
Managing Service Dependency for Cloud
Reliability: The Industrial Practice

Tianyi Yang∗, Baitong Li∗, Jiacheng Shen∗, Yuxin Su†, Yongqiang Yang‡, and Michael R. Lyu∗
∗Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR.

Email: {tyyang, btli, jcshen, lyu}@cse.cuhk.edu.hk
†School of Software Engineering, Sun Yat-Sen Univeristy, Zhuhai, China. Email: suyx35@mail.sysu.edu.cn

‡Computing and Networking Innovation Lab, Huawei Cloud, Shenzhen, China. Email: yangyongqiang@huawei.com

Abstract—Interactions between cloud services result in service
dependencies. Evaluating and managing the cascading impacts
caused by service dependencies is critical to the reliability of
cloud systems. This paper summarizes the dependency types in
cloud systems and demonstrates the design of the Dependency
Management System (DMS), a platform for managing the service
dependencies in the production cloud system. DMS features full-
lifecycle support for service reliability (i.e., initial service deploy-
ment, service upgrade, proactive architectural optimization, and
reactive failure mitigation) and refined characterization of the
intensity of dependencies.

Index Terms—cloud computing, software reliability, AIOps,
service dependency

I. BACKGROUND AND MOTIVATION

Modern cloud systems, including Huawei Cloud, are often

constructed from a complex and large-scale hierarchy of dis-

tributed software modules.The common practice is to develop

and deploy these software modules as cloud microservices
that collectively comprise multiple cloud services [1], e.g.,

resource allocation, virtual network management, and virtual

machine management. Different microservices serve different

functionalities. The microservices communicate through well-

defined APIs and respond to external requests as a whole

through service invocations.

Such an architecture benefits scalability, robustness, and

agility but also complicates system reliability engineering.

However, the interactions between services cause dependen-

cies, resulting in the cascading impact on the system. Despite

various fault-tolerance mechanisms introduced, it is still possi-

ble for minor anomalies to magnify their impacts and escalate

into system outages. When a cloud service or microservice

enters an anomalous status, the anomaly can cascadingly prop-

agate through the service-calling structure, causing a degraded

user experience or even a service outage [2].

The cascading impacts hinder system operation and mainte-

nance, deteriorating customer satisfaction. For instance, during

the initial service deployment or service upgrade, all the

services it relies on should be ready. During the failure

mitigation and recovery, the cascading impact will slow the

This work was supported by Key-Area Research and Development Program
of Guangdong Province (No. 2020B010165002), Key Program of Fundamen-
tal Research from Shenzhen Science and Technology Innovation Commission
(No. JCYJ20200109113403826), and the Research Grants Council of the
Hong Kong Special Administrative Region, China (CUHK 14210920).

Engineer Specification

Configuration Files

OpenTracing

Manual Update

Configuration Parser

AID

Data Source
Dependency Analysis

Initial Service
Deployment

Service
Upgrade

Architectural
Optimization

Failure
Mitigation

Application Scenarios

Fig. 1. The architecture of DMS.

recovery. Therefore, evaluating and managing the cascading

impacts caused by service dependencies is crucial.

II. KEY INNOVATIONS

This paper classifies the dependency types in cloud systems

and demonstrates the design of the Dependency Management

System (DMS), an end-to-end platform for managing the ser-

vice dependencies in the production cloud system. DMS sup-

ports the full-lifecycle support for service reliability, i.e., initial

service deployment, service upgrade, proactive architectural

optimization, and reactive failure mitigation. DMS integrates

our previous study on the aggregated intensity of service

dependency [2] to characterize the degree of cascading impacts

and provides a refined characterization of dependencies. In

addition, DMS also features automatic configuration parsing

and multi-source dependency fusion for practicality.

III. DEPENDENCY TYPES

The dependency relations in a cloud system are diverse.

In Huawei Cloud, we categorize the dependencies according

to the architectural level, i.e., service-level dependencies and

microservice-level dependencies.

1) Service-level dependency: If the dependency is between

two cloud services, we call it a service-level dependency.

Service-level dependency can be further divided into the

following three subtypes, i.e., deployment dependency, run-

time dependency, and operational dependency.

Deployment dependency indicates dependency during the

deployment of a cloud service. The deployment phase may

rely on some cloud services to create and configure resources.

For example, the elastic computing service depends on the

API management service to register public APIs. The elastic

computing service also depends on the block storage service

to allocate the required resource.

67

2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)

978-1-6654-7679-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ISSREW55968.2022.00041

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
So

ft
w

ar
e

Re
lia

bi
lit

y
En

gi
ne

er
in

g
W

or
ks

ho
ps

 (I
SS

RE
W

) |
 9

78
-1

-6
65

4-
76

79
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
SR

EW
55

96
8.

20
22

.0
00

41

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 16,2023 at 02:52:15 UTC from IEEE Xplore. Restrictions apply.

