
Chapter 6

Building a Scalable

Mediator-based Query System

6.1 Objectives

In the previous chapters, we have introduced our mechanisms for support-

ing HOP calls in two CORBA enclaves separated by firewalls, for supporting

CORBA callbacks, and for supporting the communication among different dis-

tributed environments. In order to let you have a more detailed understanding

of our proposed mechanisms, and also to show you how our mechanisms con-

tribute in integrating different distributed systems, we would like to show you

how we implement a practical example, a mediator-based query system. It

demonstrates how we use our mechanisms to bypass firewalls, to use callback

features, and to expand across heterogeneous systems, in order to build a scal-

able information systems for system integration process.

In this Internet age, people put lots of information on the Internet for others

to retrieve. Though there are plentiful information ready for us, we may not

be able to query for the contents we need. First, the volume of information is

expanding dramatically. Even within an organization, multiple databases are

74

Chapter 6 Building a Scalable Mediator-has ed Query System 75

usually employed to store their data. Hence, techniques for searching across a

number of distributed data sources are important. Second, information may be

provided by various organizations, which means we may need to search across

many different sites to obtain the richer information.

In order to solve the first problem, we have established a web-based query

system using mediators to search in distributed databases. The mediator is the

middleware that forwards user queries to various database engines, and when

the database engines searched out the results, it integrates them and returns

them back to the users. We will give an introduction to mediators, and describe

our system design and implementation in section 6.2. We use CORBA for our

infrastructure implementation such that mediators can make queries to various

data sources, or even other mediators, within the CORBA enclave.

Although the second problem, that is, making queries to other sites, can

be solved by an extension to our mediator system, we need to tackle some

technical problems first.

The first problem is the firewall issue. For a local system, we usually have a

firewall to protect the computers inside from outside attacks. As we are using

CORBA and HOP cannot pass through firewalls for communication, we try

to use Java Servlets, XML and HTTP to simulate object method calls and

parameter transmissions in CORBA. By doing so, we can make our system to

be more scalable in the Internet with firewalls. This will be discussed in 6.3.

We then demonstrate how we enhance our query system by using the call-

back feature. We extend our mechanism to use XML and Servlets to perform

some interesting features with callback. Section 6.4 will cover this part.

The second problem is that when we need to combine information among

heterogeneous distributed environments, we do not have a generic method to

do so. Here, we use XML and Servlets again to connect our CORBA-based

Chapter 6 Building a Scalable Mediator-has ed Query System 76

system with DCOM-based system and JavaRMI-based system. This part will

be covered in section 6.5

By doing all this, finally, we develop a simple and generic way to achieve

a more scalable query system against firewalls and heterogeneous distributed

environments.

6.2 Introduction to Our Mediator-based Query

System

6.2.1 What is mediator?

The mediator is the middleware between the clients and database servers, which

can solve some deficiencies of traditional client/server systems [33, 34]. The

tight relation between client and server may lead to the following problems:

First, a server may be dedicated to some clients only; also, clients may need to

search a number of servers to obtain what they need, while those servers may be

heterogeneous. Mediator is one of the architectures that can meet the need to

make data widely available over a distributed environment. Mediators forward

client queries to appropriate data sources, and then integrate the answers from

different sources, and forward the integrated answer back to the clients. Figure

6.1 is an example.

There are several advantages of using a mediator system:

• Conceptually, all distributed data sources are integrated into a single com-

ponent even though the data sources are heterogeneous. Hence, clients

need not know about the location or other specific information of the data

sources.

Chapter 6 Building a Scalable Mediator-has ed Query System 77

User Interface User Interface • • • User Interface

^^^^^^^^、、、、、、、Query Result
Query 、、、、、、、
Statement ^^^^\、、、、、

, 、 一 、

Mediator
Query ^ ^ , 岸 • \ ^ 、 、 、 、
StatemepJ^^.^ ' ' ' Quer^ i \ Query Result

^ ^ Z Statement ！ Query Quelyv̂ 、、、、
Query f ! Result S t a t e m ^ i ^ 、 、 \

‘ Result ‘ r ^ 一
Database Database Database

Figure 6.1: Diagram of the mediator concept

• Client programs need not care about the changing of data source loca-

tions, and the addition, deletion, or even failure of some data sources.

