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ABSTRACT
Point-of-interest (POI) recommendation is an important applica-
tion for location-based social networks (LBSNs), which learns the
user preference and mobility pattern from check-in sequences to
recommend POIs. Previous studies show that modeling the sequen-
tial pattern of user check-ins is necessary for POI recommendation.
Markov chain model, recurrent neural network, and the word2vec
framework are used to model check-in sequences in previous work.
However, all previous sequential models ignore the fact that check-
in sequences on different days naturally exhibit the various tempo-
ral characteristics, for instance, “work" on weekday and “enter-
tainment" on weekend. In this paper, we take this challenge and
propose a Geo-Temporal sequential embedding rank (Geo-Teaser)
model for POI recommendation. Inspired by the success of the
word2vec framework to model the sequential contexts, we propose
a temporal POI embedding model to learn POI representations un-
der some particular temporal state. The temporal POI embedding
model captures the contextual check-in information in sequences
and the various temporal characteristics on different days as well.
Furthermore, We propose a new way to incorporate the geographi-
cal influence into the pairwise preference ranking method through
discriminating the unvisited POIs according to geographical infor-
mation. Then we develop a geographically hierarchical pairwise
preference ranking model. Finally, we propose a unified frame-
work to recommend POIs combining these two models. To ver-
ify the effectiveness of our proposed method, we conduct experi-
ments on two real-life datasets. Experimental results show that the
Geo-Teaser model outperforms state-of-the-art models. Compared
with the best baseline competitor, the Geo-Teaser model improves
at least 20% on both datasets for all metrics.

Keywords
location-based services, POI recommendation, embedding learn-
ing, spatial-temporal data

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3038914

.

1. INTRODUCTION
Location-based social networks (LBSNs) such as Foursquare and

Facebook Places have become popular services to attract users shar-
ing their check-in behaviors, making friends, and writing com-
ments on point-of-interests (POIs). With the prosperity of LBSNs,
POI recommendation comes out to improve the user experience,
which mines users’ check-in sequences and recommends places
where an individual has not been. POI recommendation not only
helps users explore new interesting places in a city, but also facili-
tates business owners to launch advertisements to target customers.
Due to the significance for users and businesses, POI recommen-
dation has attracted much academic attention, and thus a bunch of
methods has been proposed to enhance the POI recommendation
system [2, 9, 31, 32].

Modeling the sequential pattern of user check-ins is necessary
for POI recommendation. Because successive check-ins are usually
correlated [3, 17, 30, 35]. Markov chain model, recurrent neural
network, and the word2vec framework are used to model the check-
in sequences in previous work. Studies in [17, 30, 35] exploit the
Markov chain model to capture the successive check-ins’ transitive
pattern. Besides, researchers in [3, 5, 39] use the latent factor model
based on the Markov chain property to model the successive check-
ins’ correlations. Recently, inspired by the success of deep learn-
ing, the neural network has been used to model the check-in se-
quences. Liu et al. [16] employ the recurrent neural network (RNN)
to find the sequential correlations. The work in [18] models the
check-in sequences through the word2vec framework to capture the
sequential contexts. Moreover, we observe that check-in sequences
on different days naturally exhibit the various temporal character-
istics. For example, users always check-in at POIs around offices
on weekday while visit shopping malls on weekend. However,
all previous sequential models ignore the various temporal charac-
teristics, which motivates this paper.

Inspired by the success of the word2vec framework to model the
sequential contexts [18], we propose a temporal POI embedding
model to capture the contextual check-in information and the var-
ious temporal characteristics as well. In [18], all POIs are built as
the “corpus", each POI is treated as a “word", and a user’s all se-
quential check-ins are treated as a “sentence". Then, the word2vec
framework [22] can be used to learn the POI embeddings, which
contain the contextual relationships of consecutively visited POIs,
showing better performance than Markov chain model. Neverthe-
less, the learned POI embeddings for capturing the sequential con-
texts cannot subsume the various temporal characteristics on dif-
ferent days. Moreover, the geographical influence is not considered
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Figure 1: Framework of the Geo-Teaser model

in [18]. Studies on user mobility data show that the geographical in-
fluence is the most significant factor for POI recommendation [31,
34, 37]. Therefore, the geographical influence is expected to be
incorporated to improve the POI recommendation.

