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Abstract 

In this paper; we propose the concept that faults in 
telecommunications networks ofen manifest themselves 
as reductions in service quality, which can be addressed 
by using the notion of Quality of Service (QoS). In wire- 
less ATM networks, the ability to provide QoS guarantees 
for  high priority trafJic in the presence of noise or faults is 
of utmost importance. Moreover; there is a need for  rene- 
gotiating existing QoS on an established connection, since 
the characteristics of a wireless link may well change dur- 
ing the lifetime of a connection due to mobile hosts’ move- 
ments or  extemal interference. In this paper we describe 
a general QoS strategy as a fault tolerance mechanism, 
and address the problems associated with providing QoS 
over a wireless link. We present a QoS scheme with rene- 
gotiation capability, define an API (application program- 
ming interface) for the access to this scheme and describe 
our implementation for this QoS API on the SWAN system, 
a wireless ATM network, and summarize its performance 
using measurements obtained from a series of experiments 
based on different fault scenarios. 

1 Introduction 
Conventional fault tolerance schemes in treating com- 

puter or network failures rely on the design and allocation 
of protective redundancies [IO]. In typical communica- 
tion networks, the protective redundancies can be applied 
in multiple levels of system components, including pro- 
cessors, memory units, disks, communication links, data 
streams, transmission time frames, and software codes 161. 
For example, a number of redundant disk array architec- 
tures (RAID) are proposed in [8], on which a clustered 
architecture can be built [7]. On-line failure recovery al- 
gorithms can allow a fast recovery process by either ab- 
sorbing the disk bandwidth not consumed by the user pro- 
cesses [5 ] ,  or by utilizing the inherent redundancy in video 
streams of the application [14]. 

We consider fault tolerance in a system of communi- 
cating processors that work together to provide some ser- 

vice. An example of such a system might be a cluster of 
workstations providing web service to a client. The client 
requests a page and the server machines respond by de- 
livering that page. A further example is a video delivery 
system where a server delivers a video stream to a client 
connected to the network. In both scenarios a fault might 
be a service interruption due to network component fail- 
ures or machine crashes. 

Traditional fault tolerance has studied the problem of 
dealing with service outages because components fail in a 
system. Techniques involve replacing the faulty element, 
either using a hot standby or a warm standby or even ac- 
cepting some downtime and repairing the unit off line. Ex- 
isting traffic may also be rerouted via another redundant 
path from the source to its destination by routing algo- 
rithms [2, 121. 

In telecommunications networks, fault tolerance has 
progressed to considering the recovery of failures such as 
reductions in the speed or capacity of a service. For in- 
stance, a telecom switch might reduce the maximum num- 
ber of calls that can be handled if a processor failure is en- 
countered. Thus faults, rather than manifesting themselves 
as complete service failures, often manifest themselves as 
reductions in service quality such as reduced bandwidth or 
increased latency, e.g., due to rerouting. These problems 
can be addressed in the context of communications net- 
works by using the notion of Quality of Service (QoS) [3]. 

We view QoS as a new scheme in providing fault tol- 
erance to prevent service interruptions in a proactive fash- 
ion: In the presence of faults, services that need a level of 
resource (e.g., bandwidth) will be guaranteed to perform 
satisfactorily when there is enough of the resource to be 
shared, and when it is scarce, negotiation with the service 
provider will take place to assure a lower, but deliverable 
level of service. 

Wireless networks pose a more demanding set of chal- 
lenges than in wired networks. Due to movement of mo- 
biles, a fault-tolerant protocol for maintaining location di- 
rectories in mobile networks is needed [9]. Furthermore, 
low signal-to-noise (SNR) ratio makes wireless link er- 
rors a norm rather than an exception in the system. The 
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data rate does not drop immediately to zero; instead, it 
slowly reduces as noise increases. Thus before completely 
switching to a redundant channel on a faulty link, the link 
errors can be gracefully tolerated by the provisioning and 
renegotiation of QoS in a (high) service level, in addi- 
tion to existing recovery techniques using error correcting 
codes or retransmission in a (low) physical level. 

In this paper we propose an extension to the QoS con- 
cept of “renegotiation” which can be used to reestablish 
a level of reliability for a system. We explain how such 
a system works using a wireless network data link as an 
example. The approach allows applications to specify a 
desired quality over the link. If a failure occurs and the 
available bandwidth decreases, the system renegotiates the 
bandwidth requirements. In this way the application is 
knowledgeable about what level of service is available and 
may be able to change what it does accordingly. 