• The mediators can help the users to choose the most appropriate data

sources, based on their queries submitted, to enrich the quality of infor-

mation retrieval.

6.2.2 The Architecture of our Mediator Query System

Here, we describe the basic architecture of our mediator query system. Our

mediator query system is mainly consisted of two components: Query Media-

tors and Database Query Engines. The design of the architecture of our query

system is shown in Figure 6.2. Similar to other mediator systems, the database

engines are waiting for the requests from the mediator components. Also the

mediator components are waiting for requests from the user interface and upon

reception will send these queries to the database engines.

Furthermore, mediators can also send queries to other mediators, which

Chapter 6 Building a Scalable Mediator-has ed Query System 78

1st Tier 2nd Tier 3rd Tier

门 l ^ ^ l j e 咖 I ： / Database 卜 Queries and—
： V ^
' / / ".::_:.:.:.:,:.:.:.:.:.:.:.:.:.:.:-:-:.:々 :.:-:.；̂!̂ / ——：̂ -̂v..-. n-th Tier

I 11/'- / I / Database ：

I——I r ： / Mediator ：一―——̂ :

I I “ iNi! Mediator I Layers of� Me^i^ators
丨 •丨： ： \ q u ^ / or Digital

• * l«qgWOOOwQwQwOOMwSOQOOQOOOOQ< \ • V I CI I I w O •••:,:,:.: Web-based Ul ： ； .
‘ • i � � ——一

Figure 6.2: The architecture of our query system

may further forward queries again to other database engines or mediators.

This mechanism forms an n-tier distributed system. As mediator components

have to make queries to both database engines and other mediators, we would

like those database engines and mediators to have the same generic interface.

In our system, we also use XML for the internal data representation and

storage because it works well in a heterogeneous environment. Hence, we use

XML-QL [35, 36] as the query language in the whole system, which is a query

language dedicated for XML data developed by AT&T. We use news data

obtained from local newspapers in our experiments. They are all converted to

XML format.

In the practical application of using mediator architecture in a distributed

environment, we need to handle some special cases. One is the infinite looping

problem: as a mediator may make queries to another mediator, the queries

may be transferred from one mediator to another. Eventually, there may be

a case that the mediators have formed a cyclic path and the first mediator is

Chapter 6 Building a Scalable Mediator-has ed Query System 79

being queried by itself. We need some methods to detect infinite looping. One

possible approach is to give each query a unique ID, and all mediators keep

track of all IDs of those queries that are already submitted but no replies have

been received yet. In case there is an upcoming query with the same ID as any

one entry in its record, we can tell that an infinite looping has occurred.

The second problem is to avoid having a long waiting time for users, which

may be caused by: the connection between some objects may have been broken,

or the number of layers that the queries need to traverse may be too many. For

the broken connection problem, we simply use a time-out parameter to specify

the maximum amount of time that we are willing to wait. For the too many

layers of query traversal problem, we simply use a maximum layer parameter

to specify the maximum number of layers that we want to go.

6.2.3 The IDL Design of the Mediator System

We are using CORBA for our system infrastructure. To design the interfaces

of different components, we use IDL. CORBA IDL is an interface definition

language structures for all concepts of the CORBA object model independent of

programming languages. Both Query Mediators and Query Database Engines

are implementing the same interface in order to make these two objects the

same in the view of the users. In our IDL, we only define a common interface

called QueryEngine. (See Figure 6.3)

We are supposed to provide to the QueryEngine a query statement, and it

will return to us the answer in String format, which is a XML expression. We

have defined only one simple method in! */K<HO,E>@E<，i.e. query (), which has

a XML-QL statement as its argument, and returns a XML string as the result.

This can be used in both Database Query Engines and Query Mediators, such

that programmer can notice no difference between making a query on them.

