
ATACOBOL - A COBOL Test Coverage Analysis Tool
and Its Applications

Sam K.S. Sze
Hong Kong and Shanghai Banking Corporation

Abstract

A coverage testing tool ATACOBOL
(Automatic Test Analysis for COBOL) that
applies data flow coverage technique is
developed for software development on IBM
System1390 mainframe. We show that the data
flow coverage criteria can identiSy possible
problematic paths that maps to the actual testing
semantic required by Y2K compliance sofhvare
testing. However, the mainframe environment
lacks testing tools that equip the data flow
coverage measure. Up to the current
implementation, ATACOBOL is able to perj5orm
block coverage, decision coverage and all-uses
measures. We extend the rules of data flow
coverage criteria to adapt data structures that
modern high-level languages usually employ.

1. Introduction

Program testing is the most commonly used
method for demonstrating that a program
accomplishes its intended purpose [l]. It
involves selecting elements from the program’s
input domain D, executing the program P on test
cases T, and comparing the actual output with
the expected output. On this base, we assume the
existence of some methods to determine whether
or not the output produced by a program is
correct.

While testing all possible inputs values would
provide the most complete picture of a
program’s behavior, the input domain is usually
too large for exhaustive testing to be practical.
From another point of view, T is generally
associated with a set KI of paths through P’s flow
graph. It means that we usually cannot exhaust
all possible paths of the program P.

Michael R. Lyu
Computer Science and Engineering Department

The Chinese University of Hong Kong

The usual procedure is to select a relatively
small T which in some sense represent the entire
D or implicitly all paths U. Observation of the
program on this subset is then used to predict its
behavior in general. Unfortunately, discovering
such an ideal set of test data is almost an
impossible task [2].

A number of path selection criteria C have
been proposed. The most well known criteria are
the statement coverage and the edge coverage.
Weyuker et a1 proposed a family of path
selection criteria that include the control flow
coverage criteria and an additional set of data
flow selection criteria in terms of the def-use
pairs [3], [4]. In their approach, variable
occurrences are classified as being a definitional,
computation-use or predicate-use occurrence.
They are referred as def, c-use, and p-use,
respectively. Furthermore,

def: When a variable is assigned by a
certain value.

0 c-use : The variable is used in computation.
It directly affects the computation being
performed and may indirectly affect the flow of
control through the program.

p-use: The variable is used as a predicate to
affect the flow of control through the program,
and may indirectly affect the computations
performed.

def(i) is the set of variables for which node
i contains a global def.

c-use(i) is the set of variables for which
node i contains a global c-use.

0 p-use(i, j) is the set of variables for which
edge (i, j) contains a p-use.

dcu(x, i) is the set of all nodes j such that x
belongs to c-use01 and for which there is a def-
clear path w.r.t. x from i toj.

dpu(x, i) is the set of all edges (j, k) such
that x belongs to p-use(j, k) and for which there
is a def-clear path w.r.t. x from i to j.

0-7695-0807-3/00 $10.00 0 2000 IEEE 327

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:12 UTC from IEEE Xplore. Restrictions apply.

2. A Y2K Testing Example that Requires
Data Flow Coverage

This practical Y2K testing example is
inspired from Year 2000 testing in the banking
business. It illustrates how the all-uses criteria
can be a stronger criteria than all-edges and
capable to detect more faults in practice.

Some accounts opened with banks are
temporary, for example, loan accounts. These
temporary account records carry expiration
dates. Before the manipulation of a temporary
account, the account should be verified if it has
been expired. Since most of the date fields in
files carries only 2 digits, to cater for Y2K
problem, one way is to apply the 49/50 rule to
determine the century. This is shown in the
program listed in Figure 1. The control flow
graph of this program fragment is shown on
Figure 2. The defhse graph is shown on Table 1.

i * Read year of today's data and expire date */
i read Today-Vear;
I readExp-Year;

' P Set up today's year using 49/50 Rule */
if (Today-Vear < 50)

!

r' TOday-Vear = zwo + loday-vear; I b2

1 b3

1

(
else

Today-Vear = 1900 + Today-Vear; -
j

else

&p indicator = lSM)+Exp Year -Today Year; J b6
1 .. .

-I b7 --
:>de Continues

Figure 1. Program Pseudo Code

In this Y2K example, edge coverage, l3 = {
(1, 2), (I, 3), (4, 5), (4, 6) 1. Two complete
paths (1, 2, 4, 5) and (1, 3, 4, 6) can have
already fulfill the edge coverage criteria.

Semantically, (1,2,4,5) tests the case:

Case 1: Both Today's Date and Expire Date in
19XX.