To sum up, we propose a Geo-Temporal sequential embedding
rank (Geo-Teaser) model for POI recommendation, as shown in
Figure 1. On the one hand, we propose a temporal POI embed-
ding model to capture the contextual check-in information and the
various temporal characteristics as well. In particular, we treat one
user’s check-in sequence in one day as a “sentence". Then we con-
sider each sequence under a specific temporal state and define the
temporal POI, referring to a POI taking a specific temporal state as
context. Further, we propose the temporal POI embedding model
to learn POI representations and temporal state representations. On
the other hand, we incorporate the geographical influence into a
pairwise preference ranking model and develop a geographically
hierarchical pairwise preference ranking model. Traditionally, we
assume users prefer the visited POIs than the unvisited and estab-
lish a pairwise ranking model to learn user preference on POIs [13,
39]. Previous studies [2, 31] indicate that users prefer POIs that are
geographically adjacent to their visited POIs. This geographical
characteristic inspires us to boost the traditional pairwise ranking
model through hierarchical pairwise preference relations that dis-
criminate the unvisited POIs according to POIs’ geographical in-
formation. Finally, we propose the Geo-Teaser model as a unified
framework to recommend POIs combining the temporal POI em-
bedding model and the geographically hierarchical pairwise rank-
ing model. We summarize the contributions as follows:

1. We propose the temporal POI embedding model, which cap-
tures the check-ins’ sequential contexts and the various tem-
poral characteristics on different days. In particular, we in-
troduce the word2vec framework to project every POI as one
object in an embedding space for learning the sequential re-
lations among POIs. Furthermore, we learn the temporal POI
representations from the check-in sequence under some spe-
cific temporal state.

2. We propose a new way to incorporate the geographical in-
fluence into the pairwise preference ranking method through
discriminating the unvisited POIs according to geographical
information. In particular, we define a hierarchical pairwise

preference relation for each user check-in: the user prefers
the visited POI than the unvisited neighboring POI, and the
user prefers the unvisited neighboring POI than the unvisited
non-neighboring POI. Then we learn the hierarchical pair-
wise preference to capture the geographical influence and
user preference.

3. We propose the Geo-Teaser model as a unified framework
combining the temporal POI embedding model and the geo-
graphically hierarchical pairwise preference ranking model.
Experimental results on two real-life datasets show that the
Geo-Teaser model outperforms state-of-the-art models. Com-
pared with the best baseline competitor, the Geo-Teaser model
improves at least 20% on both datasets for all metrics.

The rest of this paper is organized as follows. In Section 2,
we review the related work. In Section 3, we introduce two real-
world datasets and report empirical data analysis that motivates our
method. Next, we introduce our proposed Geo-Teaser model and
show the learning algorithm in Section 4. Then, we evaluate our
proposed model in Section 5. Finally, we conclude this paper and
point out possible future work in Section 6.

2. RELATED WORK
In this section, we first demonstrate the recent progress of POI

recommendation. Then we report how the prior work exploits the
sequential influence and geographical influence to improve the POI
recommendation. Since our proposed method adopts an embedding
learning method, the word2vec framework, to model check-in se-
quences, we also review the literature of the word2vec framework
and its applications.

POI Recommendation. POI recommendation has attracted in-
tensive academic attention recently. Most of the proposed meth-
ods base on Collaborative Filtering (CF) techniques to learn user
preference on POIs. On the one hand, the studies in [31, 33] em-
ploy the memory-based CF to recommend POIs. The proposed sys-
tem first finds some users sharing the similar check-in preference
with the target user and then recommends POIs where the “simi-
lar” users have checked-in but the target user has not. Furthermore,
the researchers attempt to analyze the user check-in behavior and
incorporate the spatial and temporal influence to improve the rec-
ommendation performance. On the other hand, some other studies
in [2, 6, 7, 12] leverage the model-based CF, i.e., the Matrix Fac-
torization (MF) technique. They treat the POI as “item” and the
check-in frequency as “rating” and establish a user-POI matrix to
recommend POIs using traditional MF models. Moreover, the re-
searchers in [14, 20] observe that it is better to treat the check-ins
as implicit feedback than explicit way, namely the check-ins are
similar to clicks on Webs rather than the rating on Movies. They
utilize the weighted regularized MF [10] to model this kind of im-
plicit feedback. In addition, recent work in [13, 39, 38] employs
pairwise ranking models to learn the user check-in as an implicit
feedback and shows the advantages of ranking methods.

Sequential Modeling. Modeling the sequential pattern is im-
portant for POI recommendation. Most of the studies employ the
Markov chain property in consecutive check-ins to capture the se-
quential pattern. We usually categorize the POI recommendation
system as generic POI recommendation and successive POI rec-
ommendation by subtle differences in the recommendation task
whether to be biased to the recent check-in. The successive POI
recommendation is proposed to recommend POIs given the recent
check-in, which naturally attempts to model the sequential pat-
tern from successive check-ins [3, 5, 34, 16]. Also, researchers
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leverage the sequential modeling to improve the generic POI rec-
ommendation. The studies in [17, 30] learn the categories’ tran-
sitive pattern in sequential check-ins. Zhang et al. [35] recom-
mend POIs by learning the transitive probability through an addi-
tive Markov chain. Recently, inspired by the success of deep learn-
ing, the neural network has been used to model the check-in se-
quences. Liu et al. [16] employ the recurrent neural network (RNN)
to find the sequential correlations among POIs. In the meantime,
the work [18] models the check-in sequences through the word2vec
framework [22] to capture the sequential contexts. The success in
the prior work [17, 30, 35, 16, 18] motivates us to capture the se-
quential pattern in user check-ins to improve the generic POI rec-
ommendation. However, all previous sequential models ignore the
various temporal characteristics. Hence, we propose a temporal
POI embedding method to capture the sequential POIs’ correlations
under different temporal states.