Chapter 6 Building a Scalable Mediator-has ed Query System 80

module QueryEngineApp

struct SysPara
I

long qid;
long ! J@D<FKJ；
I?FHJ! D8NC8O<H$!

}；

@EJ<H=8:<! * K<HO,E>@E<!

IJH@E> query(in SysPara para, in string QueryStatement)；

};}；

Figure 6.3: The IDL design of our system

Though they only share the same interface, the implementation of query ()

method would be different.

6.2.4 Components in the Query Mediator System

We rely on CORBA technology for building the system infrastructure because

CORBA provides a very good infrastructure for designing and implementing

applications in a distributed environment. In order to integrate our system

into the web environment, we also use Java Servlet technology. Java is used

for our implementation, because of its portability. As we have mentioned be-

fore, both the Query Database Engine class and the Query Mediator class are

implementing the QueryEngine interface. We have named these two classes as

QueryDB and QueryMed respectively.

A QueryDB object is directly connected to the data source. A caller can call

the method query (), and this method will take the query statements (XML-QL

statements in our implementation) as the argument and search for the XML

document specified, then it will return the result to the caller in a stream of

Chapter 6 Building a Scalable Mediator-has ed Query System 81

XML string. We have the QueryDBServer object as the server for creating a

QueryDB object, and registering it to the CORBA name service. The server is

also ready to set up multiple threads to support multiple requests on a QueryDB

object at a time. This server should be started at command prompt.

QueryMed object is the Query Mediator which forwards query statements to

other mediators or database engines. Its implementation is more complicated

than QueryDB. Other than the QueryEngine interface, QueryMed also imple-

ments another interface, QueryMediator, shown in Figure 6.4. Methods of this

QueryMediator interface cannot be called by other distributed objects, but can

only be called by Query Mediator Server objects, which contain the QueryMed

objects and located at the same host with them.

pub l ic i n t e r f a c e CjueryMediaLtor
{

pub l ic GJueryEngiiieApp. QueryEngine [] q e l i s t ()；

publ ic void qelist(QueryEngineApp.QueryEngine [] arg)；

publ ic void SLppeiid_resuit (S t r ing res)；

J

Figure 6.4: QueryMediator, another interface that QueryMed Class imple-
mented

In a QueryMed object, the attribute q e l i s t would store all the QueryDB

objects and QueryMed objects which it will further search for. And query()

will start a thread for each QueryDB or QueryMed object and the thread will

take the XML-QL query statement as argument and pass it to its correspond-

ing object in qelist by calling their query () method. Then, when all these

objects have returned the XML result back to the threads, they will call the

append—result () method of the parent QueryMed object, query () will further

organize and integrate the results into a single XML file stream and then return

Chapter 6 Building a Scalable Mediator-has ed Query System 97

it to the caller.

QueryMedServer object is similar to QueryDBServer object, which will cre-

ate a QueryMed object to handle queries. It will also bind the list of query

engines (QueryDB and QueryMed objects) from CORBA services and can set up

multiple threads to support multiple requests at the same time.

Both the database and mediator need to use a configuration file to configure

the objects before start up. The configuration file would contain the following

attributes: CORBA name server location, CORBA name server port, Ob-

ject name used for registering in CORBA name server, log file name, and for

QueryMed object, it also needs the list of QueryMed and QueryDB objects for

distributing the queries.

With SysPara object as the parameter of query (), we can detect infinite

loops and avoid long waiting. The qid in SysPara is a unique number to identify

a query. This number consists of the system time when the user generates the

query, the IP address of the user's machine, plus a four-byte random number.

As described before, when a mediator needs to call other mediators or database

engines, it has to pass this parameter to them by using the newly modified

query 0 method interface. The mediator itself will keep track of all IDs of

those queries that are already submitted but no replies yet. In case there is an

upcoming query with the same ID as any one entry in its record, we can tell

an infinite loop has occurred. When an infinite loop is detected, that query

mediator will simply do nothing and return an empty string to the caller.

maxlayer states the maximum layer that the query can travel onwards.