This concept allows a system to tolerate failures in 
parts, and makes it a system for recovering in a graceful 
way transparent to its users. The remainder of this paper 
is organized as follows: In Section 2 we discuss a general 
QoS approach and its constraints, while in Section 3 we 
describe a wireless ATM network environment used as a 
testbed for our QoS design, implementation, and experi- 
mentation. Section 4 lays out the architectural policy and 
mechanism for our QoS scheme, and presents the imple- 
mentation in detail. In Section 5 a number of fault tolerant 
experiments are conducted to verify our scheme and com- 
pare it with a traditional approach without QoS. Conclu- 
sions are drawn in Section 6. 

2 The QoS Approach 
The need to make computer communication have more 

deterministic behavior is the origin of work on QoS. Tra- 
ditional packet networks provide a single service model 
that makes a best-effort attempt to deliver data packets. 
Bandwidth is shared out amongst competing senders on 
an as-needed basis. Packets are not guaranteed to take the 
same route or experience the same delay in getting to their 
destination. This is not important for traditional computer 
applications, as long as the overall delays are not exces- 
sive. On the other hand, in circuit switched networks, the 
service model is highly predictable, with a fixed slot of 
bandwidth allocated for use by a sender in each time pe- 
riod, and with equal delivery times for each slot. This has 
proved useful for transferring digitized voice at the fixed 
rate of 64 Kbps. The desire to operate just a single network 
for both computer and telephony traffic sparked work on 
integrated services networks. In addition to these service 
categories, such a network should also support multimedia 
services in the form of packet audiolvideo, and real-time 
services like process control which have strict communi- 

cation delay constraints. Multimedia services typically de- 
mand high bandwidths and are sensitive to delay and vari- 
ation in delay, but may be prepared to tolerate some data 
loss. For example, dropping one image from a video se- 
quence at 30 imageskecond may not be noticeable. Real- 
time applications usually have low bandwidth require- 
ments, but demand predictable delay and zero loss. Sup- 
port for such diverse requirements is expressed in terms of 
the particular QoS expected from the network. 

The challenge of designing a network to address these 
issues led to the development of asynchronous transfer 
mode (ATM), ATM transports data in small, fixed size 
packets called cells. Small cells have the benefit of in- 
creasing scheduling granularity and hence providing more 
control over queueing delays. This avoids problems such 
as a delay sensitive audio packet getting delayed behind a 
large file transfer packet. Having a fixed cell size allows 
the network design to be more deterministic. ATM carries 
cells across the network on connections known as virtual 
circuits (VC). In essence, aVC is just a way of maintaining 
state for a particular flow of data at each stage in its path 
from source to destination. A key element of this state in- 
formation relates to how the cells for a VC are processed 
in order to satisfy its QoS requirements. Hence, in ATM 
the concept of setting up a VC with an associated QoS ex- 
ists. Setting up a VC involves taking information on the 
traffic and expected performance and negotiating along a 
path in order to reserve the necessary resources, such as 
switch buffer space. Performance information describes 
any requirements on delay and delay variation for cells in 
a VC. Using this information the network checks to see if 
the necessary resources are available. If they are, then the 
VC is set up, otherwise the request is denied. This process 
is known as admission control. Once admitted, the net- 
work continually checks that the VC sends data according 
to its allowance, known as policing. It also schedules cells 
at the switches in order to achieve the agreed QoS. 

Our work is motivated by the rising popularity of wire- 
less data networking and the desire for fault tolerant com- 
munications. Wireless networking is inherently unreli- 
able. Various forms of interference on the wireless link 
result in changing bandwidth availability and low effec- 
tive bandwidths due to high error rates. These problems 
are exacerbated as users move around. Faults of this kind 
require a fresh look at how such networks can be used to 
support applications which demand some degree of pre- 
dictability. We adopt the approach of ATM, in which QoS 
is used to form a service contract between applications and 
the network. We build on that work by recognizing that an 
unreliable wireless network demands a more dynamic ap- 
proach to resource usage. Many applications can deal with 
varying bandwidth availability once provided with suffi- 
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cient knowledge of the resource climate. Typical exam- 
ples include audio and video applications which can alter 
their rate or encoding to match the available bandwidth or 
deal with different error rates. Our contribution is a QoS 
scheme which builds on this notion of adaptation by pro- 
viding explicit renegotiation. This is similar in spirit to the 
feedback mechanisms for non real-time traffic in ATM, but 
differs in that we aim to provide feedback right up to the 
application level, not just to the sending host [I 11. Thus 
we incorporate renegotiation as a key part of our QoS API. 