Geographical Influence. Geographical influence plays an im-
portant role in POI recommendation. Compared with watching
movies on Netflix and online shopping in Amazon, the check-in
activity is limited to the physical constraint. Hence, the check-
ins usually occur in the POIs nearby the user’s home and working
place. This observation motivates researchers to capture the geo-
graphical influence to improve the POI recommendation.

On the one hand, researchers attempt to establish geographical
models to recommend POIs. First, researchers in [31, 33] discover
that the distances for each pair of visited POIs in the LBSN follow
the power law distribution after analyzing the geographical rela-
tions among visited POIs. Then, they propose a power law dis-
tribution model to fit the spatial relations among POIs and recom-
mend POIs according to this kind of geographical influence [31,
33]. Moreover, researchers in [4, 2, 37] analyze each user’s check-
ins rather than all visited POIs and propose the Gaussian distribu-
tion based models to capture the geographical influence. Recently,
Zhang et al. [34, 36] have observed that each user occupies a group
of special parameters in the Gaussian mixture model. Then, they
leverage the kernel density estimation to model each user’s check-
ins for personalization. On the other hand, instead of independently
modeling the geographical influence, more researchers attempt to
jointly model the geographical influence and other factors such as
user preference and temporal influence together. The studies in [14,
20] incorporate the geographical influence into a weighted regular-
ized MF model [10, 24] to learn the geographical influence and user
preference together. Similar to [14, 20], we model the check-ins as
a kind of implicit feedback. But we learn it through a Bayesian
pairwise ranking method [26] due to its success in [39]. Further-
more, we propose a geographically hierarchical pairwise ranking
model, which captures the geographical influence via discriminat-
ing the unvisited POIs according to their geographical information.

Embedding Learning. The word2vec framework [22] is an ef-
fective neural language model to learn embedding representations
in word sequences. The key idea is to learn the sentence as the bag
of words and represent the relations among words in the embedding
subspace, such as “male”-“female”+“queen” = “king”. The em-
bedding learning technique in the word2vec framework attempts
to capture the words’ contextual correlations in sentences, show-
ing better performance than the perspectives of word transitivity in
sentences and word similarity. As a result, the embedding learning
technique has been widely used in natural language processing re-
cently [21, 23]. Afterwards, paragraph2vector [11] and other vari-
ants [15, 19] are proposed to enhance the word2vec framework for
specific purposes. Since the efficacy of the framework in captur-
ing the contextual correlations of items, the embedding technique
based on the word2vec framework is employed to network embed-

Table 1: Data Statistics

Foursquare Gowalla
#users1 10,034 3,240
#POIs 16,561 33,578
#check-ins 865,647 556,453
Avg. #check-ins of each user2 86.3 171.7
Avg. #POIs for each user 24.6 95.4
Avg. #users for each POI 14.9 9.2
Density 0.0015 0.0028
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Figure 2: POI correlation in sequences

ding [1], as well as in user modeling [28] and item modeling [27].
To take the power of embedding learning for POI recommenda-
tion, Liu et al. [18] model the sequential contexts through a Skip-
Gram model and achieves better performance than Markov chain
model. Xie et al. [29] use similar embedding technique to rec-
ommend POIs. However, the previous work [18, 29] ignores two
significant factors accounting for the check-in activity, the various
temporal characteristics and geographical influence. To incorporate
these two factors, we propose the Geo-Teaser model.

3. DATA DESCRIPTION AND ANALYSIS
In this section, we first introduce two real-world LBSN datasets

and then conduct the empirical analysis to explore the properties of
check-in sequences in one day.

3.1 Data Description
We use two check-in datasets crawled from real-world LBSNs

for data analysis. One is collected from Foursquare provided in [8]
and the other is Gowalla data provided in [37]. We preprocess the
data by filtering the POIs checked-in less than five users and users
whose check-ins are less than ten times. Then we keep the remain-
ing users’ check-in records from January 1, 2011 to July 31, 2011.
After the preprocessing, the datasets contain the statistical proper-
ties as shown in Table 1.

3.2 Empirical Analysis
We conduct data analysis to answer the following two questions:

1) how POIs in sequences of one day correlate each other? 2) how
check-in sequences perform on different days?