When that value is passed from one mediator to another mediator or database

engine, the value will decrease by one. The query will stop being forwarded

when the maxlayer value becomes zero, timeout states the maximum time in

milliseconds that a mediator or database engine can wait. When that value is

Chapter 6 Building a Scalable Mediator-has ed Query System 83

passed from one mediator to another mediator or database engine, the value

will be decreased by the estimated processing time of that mediator itself. The

estimated time is calculated by the statistic of previous connections and queries.

The query will stop being forwarded when that value becomes zero.

6.3 Helping the Mediator System to Expand

Across the Firewalls

We use CORBA to implement our mediator query system. Though CORBA is

a very good architecture for distributed systems, we still meet some difficulties

in achieving a real scalable query system, because the common use of firewalls

will block CORBA HOP communication. Here, we apply our mechanism with

using XML and Java Servlets to expand our system across firewalls.

6.3.1 Implementation

We now have two mediator query systems as above, and there is a firewall

separating them. To enable their communication, the QueryMed object must

be able to be called by an object (say, another mediator object) from another

enclave outside the firewall.

In our implementation, the QueryMed object that would be called by outside

is associated with a Servlet component. The Servlet component forwards the

requests from outside to the QueryMed object immediately, thus the QueryMed

object can accept HTTP requests from outside. We use TOMCAT Servlet

engine [37] in our implementation.

On the client side (caller side), we have created a new class, HttpGateway,

which is the Shadow Mediator object and is used to connect to the Servlet

Chapter 6 Building a Scalable Mediator-has ed Query System 84

component of the target mediator. HttpGateway class implements the same

interface, i.e. QueryEngine interface, as the QueryMed mediator object does.

Besides, HttpGateway also implements another interface, HttpQueryGateway,

for its special need. This interface is shown in Figure 6.5.

public interface HttpQueryGateway
{

public String medURLO ；
GK9C@:! LF@; medURL(String! 6 ；

J

-@>KH< 6.5: HttpQueryGateway, another interface that HttpGateway Class im-
plemented

The medURLO method in the interface is used to specify the URL, or the

IP address of the target mediator, which is located in another CORBA en-

clave. This methods should be invoked by its server only, which contains the

HttpGateway at the same host.

If a mediator wants to call another mediator located at another CORBA

enclave, it only needs to call the corresponding HttpGateway object. (Actually,

that mediator can treat that HttpGateway object as the real target mediator

object.) The HttpGateway object will convert all the necessary parameters

into XML format, and then send the request message to the target mediator

by HTTP. The target mediator has a Servlet component and will receive the

HTTP calls. It then converts the XML parameters back to their original format.

We can summarize the procedures for communication by referring to the

scenario shown in 6.6. The scenario is that Mediator Ml wants to make a query

to Servlet component SC of the mediator M2 in another CORBA enclave. The

procedures are:

Chapter 6 Building a Scalable Mediator-has ed Query System 85

Client Enclave k Server Enclave
n FIREWALLI “

III I II
web-based Ul XML+HTTP 1 = 1 , k f ” | |

O l H H j ； I m n sc HOP� M2

"mî ^ II I la I
I Database

: — : ^ Servers ‘ _ _

^~J 网 MOP � C!!!S [_ J ^ ^ 11

^ “ J Q 1
, ,4 + HttpGateway | | Servlet Database

| Med_ U Object U Component L J object

Figure 6.6: The architecture of our query system

1. Mediator Ml calls HttpGateway object H with ordinary HOP connection.

2. H converts the HOP calls to HTTP calls with parameters converted into

XML format.

3. The Servlet component, SC, of the target mediator gets the HTTP calls

from H and converts them back to ordinary calling to the target mediator,

M2.

4. M2 keeps on calling other Database object D, the result is returned to M2,

and M2 further returns it to SC.

5. SC converts the result in XML format, and returns it with HTTP calls to

H.

6. H returns result back to Mediator Ml by using ordinary HOP return

method.

