g., GitHub commit comments, Stack Overflow posts,

and Mobile app reviews). Therefore, the studied sentiment

analysis software is also of interest to the SE community.

VIII. RELATED WORK

A. Model Extraction

Like the code plagiarism issue in software engineering [46]–

[48], deep learning software can be reproduced without per-

mission by model extraction, which infringes the original de-

veloper’s copyright. Model extraction, also called model steal-

ing or functionality stealing, aims to extract a functionality-

equivalent local copy of a victim model through only query

access [13], [49].

Existing studies on model extraction generally focus on

attacking image classifiers [8], [13]–[15], [18], [19]. These

works often expect that attackers can freely manipulate query

samples. As such, they can craft queries that are close to

the victim classifier’s decision boundary to extract useful

information. However, such strategies cannot transfer to extract

NLP APIs due to the discrete input nature of NLP models [20].

With the prevalent deployment of NLP models via MLaaS

APIs, model extraction of NLP APIs has attracted growing

interest [17], [20], [23]. These studies usually assume that

attackers are informed of the architecture [22] and sometimes

even the parameters of the pre-trained encoder [16], [20], [21]

employed by the victim. Therefore, adversaries can adopt the

same structure as the victim during attacks. However, such

assumptions hardly hold in practice. In contrast, we explore

more realistic settings in this paper, where attackers are not

aware of the particulars of the target NLP model, such as its

architecture, parameters, and training data.

Besides, existing proposals generally apply random sam-

pling [20], [22], [23] or uncertainty sampling [17] to select

query data. However, these sampling strategies overlook the

glaring discrepancies between the attacker’s proxy training

data and the victim’s secret data, rendering them inefficient

for model extraction. To address this defect, we design a

novel sampling strategy to boost the query efficiency of our

framework. More crucially, we further validate our approach

by applying it to extract the underlying model of two famous

commercial sentiment analysis APIs. Therefore, we reveal the

risk of such attacks in practice and call attention to this new

security issue.

B. Defenses against Model Extraction

Mainstream defenses against model extraction can be

roughly categorized into two camps: detecting malicious

queries [8] and prediction poisoning [50]. Most are tailored for

protecting image classification models and are non-trivial to

be adapted to safeguard NLP models. Nonetheless, we discuss

the applicability of their ideas to defend against PEEP.

Detecting malicious queries aims to identify ongoing model

extraction attacks, which enables blocking or misleading ma-

licious users to prevent model extraction. Existing approaches

of this category usually assume that attackers will modify

natural data to synthesize query samples [8], [51], [52], which

can extract maximal information from the victim. As such,

the query samples from attackers and legitimate users are

distinctly different [53], [54]. However, in our attack, we

employ public and natural text as the proxy training source,

which are similar to the query examples from legitimate users.

Therefore, our attack can evade detection by these defenses.

Prediction poisoning works by perturbing the outputs of

the victim model to disturb the training of extracted models.

Representative proposals generally assume that the attacker

will employ the full output probabilities [50], [55] or transla-

tion results [23] of the victim to train their extracted model.

However, in our attack, we only exploit the label predictions

from the victim. Therefore, these defense methods are also not

effective against our attack.

IX. CONCLUSION

In this work, we propose PEEP for practical and efficient

model extraction of sentiment analysis APIs with only query

access. PEEP is a learning-based framework, which employs

public data as the proxy training source, and a novel sampling

strategy to improve the query efficiency. Besides, we devise

a greedy search algorithm to settle appropriate architectures

for the extracted model. Experimental results corroborate

the marked superiority of our technique over state-of-the-art

benchmarks. We further demonstrate that we can successfully

extract models from two famous commercial sentiment anal-

ysis APIs. Therefore, we faithfully expose the threat of such

attacks in practice and call attention to this new security issue.

In future work, we plan to exploit PEEP to develop effective

defenses against model extraction of NLP APIs. We also plan

to extend our framework to extract models for other NLP tasks,

such as question answering and machine translation. It will

help to understand the threat of model extraction to a broader

range of NLP software.

ACKNOWLEDGMENT

The authors would like to thank the anonymous shepherd

and reviewers for their detailed and insightful comments and

suggestions, which have helped to improve this paper. This

work was supported by the National Natural Science Founda-

tion of China (Grant No. 62206318), the NSFC-Guangdong

Joint Fund Project (Grant No. U20A6003), the Research

Grants Council of the Hong Kong Special Administrative

Region, China (No. CUHK 14206921 of the General Research

Fund), and the Hong Kong RGC Research Impact Fund (RIF)

with Project No. R5034-18 (CUHK 2410021).