We investigate the correlations of POIs in sequences of one day,
as shown in Figure 2. To calculate the correlation between two

1"#users" means the number of users.
2"Avg. #check-ins" means the average number of check-ins.
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(a) Foursquare

(b) Gowalla

Figure 3: Day of week check-in pattern at different hours

POIs, we construct the user-POI matrix according to the check-in
records. Then, we measure the correlation of a POI pair regarding
the Jaccard similarity of those users who have checked-in at the two
POIs. In Figure 2(a), we calculate the average correlation value of
POI pairs in sequences for all users and compare it with the aver-
age correlation value of 5,000 random POI pairs. We observe that
the correlation of POIs in sequences is much higher than random
pairs by about 100 times for Foursquare and 50 times for Gowalla,
which motivates the sequential modeling. In Figure 2(b), we com-
pare the correlation of consecutive pairs with nonconsecutive pairs
in sequences. Take a sequence of (l1, l2, l3) as an example, (l1, l2)
and (l2, l3) are consecutive pairs, and (l1, l3) is a nonconsecutive
pair. We also calculate the average value of all sequences for all
users to make the comparison. We observe that the nonconsecu-
tive pairs contain comparable correlation to the consecutive pairs.
Hence, not only consecutive POIs are highly correlated [3, 39], all
POIs in a sequence are highly correlated with a contextual prop-
erty. Accordingly, it is not satisfactory to only model the consec-
utive check-ins’ transitive probability by Markov chain model or
the consecutive check-ins’ correlation by tensor factorization. This
observation motivates us to model the whole sequence through the
word2vec framework.

We explore how the various temporal characteristics on differ-
ent days affect the user’s check-in behavior. Previous work [38,
39] shows that user check-ins exhibit different patterns on different
days, especially for working days and weekends. Figure 3 demon-
strates the number of cumulated check-ins for all users at different
hours on different days of a week, from Monday to Sunday. From
the statistics of cumulated check-ins in Figure 3, we observe the
day of week check-in pattern at different hours: users take more

Table 2: Notation Descriptions

Notation Description
u user name
l POI name
ts temporal state for a sequence
k context window size
h negative sample size for embedding learning
m negative sample size for preference learning
d latent vector dimension
C the set of check-ins
U the set of users
L the set of POIs
Lu the set of POIs visited by user u
d(li, lj) the distance between two POIs li and lj
Su a sequence for user u
S the set of all sequences
DSu the set of preference relations for Su
u user latent feature vector
l POI latent feature vector
ts temporal state latent feature
lti temporal POI embedding vector
T temporal state feature matrix
U user latent feature matrix
L user latent feature matrix

check-ins in the late afternoon and the evening from 16:00 p.m. to
3:00 a.m. on weekends than the weekdays. Hence, Saturday and
Sunday take the similar pattern, while the days from Monday to Fri-
day take the similar pattern that is different from the weekends. We
may infer that weekday and weekend exert two types of effects
on the user’s check-in behavior. Therefore, modeling the sequence
pattern should contain this temporal feature.

4. METHOD
In this section, we first propose the temporal POI embedding

model to capture the various temporal characteristics for sequential
modeling. Next, we demonstrate the geographically hierarchical
pairwise preference ranking model. Then, we propose the Geo-
Teaser model as a unified framework to recommend POIs combin-
ing the temporal POI embedding model and the geographically hi-
erarchical pairwise preference ranking model. Finally, we show
the learning procedures for the Geo-Teaser model. In order to help
understand the paper, we list some important notations in Table 2.

4.1 Temporal POI Embedding
We propose a temporal POI embedding method to learn the se-

quential pattern, which captures POIs’ contextual information from
user check-in sequences and as well as the various temporal charac-
teristics. Different from the work [18] that treats a user’s all check-
ins as a “sentence", we treat a user’s check-ins of one day as a
“sentence". Because consecutive check-ins on different days may
span a long time and be not highly correlated. Further, we assume
that check-in sequences on different days exhibit various temporal
characteristics. Then, we learn POI embeddings in a sequence with
some specific temporal state.

To better describe the model, we present some basic concepts as
follows.

DEFINITION 1 (CHECK-IN). A check-in is a triple 〈u, l, t〉 that
depicts a user u visiting POI l at time t.

DEFINITION 2 (CHECK-IN SEQUENCE). A check-in sequence
is a set of check-ins of user u in one day, denoted as Su = {〈l1, t1〉,
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Figure 4: Temporal POI embedding model

. . . , 〈ln, tn〉}, where t1 to tn belong to the same day. For simplic-
ity, we denote Su = {l1, . . . , ln}.

DEFINITION 3 (TARGET POI AND CONTEXT POI). In a se-
quence Su, the chosen li is the target POI and other POIs in Su
are context POIs.

We propose the temporal POI embedding model based on the
Skip-Gram model [22]. As shown in Figure 4, we learn the repre-
sentations of context POIs from li−k to li+k given a target POI li
and the sequence temporal state ts. Here k is a parameter to con-
trol the context window size. In addition, the temporal state ts is
composed of two options, weekday and weekend. Because we
want to discriminate weekday and weekend, which depict the
various temporal characteristics on day level as shown in Figure 3.
Formally, given a sequence Su and its temporal state ts, our model
attempts to learn the temporal POI embeddings through maximiz-
ing the following function,

LTPE =
∑
Su∈S

1

|Su|
∑
li∈Su

∑
−k≤c≤k,c6=0

(
log Pr(li+c|li, ts)

)
, (1)

where S is a set containing all sequences Su for all users. LTPE
aims to maximize the context POI’s conditional occurrence likeli-
hood for all sequences.