Chapter 6 Building a Scalable Mediator-has ed Query System 86

<request>
cQueryEngine type^HiirterfaLce">

<query type="operation">
S G8H8D<J<H ref="in" order="l">

<SysPara>
<long name="qid">3984982418240339</long>
<long name=""tiineout">2000</long>
<short name="maxlayer">3</short>

</SysPara>
</paraineter>
<parameter ref="in" order="2">

S IJH@E> name="QueryStatement">
where <news>$B</news> in "database.xml"
<keyword>satellite</keyword> in $B
construct <result> $B </result>

</string>
%#G8H8D<J<HT !

</query>
</QueryEngine>

</request>

Figure 6.7: An sample request message in XML for calling a mediator object

We have described that parameters are converted to XML format for trans-

mission. Here shown in Figure 6.7 is a sample of such XML request messages

with parameters embedded. Figure 6.8 shows a typical response message in

XML format. We use tags to state the objects that are being called, the

method being invoked, the required parameters and their types, and the values

of those parameters.

We can see that both simple data types (like String type variable of XML

Query Statement) and complicated class objects (like the SysPara class of

other enhancement parameters) can be well represented by XML. Basically, it

is believed to be able to handle all kinds of data structures because of XML's

semi-structured nature.

Chapter 6 Building a Scalable Mediator-has ed Query System 87

<response>
<G)ueryEngiiie type="iiiterface">

< query 1:ype="opera"tion">
<return>

<string>
<news> <source>South China Morning Post
</source> <date> <day>15</day><month>4
</month> <year>2000</year> </date> <ti"tle>
Press warning appro! GH@8J<，! I8OI!)<@A@E>!
%#J@JC<'! %:FEJ<EJ')<@A! @E>! O<IJ<H;8O! ;<=<E;<;!
H<D8HBI! D8;<! 9O! I<E@FH SAR-based official
Wang Fengchao that local media should avoid
reporting separatist views. </corrtent> </news>

</string>
</return>

</query>
</QueryEngine>

</response>

Figure 6.8: An sample response message in XML returns from a mediator object

6.3.2 Across Heterogeneous Systems with DTD

To achieve a scalable system, we need to deal with the heterogeneity of different

local systems. We set up some standard formats for different systems to follow

in order to communicate with other systems. We need two standards, one is

structure of data, and another one is the interface of the system components. If

the structures of data cannot be compromised, we will have confusion of com-

munication. If the interfaces cannot be compromised, we even cannot invoke

other components of the system. Both important information can be obtained

from CORBA IDL files.

To reach a compromise on a standard for data, we use DTD as the grammar

book for XML data. This DTD is obtained from the corresponding IDL file

by our conversion schema. IDL gives an interface for programmer to develop

Chapter 6 Building a Scalable Mediator-has ed Query System 88

objects that have the same interface. But IDL itself is not enough, as for

parameters passing with using XML and HTTP, we also need to define the

parameter format in XML by DTD. The DTD for parameters is shown in

Figure 6.9. Hence, different systems can follow the DTD and understand the

parameter formats. By following all those mentioned, we can achieve a scalable

query without any firewalls or heterogeneous systems problems.

%！7!! -FH Request Messages -->
%！+3*5YPE request [

%！,0,1,25 QueryEngine (query)>
<!ATTLIST QueryEngine type (#CDATA)>

%！,0,1,25 query (parameter*)>
〈！(550.ST query type (#CDATA)>

%！,0,1,25! G8H8D<J<H (SysPara I string)>
<!ATTLIST parameter ref (#CDATA)>
<!ATTLIST parameter order (#CDATA)>