Four elements compose our approach. First, we engage 
the support for multiple VCs over a wireless channel, and 
the usage of a set of per-VC QoS parameters to influence 
bandwidth allocation. Second, we define a group of in- 
terface routines for opening, accessing and closing VCs, 
as well as being able to assign QoS parameters. These 
parameters include a description of the traffic type as con- 
stant bit-rate (CBR), variable bit-rate (VBR) or available 
bit-rate (ABR). CBR and VBR applications have real-time 
requirements, e.g. 64 Kbps speech and compressed video. 
ABR is used for more traditional applications which can 
accept much more variability in service. Consistent with 
our emphasis on adaptation, we accept values for preferred 
and minimum bandwidths for a VC. Third, we design a 
centralized QoS manager to coordinate the access to a 
wireless channel. Using parameters supplied via the API, 
the manager performs admission control, monitors per- 
formance on the channel and initiates renegotiation when 
necessary. Fourth, for each VC, the application provides 
a callback routine which is used by the QoS manager to 
provide feedback as part of renegotiation. 

The QoS scheme described above is successfully im- 
plemented in a wireless ATM network: SWAN [l]. 

3 The SWAN Environment 

computing. SWAN consists of mobile units which are usu- 
ally laptops, and base stations which are connected to a 
backbone network [4]. Both the base stations and laptops 
are equipped with a radio interface known as the FAWN 
(Flexible Adapter for Wireless Networking) [ 131 card that 
allows them to communicate with each other wirelessly. 
Each base station has a range of 100 feet inside a build- 
ing, providing access to a local area network for mobiles 
in their vicinity. As well as communicating with the base 
stations the mobiles can communicate with each other, al- 
lowing them to create ad-hoc networks that continually 
change as the mobiles move around. 

The FAWN card provides a very programmable plat- 
form on which to develop interface software, which is im- 
portant in a testbed. FAWN uses a 2.4 GHz ISM band 
radio modem whose raw bit rate is 624 Kbps which is di- 
vided between incoming and outgoing connections. The 
modem has a raw error rate of 1 x for a signal 
strength of -77 dBm which translates to a packet loss 
of one in 1500 for our 64 byte packets. The FAWN 
adapter has four 64 byte packet buffers implemented in 
hardware to store buffer complete packets and therefore 
improve performance. The FAWN card is controlled by 
an ARM610 processor which takes the packets from the 
buffers, processes them and makes them available to a host 
computer via a PCMCIA interface. 

A simplified diagram of SWAN’S channel access 
scheme is shown in Fig. 2. A TDD (Time Division Du- 
plex) scheme is used to share the bandwidth between the 
base station and the mobile host. The traffic of each direc- 
tion alternatively transmits a data burst of 10 ATM cells at 
a time and then switches to receiving mode for data from 
the other direction. Due to the overhead introduced by the 
TDD scheme and the ATM cell structure used in SWAN, 
the available bandwidth is 240 Kbps in each direction. 

UPSTREAM DOWNSTREAM UPSTREAM DOWNSTREAM 

Wld. h A N  FM 

1 ms (Ium-around time) 

Fig. 2: TDD scheme of SWAN 
Wlnd H M  

Several other wireless communication devices are 
available for the local area network market (e.g. Wave- 
LAN, RangeLAN), and most of them are based on or akin 
to the IEEE 802.11 or CSMNCA (Carrier Sense Multi- 
ple Access with Collision Avoidance) schemes. Though 
a CSMNCA scheme simplifies the hardware implementa- 
tion and provides reasonable efficiency in supporting data- 
gram traffic, its random access characteristic cannot pro- 

h#eps can mom nelv-n 

(small. s mple, 101. cost) 

Fig. 1: SWAN system architecture 

The SWAN (Seamless Wireless ATM Network) sys- 
tem, shown in Fig. 1, is a testbed for wireless networked 
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vide multimedia applications with a predictable bandwidth 
available on the link. The SWAN system, as described 
previously, was designed with ATh4 traffic in mind. Its 
TDD scheme assures a constant bandwidth can be granted, 
at least when the channel condition is stable. Therefore, 
SWAN provides a good platform for realizing our pro- 
posed QoS scheme. 

Unfortunately, despite the direct support of ATh4 cells 
and TDD MAC scheme, challenges still exist in SWAN 
when considering the support of multimedia traffic in a 
wireless, mobile environment. These challenges include 
(1) low radio bandwidth; (2) increasing likelihood of erro- 
neous packets due to lower SNR; (3) lack of a mechanism 
to support traffic of different classes and (4) lack of an 
interface to provide link QoS information to upper layer 
applications. We will address our approach to these prob- 
lems when describing our QoS implementation in the next 
section. 

4 System Implementation 
To achieve QoS renegotiation in a unreliable wireless 

environment, We design a mechanism that exists in the 
operating system level (the interface at which the appli- 
cations request resources) for an application to request a 
grade of service for a network connection and for the ap- 
plication to be informed about changes on that connec- 
tion. In this section, we describe our approach in detail 
from two aspects: (1) the policy, in which we determine 
how an application can specify its QoS requirements and 
how it can be notified of failures so it may adapt to a new 
environment; (2) the mechanism, where we addresse the 
realization of the policy. 