Furthermore, we formulate the probability Pr(li+c|li, ts) using
a softmax function. For better description, we introduce two sym-
bols, defined as follows: l̂

′
c = l′c ⊕ l′c, lti = li ⊕ ts, where ⊕ is the

concatenation operator, and l′c, li, and ts are latent vectors of out-
put layer context POI, target POI, and temporal state, respectively.
Thus, we get l̂

′
c · lti = l′c · li + l′c · ts. Therefore, the probability

Pr(li+c|li, ts) can be formulated as,

Pr(li+c|li, ts) =
exp(̂l

′
c · lti)∑

li∈L exp(̂l
′
c · lti)

. (2)

As the size of set L in Eq. (2) is large, we exploit the negative
sampling technique [22] to learn the model efficiently. Then, the
objective function can be formulated in a new form easier to opti-
mize,

LTPE =
∑
Su∈S

1

|Su|
∑
li∈Su

∑
−k≤c≤k,c6=0

(
log σ(̂l

′
c · lti)+∑

h

Ek′ log σ(−l̂
′
k′ · lti)

)
,

(3)

where lk′ is the sampled negative POI, h is the number of negative
samples, σ(·) is the sigmoid function, and E(·) means to calculate

the expectation value for all generated negative samples. Here we
adopt the same strategy in [22], namely using a unigram distribu-
tion, to draw the negative samples.

4.2 Geographically Hierarchical Pairwise Rank-
ing

We propose the geographically hierarchical pairwise preference
ranking model, which incorporates the geographical influence into
a pairwise ranking model. The check-in activity is observed as a
kind of implicit feedback similar to the web clicks [14, 20]. To
learn this implicit feedback, we leverage the Bayesian personalized
ranking (BPR) criteria [26] to learn the user preference on POIs.
BPR is a pairwise ranking model, which learns the pairwise user
preference based on the assumption that users prefer the visited
POIs than the unvisited. In our geographically hierarchical pairwise
ranking model, we discriminate the unvisited POIs using POIs’ ge-
ographical information. Previous studies [2, 33, 37] observe that
users prefer the POIs nearby the visited than POIs far away, we can
discriminate the unvisited POIs and define neighboring POI and
non-neighboring POI as follows.

DEFINITION 4 (NEIGHBORING POI AND NON-NEIGHBORING POI).
For each check-in 〈u, li〉, the neighboring POI is the POI whose
distance from li is less than or equal to a threshold s, while the
non-neighboring POI is the POI whose distance is more than s.

Furthermore, for each check-in 〈u, li〉, we define a hierarchical
pairwise preference relation: the user prefers the visited POI li than
the unvisited neighboring POI lne, and prefers the unvisited neigh-
boring POI lne than the unvisited non-neighboring POI lnn. De-
note d(li, lj) as the distance of two POIs li and lj , we represent
the hierarchical pairwise preference relation for check-in 〈u, li〉 as
follows,

li >u,d(li,lne)≤s lne ∨ lne >u,d(li,lnn)>s lnn. (4)

Suppose L is the set of POIs, and Lu is the visited POIs of user u,
the hierarchical pairwise preference relation set for a sequence Su
satisfying Eq. (4) is defined as follows,

DSu = {(u, li, lne) ∨ (u, lne, lnn)|li ∈ Su, d(li, lne) ≤ s,
d(li, lnn) > s, lne, lnn ∈ L \ Lu}.

(5)

Now learning the geographically hierarchical pairwise ranking
model is equivalent to model the preference relations inDSu . Here
we employ the MF model to formulate the preference score func-
tion. We use lti = li ⊕ ts to represent the temporal POI latent vec-
tor, which is consistent with the temporal POI embedding model.
In addition, we define û = u ⊕ u, then the score function can be
formulated as,

f(u, ts, li) = û · lti. (6)

Next, we use the sigmoid function to formulate the pairwise pref-
erence probability. Suppose Pr(li >u ln) denotes the probability
of user u prefers POI li than ln, and σ(·) is the sigmoid function.
Then, each pair in the preference set can be formulated as,

Pr(li >u ln) = σ(f(u, ts, li)− f(u, ts, ln)) = σ(u · (li − ln)).
(7)

Thus, learning the geographically hierarchical pairwise ranking model
is equivalent to maximize the following function,

LGPR =
∑
Su∈S

∑
(u,li,ln)∈DSu

log σ(u · (li − ln)), (8)

where S is a set containing all sequences Su for all users and DSu

is hierarchical pairwise preference relations on sequence Su.
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4.3 Geo-Teaser Model
We propose the Geo-Teaser model as a unified framework to rec-

ommend POIs combining the temporal embedding model and the
pairwise ranking model. Learning the Geo-Teaser model is equiv-
alent to maximize LTPE and LGPR together,

O = arg max
U,L,T

α · LTPE + β · LGPR, (9)

where α and β are the hyperparameters to trade-off the sequential
modeling and the preference learning modules. We expect to obtain
the user, POI, and temporal state representations through learning
the temporal POI embeddings and geographically pairwise prefer-
ence relations in the Geo-Teaser model.