<!ELEMENT SysPara (long, long,short)>
<!ATTLIST SysPara name (#CDATA)>

%！,0,1,25! CFE> (#CDATA)>
<!ATTLIST long name (#CDATA)>

%！,0,1,25 short(#CDATA)>
<!ATTLIST short name (#CDATA)>

%！,0,1,25! IJH@E> (#CDATA)>
<!ATTLIST string name (#CDATA)>

]>

%！!!! -FH! 4<IGFEI<! 1<II8><I! !!'!
%！+3*5YPE response [

%！,0,1,25! 3K<HO,E>@E< (query)>
<!ATTLIST QueryEngine type (#CDATA)>

%！,0,1,25 query (return)>
<!ATTLIST query type (#CDATA)>

%！,0,1,25! H<JKHE! "IJH@E> '!
%！,0,1,25! IJH@E> (#CDATA)>

]>

Figure 6.9: The DTD for the parameter passing of simulated calls

Chapter 6 Building a Scalable Mediator-has ed Query System 89

module QueryEngineApp

struct SysPara

long qid;
long ! J@D<FKJ；
I?FHJ! D8NC8O<H；

I ‘

@@HJ<H=8:<! 3K<HO,E>@E<!

IJH@E> query(iii SysPara para, in string QueryStatement)；
LF@;! IK9I:H@9<"@E QueryEngine qe, in string topic);
void iiotify(in string! E<M*FEJ<EJ ；

} ; } ;

Figure 6.10: The IDL design of our system

6.4 Adding the Callback Feature to the Medi-

ator System

To better help the users in obtaining the information they need, one impor-

tant feature of modern information systems is allowing users to specify some

topics of information they want to subscribe. Whenever there is an update of

the specified information, the digital library can inform the subscribed users

immediately. This feature requires callbacks.

To allow callbacks, we add two methods to the QueryEngine interface. One

is subscribe 0 , which takes a string as parameter to specify the topic of

information that the caller wants to subscribe; and an object with QueryEngine

interface as another parameter to specify the object requests for callback. To

be generic, all user interface objects, mediator objects, shadow objects, and

database objects would implement this interface. Figure 6.10 shows the new

IDL file.

Chapter 6 Building a Scalable Mediator-has ed Query System 90

A conceptual diagram of our system mechanism for callbacks is shown in

Figure 6.11. And below is the step-by-step desciption of the procedures:

1. Mediator Ml calls HttpGateway object HI with ordinary HOP connection.

Ml also puts itself as one of the parameter in subscr ibe () method. (Same

invocation method as calling the target mediator for normal callback)

2. When HI observes that it is a callback invocation, it generates a Servlet

component (SCI), which is assoicated with Ml, immediately.

3. HI sends the HOP calls to HTTP calls with parameters converted into

XML format. The information of SCI will also be sent to the server side.

These information are embedded into the parameter tag as attributes.

4. When SC2 observes that it is a callback invocation, it generates a shadow

client object, H2 (shadow of Ml), immediately. H2 is initialized by the

information of SCI (such as IP address, port number).

5. SC2 will invoke M2，s subscr ibe() method substituting Ml by H2 in the

parameter position, such that M2 will invoke H2 when callback is needed.

6. Whenever there is a callback, M2 calls H2 n o t i f y () and H2 will send the

request to SCI. Finally, Ml n o t i f y () method will be invoked by SCI.

6.5 Connecting our CORBA System with Other

Environments

Merging only CORBA systems would be a great limitation for system inte-

gration. Here, we demostrate how we apply our mechanism to allow CORBA

objects, DCOM objects and Java RMI objects to be able to call each other.

Chapter 6 Building a Scalable Mediator-has ed Query System 91

Client Enclave | Server Enclave
Q FIREWALL ["一^

III I III
Web-based Ul | | msŝssssissm

Q J' XML+HTTP: subs^ibeQ 力 i SC2

顯一u^
^ _ S C 1 W XML+HTTP: no%() [H 2 V ^

I jdZ^atabase
I I Servers

\ i L —̂̂
, , , HttpGateway | | Servlet Database

_ Mediator ^ Object U Component [_ J object

Figure 6.11: Mechanism for supporting callbacks in our query system

Our target is to expand our system across heterogeneous distributed envi-

ronments. To make the whole system to be more generic, we carefully design

the MIDL of the DCOM system and interfaces of RMI components to be very

similar to our existing CORBA system, such that calling the DCOM mediators

or Java RMI mediators would have no difference as calling the CORBA medi-

ator objects. For simplicity of the example, we use the CORBA IDL in Figure

6.3 to develop our DCOM system and Java RMI system.