4.1 Policy 
Our goal is to use existing interfaces and facilities pro- 

vided by widely accepted operating systems, instead of 
creating an ad-hoc system or proposing a new, proprietary 
interface. Therefore we chose Linux, a UNIX-like sys- 
tem, to develop our work. Also, since SWAN is designed 
to provide ATM connectivity, we consider the QoS nego- 
tiation on a per-VC basis. In our approach, the VCs are 
instantiated as UNIX devices, such that one may use the 
open ( system call to obtain a VC and the close ( ) 
system call to release the VC. During the connection, data 
is sent and received via write ( ) and read ( ) system 
calls. 

As soon as a circuit is activated (opened), it is given a 
default service grade of unspecified bit rate (UBR) service. 
This allows applications that do not have QoS demands to 
receive the best service effort from the system. If an appli- 
cation does wish to specify its bandwidth need, it does so 
with one or more ioctl( ) system calls ( U 0  control). 

By performing these ioctl ( ) operations, an applica- 

tion may select ABR, CBR, or UBR services, and specify 
the associated QoS parameters. Currently, two bandwidth 
parameters (minimum and preferred) have been consid- 
ered. Supporting these two bandwidth parameters allows 
an application to specify a range of acceptable bandwidth 
so that it doesn’t get informed each time when the sup- 
ported bandwidth changes. 

The way an application should be notified of QoS fail- 
ure is also considered. Using existing UNIX facilities, the 
signal mechanism allows the operating system to send a 
“QoS failure” message to the application. The applica- 
tion uses the signal ( ) system call to setup an exception 
handler to process this QoS failure event. A similar pol- 
icy exists for the reverse operation, where an application 
receives a signal when the service failure is removed and 
returns to its original performance. 

4.2 Mechanism 
In this section we describe in detail the realization for 

the above policy. We first introduce the usage and func- 
tionality of this API, by which the applications specify the 
QoS parameters associated with the VC. Then we draw the 
core of the implementation. 

4.2.1 The API The first aspect of creating the de- 
sired interface is to provide a device driver for the VCs 
and the associated API to manage them. The VCs are 
implemented as devices within the UNIX file systems to 
which the standard system calls can be applied. The entire 
API of our implementation is shown in Fig. 3. Since it is 
implemented using standard UNIX I/O operations, a user 
program can manipulate its connection just as an ordinary 
character device. 

The QoS requests are made through the ioctl ( ) sys- 
tem call with the application specifying parameters for the 
type of service, minimum or preferred bandwidth, etc. The 
parameters we have implemented for the QoS negotiation 
are listed in Table 1. The default values shown in the table 
indicate that an UBR service is assumed to reserve the sys- 
tem minimum bandwidth, which is zero, if the application 
does not make any QoS request. 

[ QOSREQUEST 1 ARGUMENT I DEFAULT 
I VC-SERVICE I ABR,CBR,UBR I UBR 

Table 1 : ioctl(): parameters 

With this API, the application can be easily pro- 
grammed using a traditional cliendserver model: (1) the 
client and the server first request a VC using open ( ) . (2) 
If the VC can be opened successfully, the required QoS 
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int open(char *vc-dev-name, int mode); 

int close(int vc-des); 

int read(int vc-des, char *buff, int n); 

int write(int vc-des, char *buff. int n); 

int ioctl(int vc-des, int qos-request, long arg); 

int signal(int QoS-SIGNAL, void *qos-handler(int)); 

/ * acquire a VC, return -1 if requested VC is in use * /  

/* release a VC * 

* read n bytes from a VC * 

P write n bytes to a VC * 

/* request, negotiate a QoS attribute of a VC * /  

/ * set up a handler for QoS changes * / 

Fig. 3: List of the API 

can be provided by using i o c  t 1 ( ) with parameter values 
based on the traffic characteristic. (3) Data is transmitted 
using read ( ) and w r i t e  ( ) . (4) When the program ter- 
minates, VCs should be released by using c lose  ( ) . The 
system routine s i g n a l  ( ) listed in Fig. 3 is not really 
a QoS operation; instead it is used by the application to 
setup its own QoS interrupt handler which can renegotiate 
new QoS agreements when the original service require- 
ments cannot be met. 