Substituting LTPE and LGPR with Eq. (3) and Eq. (8) respec-
tively, then we can learn the Geo-Teaser model through the follow-
ing objective function,

arg max
U,L,T

∑
Su∈S

∑
li∈Su

( ∑
−k≤c≤k,c6=0

α log σ(l′c · li)+∑
h

αEk′ log σ(−l′k′ · li)+∑
DSu

β log(σ(u · (li − ln)))
)
.

(10)

4.4 Learning
We use an alternate iterative update procedure and employ stochas-

tic gradient descent (SGD) to learn the objective function. To learn
the model, for each sampled training instance, we separately cal-
culate the derivatives for LTPE and LGPR, and then update the
corresponding parameters along the ascending gradient direction,

Θt+1 = Θt + η × ∂O(Θ)

∂Θ
, (11)

where Θ is the training parameter and η is the learning rate.
Specifically, for a check-in 〈u, li〉, we calculate the stochastic

gradient decent for LTPE . First, we get the updating rule for the
context POI lc,

li ← li + αη(1− σ(̂l
′
c · lti))l′c

ti ← ti + αη(1− σ(̂l
′
c · lti))l′c

l′c ← l′c + αη(1− σ(̂l
′
c · lti))(li + ti).

(12)

Then, we update the negative sample l′k as follows,

li ← li − αησ(̂l
′
k′ · lti)l′k′

ti ← ti − αησ(̂l
′
k′ · lti)l′k′

l′k′ ← l′k′ − αησ(̂l
′
k′ · lti)(li + ti).

(13)

To update LGPR, we calculate the stochastic gradient decent for
each preference pair (u, li, ln) in DSu

3. Denote δ = 1−σ(u · li−
u · ln), we update the parameters as follows,

u← u + βηδ(li − ln)

li ← li + βηδu
ln ← ln − βηδu.

(14)

Algorithm 1 shows the details of learning the Geo-Teaser model.
S is the set of all sequences, and Su is a sequence of user u. U,
L, and T are feature matrices of the user, POI, and temporal state.
3The pair of (u, li, ln) happens in two cases: (u, li, lne) and
(u, lne, lnn) as shown in Alg. 1.

Algorithm 1: Learning algorithm for the Geo-Teaser model
Input: S
Output: U, L, T

1 Initialize U, L, L′, and T (uniformly at random)
2 for iterations do
3 for Su ∈ S do
4 for 〈u, li〉 ∈ Su do
5 for each context POI lc do
6 li ← li + αη(1− σ(̂l

′
c · lti))l′c

7 ti ← ti + αη(1− σ(̂l
′
c · lti))l′c

8 l′c ← l′c + αη(1− σ(̂l
′
c · lti))(li + ti)

9 for {k′ ∼ Pncc} do
10 li ← li − αησ(̂l

′
k′ · lti)l′k′

11 ti ← ti − αησ(̂l
′
k′ · lti)l′k′

12 l′k′ ← l′k′ − αησ(̂l
′
k′ · lti)(li + ti)

13 end
14 end
15 Uniformly sample m unvisited POIs
16 for (u, li, lne) ∈ Dm do
17 δ = 1− σ(u · li − u · lne)
18 u← u + βηδ(li − lne)
19 li ← li + βηδu ; lne ← lne − βηδu
20 end
21 for (u, lne, lnn) ∈ Dm do
22 δ = (1− σ(u · lne − u · lnn))
23 u← u + βηδ(lne − lnn)
24 lne ← lne + βηδu ; lnn ← lnn − βηδu
25 end
26 end
27 end
28 end

L′, an assistant learning parameter, is the output layer POI ma-
trix in Skip-Gram model. We use the standard way [22] to learn
the POI representations in the sequences, as shown from line 5
to line 14 in Algorithm 1. Next, we exploit the Bootstrap sam-
pling to generate m unvisited POIs and then classify the unvis-
ited POIs as neighboring POIs and non-neighboring POIs accord-
ing to their distances from the visited POI li. Then, we establish
the pairwise preference set Dm for each check-in 〈u, li〉. Here
Dm = {(u, li, lne) ∨ (u, lne, lnn)|d(li, lne) ≤ s, d(li, lnn) >
s, lne, lnn ∈ L \ Lu}. Then we learn the parameters for each in-
stance in Dm, shown from line 15 to line 25 in Algorithm 1.