6.5.1 Our Query System in DCOM

Our DCOM system is developed on Windows 2000 operating systems, with

using Microsoft Visual J + + for implementation. Our implementation is based

on the MIDL file shown in Figure 6.12. From the MIDL, we can find out that

it is basically the same as the IDL of CORBA. One thing worth to point out

is query 0 , the return value is specified in the parenthesis with marking as

Chapter 6 Building a Scalable Mediator-has ed Query System 92

r e t v a l . It is because the default return type in DCOM object is HRESULT,

hence the real return value is defined inside the parenthesis.

import "oaidl . idl";
import "ocidl . idl";

typedef struct SysPara {

long qid;
long timeout;
short maxlayer;

}SysPara;

[uuid(AC6EDE04-ADF2-4324-BB8C-B350295BFD5E)]
iirterface ICOMQueryEngine : IDispatch {

HRESULT query([in] SysPara para,
[in] char * queryStmt
[out , retval] char **! HJE ；

}；

[uuid(AC6EDE03-ADF2-4324-BB8C-B350295BFD5E), version(l .O)]
library QuerySystemLib {

importlib("S"tdole32."tlb")；
importlib("st:dole2.tlb")；
[

miid(AC6EDE02-ADF2-4324-BB8C-B350295BFD5E)，
]
coclass QueryEngine

[default] interface ICOMCJueryEngine;
}；

>；

Figure 6.12: The MIDL file for the query system in DCOM enclave

6.5.2 Our Query System in Java RMI

Our Java RMI system is developed in the Unix environment, but it can be run

in any operating systems. Our implementation is based on the Java interface

definition files shown in Figure 6.13. They are basically the same as the IDL

Chapter 6 Building a Scalable Mediator-has ed Query System 108

of CORBA system.

One special thing to point out is the struct type of SysPara in IDL. As

Java interface definition does not support struct type, a new class of SysPara

is defined instead. But it is mapping to the same XML schema as struct type

in XML.

/* SysPara.Java */
public class SysPara implements java. io.Serializable^C

public long qid;
public long 1:111160111:;
public short ! D8NC8O<H；

GK9C@: SysPara0 {
qid=-l；
J@D<FKJ&!C；
D8NC8O<H&!C；

}
}

/* QueryEngine.j ava */
import j ! 8L8"HD@"4<DFJ<；
@DGFHJ! A8L<KHD@! "4<DFJ<,N:<GJ@FE$!

GK9C@:! @EJ<H=8:<! ;K<HO,E>@E<! <NJ<E;I! 4<DFJ<!
P!

String query(SysPara para, String queryStmt)
throws RemoteException;

>

Figure 6.13: The DTD for the parameter passing of simulated calls

6.5.3 Binding Heterogeneous Systems

With the interface definition files of DCOM system and Java RMI, the same

XML schema can be mapped from those interfaces. Hence, the mediator objects

Chapter 6 Building a Scalable Mediator-has ed Query System 109

of all systems would have the same interface for calling, hence the scalability

of the binded system is greatly increased. Figure 6.14 shows how the mediator

objects in heterogenous distributed environments communicate with objects

in other enclaves. A common XML schema is the key part to achieve this

communication.

DCOM Enclave CORBA Enclave

III W 11

I (Hjr i
• III ^
• S e r v l e t 。 [_ J ^ ^ a v a R M I

Component ^ py：-；-；-：-；-：-：-：,,.,̂/ / F n r l a V P

^ idl：̂ M (Wl^^f^n/
()HttpGateway Database / i Iji
V ^ Object I _ J object L — „

Figure 6.14: Query system in heterogeneous environments with our mechanism

In fact, this is for the demostration of a generic query system across hetero-

geneous distributed systems with applying our mechanism in it. By matching

the newly designed interface definition with the existing XML schema, a highly

generic and scalable mediator-based query system is achieved. In normal way

of system integration, we use the interface definition files to generate the XML

schema for data transmission, but not using the XML schema to design the

interface definition.