I -t I I 

FA 

Fig. 4: The architecture for multiple queues 
scheme 

4.2.2 Multiple Queues Scheme Fig. 4 illustrates 
the block diagram that shows the relationship between 
user applications and FAWN hardware, as well as the 
interaction among each module. On the top, applica- 
tions in user level communicate with the QoS mechanism 
through a set of interface routines (the API). A group of 
priority queues are dynamically allocated in the kernel 
space. Each of these queues corresponds to an individ- 
ual VC. Once a VC is opened and its QoS is negotiated 
through ioc tl  ( ) , which interacts with the QoS manager 
(qosmgr ( ) ) for service and bandwidth specification, 

the QoS manager translates the requested service type and 
bandwidth in terms of time slots for carrying data cells in 
each data burst. This information will be kept in a QoS ta- 
ble (qos-table ( ) ) that will later be referred by the VC 
scheduler (vc-schedule ( ) ). The QoS manager is also 
responsible for monitoring the overall link quality through 
the FAWN hardware, and providing feedback directly to 
application when the requested QoS can not be satisfied or 
when a better service is available. This feedback is imple- 
mented through the UNIX signal, as described in Section 
4.2.1. 

The VC scheduler reads packets from those activated 
queues and sends them to the FAWN hardware for trans- 
mission. It serves these multiple queues in a “round-robin” 
fashion which allows a control of QoS granularity such 
that one circuit will not dominate the data path with a large 
chunk of data. 

5 System Functions 
Currently, two major functions provided in this system 

are bandwidth reservation and QoS renegotiation. They 
are the keys to providing multimedia traffic support in 
wireless networks. 

5.1 Bandwidth Reservation 
In SWAN, the radio channel in use is shared between 

a base station and a mobile host in a TDD fashion. Thus 
the allocated bandwidth can be represented in terms of the 
number of time slots devoted to a connection. For exam- 
ple, a connection granted with one slot in each data burst 
is served at the bit rate of 24 Kbps (240 Kbps/ 10 slots) in 
FAWN’S TDD scheme. 

During bandwidth reservation, the QoS manager is re- 
sponsible for converting the bandwidth requirements into 
the necessary number of time slots for transmitting the 
data to meet the bandwidth guarantees. If the time slots 
cannot be allocated, the bandwidth request will be rejected 
by the QoS manager. UBR service is provided by placing 
data in slots that are unreserved or unused by CBWABR 
circuits. In addition to providing service to queues of dif- 
ferent QoS requirements, a starvation prevention scheme 
is also utilized to prevent starvation on UBR service. In 
this scheme, at least one data slot is reserved and shared 
among all UBR queues in a “round-robin” fashion so no 
UBR connection will be starved even if some of them are 
heavily loaded. This avoids any dominate usage of one 
application over the bandwidth of the wireless link. 

5.2 QoS Renegotiation 
In a wired network, QoS is usually guaranteed for the 

life time of each connection, In a wireless network with 
host mobility, however, such a guarantee is not realistic 
due to distance, noise or channel fading, etc. On the other 
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hand, many multimedia applications have used algorithms 
that can adapt to bandwidths that users specify. For in- 
stance, several video transmission schemes (nv, vic, etc.) 
can adjust their resolution and frame rates to fit the band- 
width parameters that they are given; several audio appli- 
cations may adjust their sampling rate and level of quan- 
tization based on the channel bandwidth. Such properties 
have not been utilized for a self-adjusting multimedia ap- 
plication because of the lack of QoS feedback from the 
traditional packet network like the Internet, or even some 
ATM networks. 

In our work, the signaling mechanism we propose in- 
forms the applications of the changes in QoS. The applica- 
tions can benefit from this mechanism by simply setting up 
interrupt handling routines so that when they are notified 
of a change in QoS, they can adjust their data transmission 
algorithm based on the current QoS information. This sig- 
naling mechanism was implemented in the QoS manager 
which has a direct access to the FAWN hardware to learn 
about the current status of radio link. For example, when 
the QoS manager detects the decrease in radio bandwidth, 
it first reduces the service to the UBR traffic; If such a re- 
duction is not sufficient to guarantee the requested band- 
width for all ABR and CBR traffics, it then reduces the 
ABWCBR service rate to its minimum requirement. Fi- 
nally if the bandwidth is still not sufficient, the QoS man- 
ager will prorate the assigned bandwidth on all CBR and 
ABR connections and signal the corresponding handlers 
created by the applications to notify the change of QoS. 
Upon receiving the signal from the QoS manager, the han- 
dler in each application can decide whether to accept the 
newly assigned QoS, to terminate the connection, or to 
renegotiate a new QoS through the provided API. 

6 Fault Tolerant Experiments and Analyses 
We conducted two experimental studies to verify the 

implementation of our QoS scheme, and assess the effec- 
tiveness of this scheme as a fault tolerant mechanism in 
the presence network failures. These experiments are de- 
scribed as follows. 