(1,3,4,6} tests the case:
Case 2: Both Today's Date and Expire Date in

20xx.

Figure 2 . Control Flow Graph

Table 1. DefIUse Graph

Unfortunately, two cross-century cases are
not tested. They are:
Case 3: Today's Date in 19XX and Expire Date

Case 4: Today's Date in 20XX and Expire Date

These 2 cases should indeed be focused by
the Y2K compliance test but they may be missed
out by the all-edge criteria.

On the other hand, consider the all-uses (or
just all-c-uses in this case) criteria, for every
node i and every x E def(i), the selected paths
should include a def-clear path w.r.t. x from i to
all elements of dcu(x, i). Review the dcu of our
example:

in 20XX.

in 19XX.

dcu(Today-Year, 2) = {59 61
dcu(Today-Year, 3) = (5,61

Paths from node 2 to node 5 and also node 6
are required. Furthermore, paths from node 3 to
node 5 and also node 6 are required. Therefore,
to satisfy the All-Uses criteria, despite paths { 1,
2 , 4 , 5) and 11,3, 4 6 1 , (1 , 2 , 4 , 6) and 11,3,4,
5) may be included. Not only the criteria c-use is
stronger, but also it really reveals the semantic of
the real-world testing requirements of test cases

328

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:12 UTC from IEEE Xplore. Restrictions apply.

construction. That is, all conditions are
included:
Case 1: Both Today’s Date and Expire Date in

Case 2: Both Today’s Date and Expire Date in

Case 3: Today’s Date in 19XX and Expire Date

Case 4: Today’s Date in 20XX and Expire Date

19XX.

20xx.

in 20xx.

in 19XX.

3. Survey on Coverage Testing Tools
for COBOL on Mainframe
Platform

ATAC (Automatic Test Analysis for C) was
developed and used as a research instrument for
coverage testing in C programs [5] [6]. It has
been applied [7] and commercialized as xATAC
in the Software Understanding System package,
XSuds. We can identify the following
capabilities of ATAC in the software testing
process:
0 measuring test set completeness by control

and data flow coverage;
displaying non-covered code to facilitate
test cases creation;
reducing regression test set size by
determining minimal test set out of total
tested cases.

Potentially, ATAC can be applied to
effectively select randomly generated test cases.
The coverage measurement process is nearly
transparent to the tester. At any time of the
testing, ATAC can display summary of the
coverage and uncovered codes. It can also
determine minimal test set for an optimal
coverage. Therefore, the selected minimal test
set can be used for regression test to minimize
testing cost.

We surveyed the available coverage testing
tools for COBOL language on IBM mainframe
platforms. Comparison was made between these
coverage tools. From this survey, we found that
the mainframe industry lacks the coverage tools
that support the data flow coverage measure.

3.1 Status of COBOL on the Mainframe
Platform

COBOL is the major high level language
employed in IBM OS/390, MVS, VM

mainframe environment. COBOL language is
still one of the strategic and supported products
of IBM mainframes. Versions of COBOL
emerge continuously in the mainframe industry.
Many organizations, especially the business
sector, have millions of dollars invested in
COBOL-based systems and in COBOL
programmers who create and maintain the
applications. COBOL applications are
performing mission critical applications in the
business world that the users do not really want
to retire them.

A large number of users/programmers are
very pleased with their COBOL applications,
except that they simply want to move them to
open systems or clientherver architectures. In
many cases, rewriting programs in other
languages is costly and risky. Modemizing a
COBOL application is often the altemative with
the least cost, least developing time, and least
risk. Many COBOL developers like IBM,
Computer Associates (CA), ACUCORP and
Intersolv have invented new versions of
COBOL, modemizing COBOL compilers that
supports an open system, where a clienthemer
configuration might take relatively little time and
effort to set up.

In conclusion, we believe that COBOL will
last long in the mainframe platform. To renew
and to import new technologies to the mainframe
COBOL programming environment is necessary
and rewarding.

3.2 COBOL Coverage Tools on the
Mainframe

In this survey, COBOL coverage products of
four major software vendors in the mainframe
industry are selected for evaluation. Table 2
compares the features of these tools. Paragraph
in COBOL is similar tofunction in C language.
Paragraph coverage directs the tester to construct
test cases that each paragraph in COBOL is to be
covered at least once.

From Table 2, we can identify that the IBM
Code Assistant possesses the most complete
features. Additional features like visual aid and
tracing of specified coding vary from products to
products. CA-Testcoverage and IBM Code
Assistant execute programs under a normal
execution environment for coverage
measurement while SMARTTEST and
XPEDITER requires the measurement to be
taken on a dedicated debugging environment.

329

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:12 UTC from IEEE Xplore. Restrictions apply.