After learning the Geo-Teaser model, we get the latent feature
representations of users, POIs, and temporal states. Then, we can
estimate the check-in possibility of user u over a candidate POI
l at temporal state ts according to the preference score function.
Furthermore, we use the Eq. (6) for score estimation. Finally, we
rank the candidate POIs and select the top N POIs with the highest
estimated possibility values for each user.

Scalability. For one check-in, learning the temporal embedding
model costs O(k · h · d), where k, h, and d denote the context
window size, the number of negative samples, and the latent vec-
tor dimension, respectively. For the pairwise preference learning
from line 15 to 25 in Algorithm 1, we sample m unvisited POIs,
which can generate maximum O(m2) pairwise preference tuples.
For each check-in, the learning procedures cost O(m2 · d). There-
fore, the complexity of our model isO

(
(k ·h+m2) ·d · |C|

)
, where

C is the set of all check-ins. For k, h, m, and d are fixed hyper-
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parameters, the proposed model can be treated as linear in O(|C|).
Furthermore, in order to make our model more efficient, we turn
to the asynchronous stochastic gradient descent (ASGD) [25] and
parallelly run the algorithm in an unlock way. As the check-in fre-
quency distribution of POIs in LBSNs follows a power law [31],
this results in a long tail of infrequent POIs, which guarantees to
employ the ASGD to parallel the parameter updates.

5. EXPERIMENTAL EVALUATION
We conduct experiments to seek the answers to the following

questions: 1) how the Geo-Teaser model performs comparing with
state-of-the-art recommendation methods? 2) how each component
(i.e., the various temporal characteristics and geographical influ-
ence) affects the model performance? 3) how the parameters affect
the model performance? 4.

5.1 Experimental Setting
Two real-world datasets are used in the experiment: one is from

Foursquare provided in [8] and the other is from Gowalla in [37].
Table 1 demonstrates the statistical information of the datasets. In
order to make our model satisfactory to the scenario of recommend-
ing for future check-ins, we choose the first 80% of each user’s
check-ins as training data, the remaining 20% for test data, follow-
ing [3, 35].

5.2 Performance Metrics
In this work, we compare the model performance through preci-

sion and recall, which are generally used to evaluate a POI recom-
mendation system [6, 13]. To evaluate a top-N recommendation
system, we denote the precision and recall as P@N and R@N , re-
spectively. In our POI recommendation task, P@N measures the
ratio of recovered POIs to the N recommended POIs, and R@N
means the ratio of recovered POIs to the set of POIs in the test
data. Then we calculate the average precision and recall over all
users for evaluation. Supposing Lvisited denotes the set of corre-
spondingly visited POIs in the test data, and LN,rec denotes the
set of recommended POIs, the definitions of P@N and R@N are
formulated as follows,

P@N =
1

|U |
∑
u∈U

|Lvisited ∩ LN,rec|
N

, (15)

R@N =
1

|U |
∑
u∈U

|Lvisited ∩ LN,rec|
|Lvisited|

. (16)

5.3 Model Comparison
Prior work [14, 20] observes that treating the check-ins as im-

plicit feedback is better to model the user preference. Hence we
compare our model with WRMF [10, 24] and BPRMF [26], which
are state-of-the-art collaborative filtering models designed for cap-
turing the implicit feedback. To illustrate the effectiveness of our
model, we compare it with four state-of-the-art POI recommenda-
tion methods: LRT [6], LORE [35], Rank-GeoFM [13], and SG-
CWARP [18].

• BPRMF [26]: Bayesian Personalized Ranking Matrix Fac-
torization (BPRMF) is a popular pairwise ranking method
that models the implicit feedback data to recommend top-N
items.

4The source code is available from https://github.com/
shenglin1987/geo_teaser
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Figure 5: Model comparison

• WRMF [10, 24]: Weighted Regularized Matrix Factorization
(WRMF) model is designed for implicit feedback ranking
problem. We set the weight mapping function of user ui at
POI lj as wi,j = (1+10 ·Ci,j)0.5, where Ci,j is the number
of check-ins, following the setting in [20].

• LRT [6]: Location Recommendation framework with Temporal
effects model (LRT) is a state-of-the-art POI recommenda-
tion method, which captures the temporal effect in POI rec-
ommendation.

• LORE [35]: LORE is state-of-the-art model that exploits
the sequential influence for location recommendation. Com-
pared with other work [3, 30], LORE employs the whole se-
quence’s contribution, not only the successive check-ins se-
quential influence.

• Rank-GeoFM [13]: Rank-GeoFM is a ranking based geo-
graphical factorization method, which incorporates the geo-
graphical and temporal influence in a latent ranking model.

• SG-CWARP [18]. SG-CWARP is the latest work, which lever-
ages the word2vec framework to model the check-ins for se-
quential contexts.