6.1 QoS Renegotiation Experiment 
The first experiment studies the effect of signal to noise 

ratio on a wireless link in the SWAN system. As signal to 
noise ratio decreases the number of erroneous packets re- 
ceived increases, which maps to a decrease in available bit 
rate over the link. We plot the performance of the system 
as the bit rate decreases (in other words as the error rate 
increases) by measuring the traffic through the system for 
a system based on UDP datagram transmission (non QoS 
system) as well as our QoS based system. 

In the experiment we assume that there are three data 
streams, A, B and C sharing the wireless link from a mo- 

bile to a base station that is connected to the network. 
Stream A is an ABR stream like anftp file transfer which 
can use as much data rate as possible up to some max- 
imum. In our experiment this maximum was 48 Kbps. 
Streams B and C are CBR streams, like those used in 
an uncompressed video transmission. Stream B needs 72 
Kbps and stream C 96 Kbps. Stream C can operate at the 
lower bit rate of 48 Kbps if it is informed of the change. 
It can achieve this by reducing the number of frames per 
second that it sends. 

- 
Stream A 

Stream B 

9 Stream 

240 200 160 120 60 40 0 
Total throughput (Kbps) 

Fig. 5: Realizable throughput for a system with- 
out QoS 

6.1.1 Variation of Throughput for the Non-QoS 
Case The graph in Fig. 5 shows the variation of actual 
throughput versus the available data throughput for each 
of the streams A, B and C. The system’s available data 
throughput varies along the x axis from 240 Kbps down 
to zero. The shaded regions in the graph indicate a range 
of possible bitrates that data streams achieve, and the ac- 
tual data rate tends to oscillate between the maximum and 
minimum values in each region. The three streams, A, B 
and C are presented to the communication channel. In the 
first region from 240 to 216 Kbps of throughput, streams 
A, B and C (whose total requirement is 216 Kbps) are ac- 
commodated. 

In the second region, from 216 through about 150 
Kbps, the total bandwidth requirements of all the chan- 
nels cannot be satisfied, and they begin to interfere with 
each other. The scheduler attempts to give one third of 
the total data rate to each of the channels. Streams B and 
C can consume the third that they are given. However, 
stream A under-utilizes the available data rate because it 
only needs 48 Kbps, while a third of the bandwidth in this 
region varies from 72 to 96 Kbps. This means that there is 
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spare throughput that streams B and C attempt to use. Both 
streams have the potential of getting their full bandwidth 
at some instances of time, thus the minimum bandwidth in 
this region is set by a third of the available data rate and 
the maximum bandwidth by the maximum data rate that 
can be sent by each stream. Even though stream A's data 
rate requirements do not exceed one third of the available 
data rate, it is interfered with by streams B and C which 
are using some of that capacity by putting large packets in 
the single queue which delay stream A's packets. 

The final range is from 144 through 0 Kbps. Here all 
three streams can consume a third of the available band- 
width and compete for the bandwidth evenly. 

,96-- 

n s 
E 72- 

5 

- - 
I ABR, Stream A 

, _ _ _ _ _  CBR, Stream6 

I - - . CBR, StreamC 

_-__--I 
I I 

Fig. 6: Realizable throughput for a system with 
QoS 

6.1.2 QoS Version In our implementation of the 
QoS scheme, all the queues are sharing the available band- 
width of 240 Kbps (with no errors). As the number of er- 
rors increases over the link the effective data rate for each 
of the queues decreases proportionately. Because the QoS 
scheme allocates bandwidth on a slot basis the granularity 
of the available data rate is one tenth of the total available 
bandwidth. 

The graph in Fig. 6 shows how each of the streams A, B 
and C respond to variations in the available bit rate. When 
there are no errors on the link stream A can operate at 
48 Kbps (consuming two of the ten available timeslots), 
stream B operates at 72 Kbps and stream C at 96 Kbps. 
As the error rate increases slightly both streams B and C 
need extra timeslots to continue to be provided with their 
required bit rate. One slot comes from slack in the sys- 
tem (only 9 of the 10 were in use initially) and the other 
comes from stream A, which is an ABR stream and is 

downgraded to 1 timeslot. As the data rate reduces fur- 
ther, eventually stream C is unable to have its requested 
96 Kbps. At this point the QoS manager sends it a sig- 
nal telling it to renegotiate its required bit rate, and since 
it can operate at 48 Kbps it does so. At about 50 Kbps 
stream C needs 3 timeslots to provide the 48 Kbps. This 
allows stream A to use another two timeslots for its ABR 
traffic. As the error rate increases the two CBR streams 
consume more timeslots, and correspondingly the band- 
width available for stream A reduces. At an error rate of 
about 95 Kbps stream B needs another timeslot to satisfy 
its data rate needs. However, since stream A always needs 
at least 1 timeslot and the CBR traffic of stream B cannot 
support a lower bit rate, it is renegotiated to zero. This 
makes more bandwidth available for stream A, but as the 
error rate further increases it gives that bandwidth to the 
CBR stream C which eventually stops when the error rate 
rises to about 185 Kbps, when the throughput falls to 55 
Kbps. 