REFERENCES

[1] Z. Chen, Y. Cao, H. Yao, X. Lu, X. Peng, H. Mei, and X. Liu, “Emoji-
powered sentiment and emotion detection from software developers’
communication data,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 2, pp. 1–48, 2021.

534

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

[2] T. Zhang, B. Xu, F. Thung, S. A. Haryono, D. Lo, and L. Jiang,
“Sentiment analysis for software engineering: How far can pre-trained
transformer models go?” in 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2020, pp. 70–
80.

[3] K. Chen, Y. Li, Y. Chen, C. Fan, Z. Hu, and W. Yang, “GLIB: Towards
automated test oracle for graphically-rich applications,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2021, pp. 1093–1104.

[4] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A comprehensive
study on challenges in deploying deep learning based software,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2020, pp. 750–762.

[5] M. Ribeiro, K. Grolinger, and M. A. Capretz, “MLaaS: Machine learning
as a service,” in 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA). IEEE, 2015, pp. 896–902.

[6] J. Weng, J. Weng, C. Cai, H. Huang, and C. Wang, “Golden grain:
Building a secure and decentralized model marketplace for MLaaS,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[7] M. Kesarwani, B. Mukhoty, V. Arya, and S. Mehta, “Model extraction
warning in MLaaS paradigm,” in Proceedings of the 34th Annual
Computer Security Applications Conference, 2018, pp. 371–380.

[8] M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “PRADA: Protecting
against DNN model stealing attacks,” in 2019 IEEE European Sympo-
sium on Security and Privacy (EuroS&P). IEEE, 2019, pp. 512–527.

[9] W. Wu, Y. Su, X. Chen, S. Zhao, I. King, M. R. Lyu, and Y.-W.
Tai, “Boosting the transferability of adversarial samples via attention,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 1161–1170.

[10] W. Wu, Y. Su, M. R. Lyu, and I. King, “Improving the transferability of
adversarial samples with adversarial transformations,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 9024–9033.

[11] W. Wu, Y. Su, X. Chen, S. Zhao, I. King, M. R. Lyu, and Y.-W. Tai,
“Towards global explanations of convolutional neural networks with
concept attribution,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 8652–8661.

[12] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret
sharer: Evaluating and testing unintended memorization in neural net-
works,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 267–284.

[13] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 601–618.

[14] S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt, “Model reconstruction
from model explanations,” in Proceedings of the Conference on Fairness,
Accountability, and Transparency. ACM, 2019, pp. 1–9.

[15] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha, and S. Yan,
“Exploring connections between active learning and model extraction,”
arXiv preprint arXiv:1811.02054, 2018.

[16] X. He, L. Lyu, L. Sun, and Q. Xu, “Model extraction and adversarial
transferability, your BERT is vulnerable!” in Proceedings of the 2021
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2021, pp.
2006–2012.

[17] S. Pal, Y. Gupta, A. Shukla, A. Kanade, S. Shevade, and V. Ganapathy,
“ActiveThief: Model extraction using active learning and unannotated
public data,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 01, 2020, pp. 865–872.

[18] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing function-
ality of black-box models,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4954–4963.

[19] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot,
“High accuracy and high fidelity extraction of neural networks,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 1345–
1362.

[20] K. Krishna, G. S. Tomar, A. P. Parikh, N. Papernot, and M. Iyyer,
“Thieves on Sesame Street! Model extraction of BERT-based APIs,”
in International Conference on Learning Representations (ICLR), 2020.

[21] S. Zanella-Beguelin, S. Tople, A. Paverd, and B. Köpf, “Grey-box
extraction of natural language models,” in International Conference on
Machine Learning. PMLR, 2021, pp. 12 278–12 286.

[22] N. S. Keskar, B. McCann, C. Xiong, and R. Socher, “The thieves
on sesame street are polyglots-extracting multilingual models from
monolingual APIs,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020, pp. 6203–
6207.

[23] E. Wallace, M. Stern, and D. Song, “Imitation attacks and defenses
for black-box machine translation systems,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020, pp. 5531–5546.

[24] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text
classifiers,” in SIGIR’94. Springer, 1994, pp. 3–12.