Table 2. Mainframe COBOL Coverage Tools

IBM Code Assistant is able to provide
advanced features like test set minimization.
XPEDITER of Compuware makes use of PC
platform to present the result in a graphical and
user-friendly way. None of them, however,
supports data flow coverage measurement.

Compuware IBM

I

XPEDITEW I Coverage Assistant
Code Coverage I (CA)

MVS, OS1390 MVS, OS1390
and Microsoft Windows 3.X
I95
(for viewing result)
Testing program loaded under
the debug environment
XPEDITER executed normally

Statement coverage, Statement coverage
paragraph coverage
Edge coverage Edge coverage

Program compiled by
specific compiler and

Present NIA

Present by complementary
using Distillation Assistance
(DA) under the same
software package
Execution time measured is
considered as the cost

Present manually: Present by complementary
Segments of program can be using of Source Audit
highlighted to trace Assistant (SAA) under the

same software package
-High-level, system-level -Summary statistics report
graphical structural chart for
IT manager -Targeted Coverage Report

-Colored code to indicate
branches and complexity

-Annotated Listing Report

Advise risk degree of a
program based on the
coverage, execution count,
verb types and McCabe
metric

Execution time is measured

From this product survey, we notice that the
mainframe industry still lacks software testing
tools to make use of the data coverage technique.
In view of that, we designed and implemented a
testing coverage tool named ATACOBOL for
the mainframe COBOL program development.

330

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:12 UTC from IEEE Xplore. Restrictions apply.

4. Implementation ATACOBOL is composed of four major
components :

4.1 Overview

The instrumentation, coverage measurement and
analysis of ATACOBOL are implemented across
mainframe and PC platforms. The ATACOBOL
instrumentation and analysis program tools are
written in C language using the Microsoft Visual
C++ 6.0 Compiler. A version of COBOL code
called the S-COBOL (structured COBOL) of
Application Productivity System (APS)
Development Center provided by Intersolv is
selected as the target language for analysis. The
S-COBOL is introduced to one of the authors’
working environment since 1986 and all batch
programs are mostly written in S-COBOL.

4.2 Environment Setup

Coverage measurement of ATACOBOL is
currently achieved across IBM OS/390 and
Microsoft Windows 95 by the aid of file transfer.
The steps of the whole process are illustrated in
Figure 3.

4.3 ATACOBOL Architecture

The use of ATACOBOL involves 3 phases
consequently:

Instrumentation Phase: The S-COBOL source
is instrumented on PC according to the structural
information extracted from the source and
compiled listing.
0 Testing Phase: The instrumented source is
compiled and testing is carried out on mainframe
as usual. Program execution is traced
automatically.

Analysis Phase: The trace log is downloaded to
PC and analyzed to take coverage measurement.

1. Retrieve p m p m source from code databasc

5. Perform program testing

3, h S m e n t

7. Perform coverage measurement

4 Upload the lnstrumentcd source

b

Figure 3. ATACOBOL Testing Setup

Code Parser: The ATACOBOL Code Parser
analyzes S-COBOL source code and produces
two files: Control Flow Information File and
Data Flow Information File. In developing the
parser, some techniques used by classic
compilers [8] are applied while shortcuts that
take advantages from the features of S-COBOL
are also considered.

S-COBOL uses indentation, not punctuation,
to control program logic: therefore, blocks can
be parsed easily by the indentation of statements.
Control Flow Information File contains control
flow information about the source program for
use by the ATACOBOL Code Instrumenter.
Both files are employed in the analysis phase.

To build the Data Flow Information File,
macros and variables defined in the program
listing are parsed to form a variable table. For
each block, variables are scanned and assigned
to the DefWse graph.

0 Code Instrumenter: From the Control Flow
Information File, ATACOBOL Instrumenter gets
information about blocks and their
corresponding positions in the S-COBOL source
file. Then ATACOBOL inserts codes with
correct alignment to the source. The purpose of
the inserted codes is to call the ATACOBOL
Runtime Module passing with a unique block
identifier as the parameter. This unique block
identifier is composed of the paragraph number
and the node number.

When a block is executed during the testing,
the Runtime Module logs down the paragraph
number and the block number as an identifier.
As a result, the execution path can be traced.

Runtime Trace Module: Up to the current
implementation, the COBOL system call
“DISPLAY” is employed as the Runtime
Routine. It outputs the trace log to the SYSOUT
(System Output) of OW390 JES2 job-held
queue. Its function is similar to an output file.

The SYSOUT is captured after testing as the
input to ATACOBOL Coverage Analyzer. For
further development, a discrete Runtime Module
could be written in IBM 370 Assembly
Language and writes the output to user defined
trace log files. It would then be able to support
specific function in the customized runtime
module.