6.2 Network Link Failure Experiment 

The objective of the next experiment is to examine 
whether our QoS VC architecture and implementation 
scheme truly provides the required fault tolerant mecha- 
nisms in delivering the service it guarantees, and to com- 
pare the results with a network without QoS assurance. In 
this experiment, we consider link faults due to the failure 
of radio interface, particularly when the mobile stations 
move out of the radio range. That is, the quality on a failed 
link will degrade to a level where no data can be transmit- 
ted, and therefore traffic needs to be rerouted to another 
link in order to maintain session continuity. 

Node A (Source) 

n 

NO& D 
(Destination) 

N d e  C (Source) 

Fig. 7: Topology for a network link failure experi- 
ment 
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6.2.1 Network Topology and 'lkaffic Flow As- 
sumptions We consider a multi-hop wireless topology 
based on SWAN environment as shown in Fig. 7. There 
are four nodes in this network topology: Node A, Node 
B, Node C, and Node D. Five SWAN radio links are set 
up for communication between these nodes, marked as 
Link 1 through Link 5 in Fig. 7. Without losing gener- 
ality, we made the following assumptions during the our 
experiment: 

1. 

2. 

3. 

4. 

5 .  

Nodes A, B, and C are source nodes while node D is 
a destination node. 

Initially, Node A sends a CBR traffic (CBR video 1, 
abbreviated as V I )  to Node D via Link 1, Node B 
sends an ABR traffic (ABR datagram, abbreviated as 
d l )  to Node D via Link 2, and Node C sends a CBR 
traffic (CBR video 2, abbreviated as v2) to Node D 
via Link 3. 

Both V I  and v 2  are uncompressed video sessions 
transmitted at frame rate of 0.5 frame/sec and 1 
framehec, which yield the constant bit rate of 73 
Kbps and 145 Kbps, respectively. The traffic d l  is de- 
signed to represent the ordinary datagram traffic thus 
we assume it may consume all the bandwidth that is 
left available. 

Links 4 and 5 are robust rerouting links in the pres- 
ence of link failures. When Link 1 fails, V I  from 
Node A will be routed to Node B via Link 4, then 
delivered to Node D via Link 2. Similarly, Node C 
will redirect v 2  to Node D via Link 5 and Link 2 in 
the presence of Link 3 failure. 

When Link 2 fails, the ABR traffic from Node B will 
be redirected to Node D through Node A (not Node 
Cl. 

Note these nodes could communicate with other net- 
work components (not shown here) via wired links or 
other wireless links. 

6.2.2 Impact on bandwidth utilization To exam- 
ine the impact on bandwidth utilization on a particular 
SWAN link, we conduct an experiment to measure trans- 
mission efficiency when different traffic sources have to 
be rerouted to share bandwidth of another link in the pres- 
ence of link faults. In this experiment, the event of fault on 
Link 1 is at time 15th sec., and later the fault is recovered 
at time 85th sec. The event of fault on Link 3 starts at time 
35th sec., and its recovery happens at time 130th sec. Dur- 
ing the link down time, the associated traffic is rerouted to 
Link 2, based on the decision made by the network routing 
function. 

Fig. 8: Received bandwidth in Link 2 using VC- 
QoS 

Fig. 8 shows the effect of link failure to the bandwidth 
usage on Link 2 with respect to various traffic sessions. At 
the beginning, traffic d l  is able to use up all the bandwidth 
until Link 1 fails. When Link 1 fails, traffic V I  is rerouted 
to Link 2 by the routing mechanism. The QoS scheme on 
Link 2 will then allocate bandwidth used by d l  to v l ,  since 
ABR has lower priority than CBR. Similarly, when Link 3 
fails, v 2  is granted the required bandwidth after rerouting 
and d l  can only use the bandwidth that is left after V I  and 
v2. In Fig. 8 we also see that d l  regains bandwidth after 
the recovery of Link 1 and Link 3. 