[25] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence
and Machine Learning, vol. 6, no. 1, pp. 1–114, 2012.

[26] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto,
“Sentiment analysis for software engineering: How far can we go?” in
Proceedings of the 40th International Conference on Software Engineer-
ing (ICSE), 2018, pp. 94–104.

[27] B. Lin, N. Cassee, A. Serebrenik, G. Bavota, N. Novielli, and M. Lanza,
“Opinion mining for software development: a systematic literature
review,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 3, pp. 1–41, 2022.

[28] O. Sener and S. Savarese, “Active learning for convolutional neural net-
works: A core-set approach,” in International Conference on Learning
Representations (ICLR), 2018.

[29] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” 2017.

[30] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NIPS Deep Learning and Representation Learning
Workshop, 2015.

[31] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “XLNet: Generalized autoregressive pretraining for language
understanding,” in Advances in Neural Information Processing Systems,
vol. 32, 2019.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2019, pp. 4171–4186.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[34] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales,” in Proceedings
of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), 2005, pp. 115–124.

[35] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts, “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, 2013, pp. 1631–
1642.

[36] N. Novielli, F. Calefato, D. Dongiovanni, D. Girardi, and F. Lanubile,
“Can we use se-specific sentiment analysis tools in a cross-platform
setting?” in Proceedings of the 17th International Conference on Mining
Software Repositories, 2020, pp. 158–168.

[37] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: On the importance of pre-training compact models,” arXiv
preprint arXiv:1908.08962, 2019.

[38] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2019.

[39] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mix-
ture models,” in International Conference on Learning Representations
(ICLR), 2017.

[40] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[41] T. Abdullah and A. Ahmet, “Deep learning in sentiment analysis: A
survey of recent architectures,” ACM Computing Surveys (CSUR), 2022.

[42] J. H. McDonald, Handbook of biological statistics. sparky house
publishing Baltimore, MD, 2009, vol. 2.

[43] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional net-
works for text classification,” in Conference on Neural Information
Processing Systems (NeurIPS), 2015, pp. 649–657.

[44] Z. Drus and H. Khalid, “Sentiment analysis in social media and its
application: Systematic literature review,” Procedia Computer Science,
vol. 161, pp. 707–714, 2019.

535

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

[45] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza, “Pattern-
based mining of opinions in q&a websites,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 548–559.

[46] C. Liu, Z. Lin, J.-G. Lou, L. Wen, and D. Zhang, “Can neural
clone detection generalize to unseen functionalitiesƒ,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 617–629.

[47] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “αdiff:
Cross-version binary code similarity detection with dnn,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2018, pp. 667–678.

[48] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, “Value-based
program characterization and its application to software plagiarism
detection,” in Proceedings of the 33rd International Conference on
Software Engineering (ICSE), 2011, pp. 756–765.

[49] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of ACM
SIGKDD International Conference on Knowledge Discovery in Data
Mining. ACM, 2005, pp. 641–647.

[50] T. Orekondy, B. Schiele, and M. Fritz, “Prediction poisoning: Towards
defenses against dnn model stealing attacks,” in International Confer-
ence on Learning Representations, 2020.

[51] H. Zheng, Q. Ye, H. Hu, C. Fang, and J. Shi, “BDPL: A boundary
differentially private layer against machine learning model extraction
attacks,” in European Symposium on Research in Computer Security.
Springer, 2019, pp. 66–83.

[52] Z. Zhang, Y. Chen, and D. Wagner, “SEAT: Similarity encoder by
adversarial training for detecting model extraction attack queries,” in
Proceedings of the 14th ACM Workshop on Artificial Intelligence and
Security, 2021, pp. 37–48.

[53] S. Kariyappa and M. K. Qureshi, “Defending against model stealing
attacks with adaptive misinformation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 770–
778.

[54] B. G. Atli, S. Szyller, M. Juuti, S. Marchal, and N. Asokan, “Extraction
of complex dnn models: Real threat or boogeyman?” in International
Workshop on Engineering Dependable and Secure Machine Learning
Systems. Springer, 2020, pp. 42–57.

[55] H. Ma, T. Chen, T.-K. Hu, C. You, X. Xie, and Z. Wang, “Undistillable:
Making a nasty teacher that CANNOT teach students,” in International
Conference on Learning Representations, 2021.

536

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 18,2023 at 11:52:00 UTC from IEEE Xplore. Restrictions apply.