5.4 Experimental Results
In the following, we demonstrate the experimental results on

precision and recall, denoted as P@N and R@N , for the top N
POI recommendation task. Since the model comparison results are
consistent with different values of N , e.g., 1, 5, 10, and 20, we
show representative results at 5 and 10 following [6, 7]. All models
achieve the best performances at appropriate parameter settings.
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Figure 6: Demonstration of model component functions

5.4.1 Performance Comparison
Figure 5 illustrates the experimental results of different models.

We discover that the proposed Geo-Teaser model achieves better
performance than all the baselines. Compared with Rank-GeoFM
that is a state-of-the-art model incorporating the geographical influ-
ence and temporal influence, Geo-Teaser achieves improvements at
least 28% on both datasets for all metrics. This verifies the effec-
tiveness of our sequential modeling and as well as the validity of
means for incorporating various temporal characteristics and geo-
graphical influence. SG-CWARP is the best baseline competitor,
which verifies the advantage of modeling the sequential pattern
through Skip-Gram model over Markov chain model, namely the
LORE model. Our Geo-Teaser model outperforms the SG-CWARP
at least 20% on both datasets for all metrics, which verifies our
strategy of incorporating various temporal characteristics and geo-
graphical influence to improve POI recommendation. In addition,
we observe that models perform better on Gowalla than Foursquare
for precision, but worse for recall. The reason lies in that each
user’s test data size in Gowalla is bigger than Foursquare. As shown
in Table 1, the average check-ins for each user in Gowalla is about
two times of Foursquare. According to the metrics in Eq. (15) and
Eq. (16), the result is reasonable.

5.4.2 Model Discussion
In this section, we explore how each component, i.e., the var-

ious temporal characteristics and geographical influence, affects
the model performance. The Geo-Teaser model improves the SG-
CWARP in two aspects, capturing the various temporal charac-
teristics and geographical influence. Ignoring the various tempo-
ral characteristics and geographical influence, we propose the SG-
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Figure 7: Parameter effect on α and β

BPRMF model as the basic version of our proposed Geo-Teaser
model. The SG-BPRMF uses the Skip-Gram model to model the
sequence and BPRMF to capture the user preference, which is equiv-
alent to SG-CWARP. Furthermore, we incorporate the various tem-
poral characteristics into SG-BPRMF and propose the Teaser model.
In the following, we compare the SG-BPRMF, Teaser, and Geo-
Teaser to show how the various temporal characteristics and geo-
graphical influence affect the model.

Figure 6 shows the model performances. We observe that Teaser
model improves SG-BPRMF at least about 10% on both datasets
for all metrics, which indicates that incorporating the various tem-
poral characteristics improves the model performance. Moreover,
the Geo-Teaser model improves the Teaser model at least about
15% on both datasets. It means our strategy of incorporating geo-
graphical influence by discriminating the unvisited POIs is valid.

5.4.3 Parameter Effect
In this section, we show how the three important hyperparame-

ters, α, β, and s affect the model performance. α and β balance the
sequential influence and the user preference. s shows the sensitivity
of our geographical model.

We tune α and β to see how to trade-off the sequential model-
ing and user preference learning, shown in Figure 7. Both α and
β appear together with the learning rate η in the parameter update
procedures. It is not necessary to separately tune the three param-
eters. We are able to absorb the learning rate η into α and β. In
other words, we set α ← α · η, β ← β · η. We avoid to tune the
learning rate η, but turn to control the update step size through tun-
ing α and β. Hence α and β should be small enough to guarantee
convergence. Assuming the same value for α and β, we tune α
to change the learning rate. The model gets the best performance
when α = 0.05. Then we set α = 0.05, and change β to see how
the model performance varies with β

α
. Geo-Teaser attains the best

performance if β
α
∈ [0.25, 0.5].

In the Geo-Teaser model, we classify the unvisited POIs as neigh-
boring POIs and non-neighboring POIs to constitute a new pref-
erence set according to a threshold distance s. Here we choose
different values of s to see how this parameter affects the model
performance, as shown in Figure 8. Here s is calculated in the
kilometer. We observe that the Geo-Teaser model achieves the best
performance at s = 10.

6. CONCLUSION AND FURTHER WORK
We study the problem of POI recommendation in this paper. We

propose the temporal POI embedding model to capture the check-
ins’ sequential contexts and the various temporal characteristics on
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Figure 8: Parameter effect on distance threshold s

different days. Moreover, we propose the geographically hierarchi-
cal pairwise ranking model to improve the recommendation per-
formance through incorporating geographical influence. Finally,
we propose the Geo-Teaser model as a uniform framework com-
bining the two parts to recommend POIs. Experimental results on
two datasets, Foursquare and Gowalla, show that our model out-
performs state-of-the-art models. The proposed Geo-Teaser model
improves at least 20% on both datasets for all metrics compared
with SG-CWARP model.

Our future work may be carried out as follows: 1) Since we only
consider the sequence of one day in this paper, we may discuss
other scenarios in the future, for instance, sequences consisted of
consecutive check-ins whose interval is under a fixed time thresh-
old, e.g., four hours or eight hours. 2) We may subsume more infor-
mation such as users’ comments and social relations in this system
to improve performance.
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