Service run-time dependency indicates the dependency

required for the cloud service to run normally. When a cloud

service is running, it may rely on other cloud services. For

instance, the relational database service runs on the virtual

machines created and managed by the elastic computing

service. Many services (e.g., the Kubernetes service) require

the API management service to expose APIs to customers.

The distinction between deployment dependency and run-time

dependency lies in the timing of the impact. If the failure of

the dependent service only impacts the deployment phase, the

dependency is a deployment dependency. If the impact of the

failure affects the run-time functionality, the dependency is a

run-time dependency.

Operational dependency is the dependency required by the

manual and automatic operations. For example, the elastic

computing service relies on the cloud monitoring service to

monitor the entire cloud system. This subtype of dependency

usually indicates weak cascading impacts because the core

functionalities will not be affected.

2) Microservice-level dependency: Apart from the depen-

dency between cloud services, the microservices of one

cloud service also closely interact with each other, which

causes microservice-level dependency relations. We divide the

microservice-level dependency into composed-of dependency,

run-on dependency, and microservice run-time dependency.

The dependency relation between a cloud service and the

microservices that comprise it is the composed-of dependency.

The composed-of-dependency indicates the static architecture

of the cloud system. The dependency relation between a

microservice’s instance and the underlying run-time envi-

ronments (e.g., virtual machine, container) is the run-on
dependency. The run-on dependency reflects the run-time

architecture of the cloud system. Lastly, similar to the service

run-time dependency, the microservice run-time dependency
is the dependency from the caller microservice to the callee

microservice when running. The microservice-level dependen-

cies complement the service-level dependencies so that the

granularity of dependency management can be refined.

IV. DEPENDENCY MANAGEMENT SYSTEM

This section elaborates on the architecture of DMS demon-

strated in Figure 1. We will introduce the data sources, the

dependency analysis, and the application scenarios of DMS.

A. Data Source and Dependency Analysis

The dependency information is collected from different

sources. Distributed tracing helps automatically acquire the

service run-time dependency, microservice run-time depen-

dency, and operational dependency. By parsing the configu-

ration files and querying the service orchestrator, DMS can

obtain the composed-of dependency and run-on dependency.

The engineers must report the deployment dependency of the

cloud services within their duties. Lastly, DMS fuses all the

dependencies for subsequent applications.

Specifically, for the microservice run-time dependency, the

DMS system further analyses the intensity of dependency. Our

previous work, AID [2], achieves the analysis of intensity.

Specifically, given the run-time traces, AID represents the

status of each cloud service with a multivariate time series

aggregated from the traces. AID calculates the similarities

between the statuses of the caller and the callee microservices.

Finally, AID aggregates the similarities to produce a unified

value as the intensity of the dependency. The reliability

engineers will categorize the intensity into different levels by

referring to the output of AID and their domain knowledge.

B. Application Scenarios

In Huawei Cloud, DMS serves hundreds of cloud services.

DMS provides the engineers with full-lifecycle service relia-

bility assistance based on the refined dependency relations.

1) Initial Service Deployment: According to the configured

service type and dependency type, etc., DMS can automati-

cally discriminate between the compulsory and optional cloud

services. Engineers can utilize such information to assure the

correct deployment of the new service.

2) Service Upgrade: During the service upgrade, the sys-

tem is more vulnerable to new errors introduced by new

versions. Hence, avoidance of multi-point failure becomes

crucial. Before upgrading a microservice, the DMS system

will check the status of the cloud services and microservices

it depends on. This application scenario helps avert multi-point

failures affecting changes.

3) Architectural Optimization: Service failures are in-

evitable, but DMS can prevent the failures from affecting

other services by optimizing improper dependencies. DMS

assists in the discovery of unnecessary strong dependency

on key cloud services. If a critical service or microservice

depends on another service with high intensity, DMS will

remind the engineers to check the necessity of the dependency.

If dependencies are not required, the development team must

reduce the intensity of dependency to improve the robustness

of crucial cloud services. Since the deployment of DMS, more

than ten unnecessary dependencies have been discovered by

DMS and optimized by the development team.

4) Failure Mitigation: DMS also assists in the mitigation

of cascading failures. During a cascading failure, DMS can

provide the latest intensity of dependency to On-Call Engi-

neers (OCEs) so as to diagnose service failures efficiently. In

addition, when a cascading failure occurs, OCEs can limit the

traffic to critical cloud services and recover the dependencies

marked as “strong” first. By doing so, the service disruption

can get under control. Once a critical failure occurs, the

dependencies marked as “strong” will be treated with high

priority. The failure mitigation records show that DMS has

reduced the time for system recovery by over 60%.

REFERENCES

[1] AWS, “Aws well-architected framework,” 2020. [Online]. Available:
https://docs.aws.amazon.com/wellarchitected/latest

[2] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R. Lyu, “AID: efficient
prediction of aggregated intensity of dependency in large-scale cloud
systems,” in 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2021,November 15-19, 2021. IEEE, 2021.

68

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 16,2023 at 02:52:15 UTC from IEEE Xplore. Restrictions apply.