As a comparison we repeat the same experiment us- 
ing a non-QoS scheme (UDPLP). The result is shown in 
Fig. 9. In this figure, we observe that due to the lack of 
a QoS mechanism, the amount of bandwidth that a con- 
nection can utilize is related to how aggressive the traffic 
source is. As we have described, v l  generates data at 73 
Kbps, which is much less aggressive than d l .  Therefore 
between time 15th and the 85th sec., the quality of V I  suf- 
fers tremendous fluctuations by having to compete with 
d l .  Since v 2  is more aggressive (about 145 Kbps) than VI, 
thus between the 35th sec. and the 85th sec., the observed 
bandwidth shows that all these three sessions get about 1/3 
of the bandwidth (Although V I  is in fact slightly less than 
the other two). When V I  stops at time 85th second, v 2  and 
d l  both get half of the bandwidth. Also note the fluctua- 
tion between time 15th and 35th sec. is more significant 
than that between time 85th and 130th sec. This is because 
V I  transmits video frames slower (0.5 framelsec) and tends 
to fall behind the competition with d l .  However v 2  trans- 
mits video at a faster pace (1 framelsec), so it can share the 
bandwidth with d l  more competitively. Moreover, due to 
the overhead of UDPAP headers, the maximum bandwidth 
observed by the receiver here (220 Kbps) is less than pre- 
viously (240 Kbps) when using QoS VC scheme. 
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As clearly observed, in this UDP experiment where no 
QoS is guaranteed, and packets are rerouted correctly after 
link faults, none of the video sessions get the bandwidth 
they require. Consequently, they become unattractive in 
their real-time applications. Furthermore, video session 
V I  suffers great fluctuations during its link fault, making 
the bandwidth it grabs from another link annoying and in- 
tolerable to its receivers. 

Transmission scheme 
Network load 
Mean delay (sec) 

j i j  

i ;  : :  
/ .Z("+..Z) 

0 20 40 60 80 1W 120 140 160 
TuneCec) 

QoS-VC UDP(no QoS) 
Heavy None Heavy None 
1.224 1.224 1.474 1.193 

Fig. 9: Received bandwidth in Link 2 using UDP 

_ .  . 
Overhead 
Variance 

6.2.3 Impact on Delay Jitter We also examine the 
impact to the delay jitter due to a link fault. This time, 
however, we consider the fault on Link 2 that carries ABR 
traffic. According to assumption 5 in Section 6.2.1, the 
routing function in network layer reroutes the ABR traf- 
fic from Link 2 to Link 1 after the link fault occurs. The 
distributions of inter-frame delay of the traffic V I  carried 
by Link 1 before and after the traffic rerouting is shown in 
Fig. 10 and Fig. 11. 

Fig. 12 and Fig. 13 present results performed under 
the UDP protocol for the purpose of comparison. The 
results are as expected: under the QoS VC scheme, the 
delay jitter is well controlled even in the presence of the 
extra traffic due to link fault. On the other hand, using 
the UDP protocol experiences a completely different re- 
sult. VI has a decent delay distribution before Link 2 fails 
(Fig. 12); but once Link 2 fails and d l  are rerouted to Link 
1, the delay jitters exhibit uncontrolled and unexpected de- 
lays(Fig. 13). Table 2 summarizes the results obtained in 
Fig. 10 through Fig. 13. We see the UDP (with no QoS) 
experiences severe delay jitter problems (23.6% overhead) 
in a heavy traffic situation. Our QoS VC mechanism, on 
the other hand, is very stable and efficient. Though in Ta- 
ble 2 it seems the QoS VC scheme introduces more over- 
head (2.6%, computed as the extra delay in relative per- 
centage to the UDP with no background traffic) than the 
UDP does when no other load is added, overhead intro- 

I 2.6% 2.6% 23.6% 0% 
I 0.056 0.056 0.112 0.064 

duced by the QoS VC scheme is still less significant then 
the overhead caused by the TCP/UDP/IP headers. 

4w 
unurmpru"d Hon. - 

1 

" 5  

Fig. 10: Before Link 2 fails, with QoS support 

1 

Fig. 11 : After Link 2 fails, with QoS support 

Table 2: Summary of delay jitters observed in two 
schemes 

7 Conclusions 
In this paper, we propose a new concept that faults in 

telecommunications networks often manifest themselves 
as reductions in service quality, which can be addressed 
by schemes providing QoS guarantees. We define such a 
scheme with an API which allows applications to specify 
the required QoS for a connection. Our QoS VC scheme 
delivers guaranteed QoS when the radio link is stable. 
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Fig. 12: Before Link 2 fails, without QoS support 

Fig. 13: After Link 2 fails, without QoS support 

#en the quality changes, the applications gets feedback 
from this mechanism. Thus instead of an inadequate per- 
formance due to insufficient and varying bandwidth, the 
traffic source has a chance to adjust and best utilize the 
changing link quality without dropping the connection. 

The scheme has been successfully implemented on the 
SWAN system, with ABR, CBR and VBR supports made 
available in our current prototype. Modern multimedia 
applications can be classified into these three categories. 
The results obtained from the experimental studies on QoS 
management in the presence of network failures show that 
our QoS implementation on the wireless ATM network is 
a valid, efficient, and powerful mechanism which provides 
guaranteed service quality in an unpredictable, error-prone 
mobile environment. 
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