33 1

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:12 UTC from IEEE Xplore. Restrictions apply.

0 Coverage Analyzer: The ATACOBOL
Coverage Analyzer takes the Control Flow
Information File, Data Flow Information File
and Trace Log as inputs. It performs several
levels of coverage measurements.

ATACOBOL Analyzer finally outputs
reports about the coverage measurement,
including a summary report of the percentage of
coverage per paragraph and uncovered blocks,
decision edges, c-uses or p-uses.

These components work co-operatively to
perform coverage measurement as illustrated in
Figure 4.

,+, SCOBOL P m p m So-

17 S-COBOL Compiler

Trace Log
taken by Runtime

4 I
Executable Objca Linker

Module Load Module

Figure 4. ATACOBOL Architecture

5. Enhanced Rules for Selecting
Def/Use Pair

Modem practical computer language contains
data structure of variables (e.g. structi} in C
language). Figure 5 shows a section of live data
definition in APS COBOL. COBOL
programmers used to collect variables under the
same data structure label for documentation
reason rather than any intrinsic relationship
among the variables. Each variable is an
individual counter, collected under the data
(variable) labeled ‘COUNTERS’.

05 COUNTERS.
SKIP1
10 LINE-CNT PIC 9(2) VALUE 80.

88 PAGE-OVERFLOW VALUE 76 TRRU 80.
10 LINE-CNT1 PIC 9(2) VALUE 80

10 LINE-CNT2 PIC 9(2) VALUE 80.

10 PAGE-CNT PIC 9(2) VALUE 0.
10 PAGE-CNT1 PIC 9(2) VALUE 0.

88 PAGE-OVERFLOW1 VALUE 76 TBRU 80.

88 PAGE-OVERFLOW2 VALUE 76 THRU 80.

10 PAGE-CNT2 PIC 9 (2) VALUE 0

Figure 5 . Live APS COBOL Structural Data
Definition

The definition of data flow coverage
proposed by [2] is based on an ideal and simple
language. Def/Use relationship needs to be
enhanced to for adaptation to modem data
structures. A formal definition of the enhanced
rules are given as follows:

Let i, j be variables in a structur., and
CompStruct(i, j) be a function that reti a the
hierarchical relationship between i and j , ien

CompStruct(i, j) = TRUE
if i = j , or i is the parentlgrandparent j , or j is
the parenvgrandparent i
CompStruct(i, j) = FALSE otherwise

Now, we re-define the two functions defined

0 dcu(x, i) is the set of all nodes j such that
x E c-useb) and for which there is a der-clear
path w.r.t. x from i to j , given ComDStructk j)
= TRUE.

0 dpu(x, i) is the set of all edges U, k) such
that x E p-useu, k) and for which there is a
def-clear path w.r.t. x from i to j , given
CompStruct(i, i) = TRUE.

in Section 1:

6. Measurement

6.1 System Description

In this section, ATACOBOL is applied with
live production programs and test cases. The
system under measurement is the batch pro;xams
of an interface system of a bank’s main’ .ame
application to Real Time Gross Settlc nent
System (RTGS) in Hong Kong [9].

332

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:12 UTC from IEEE Xplore. Restrictions apply.

number of c-uses and p-uses, other factors also
affect the reliability of a software system.

However, the number of blocks, number of c-
uses and number of p-uses increased are highly
correlated as reflected in Figure 7. This makes it
difficult to distinguish the impact of the data
flow to software reliability. It requires extensive
experiments to collect more statistics in order to
get a clear picture on the effects of c-uses and p-
uses to software reliability.

Table 3 . Module Amendment Statistics

Figure 6 . System Overview

Figure 6 shows the overview this system. The
Online Banking Systems are developed in IBM
370 Assembly Language. A procedure consists
of 1 to 5 modules, mostly written in S-COBOL
language for off-line execution. There are three
online procedures that create real-time spools to
the Online Banking Systems.

6.2 Number of C-Use and P-Use vs.
Number of Faults

Shaded procedures in figure 6 are selected for
this measurement. There are totally 21 modules
(say module M1 to M21) developed in A P S
COBOL for the selected procedures. The module
history and source can be retrieved from the
version control system of the development
environment (see Table 3). Problem/Change
Reports during March 1998 to February 1999 are
also collected (see Table 4). The information is
plotted in Figure 7 and Figure 8, respectively.

From the graphs, we observe two peaks in the
program size changes. These two peaks,
occurring in July and January, reflect two major
releases at that time. Refemng to Figure 8,
during the first major release, the complexity of
the modules (number of blocks, edges, c-uses
and p-uses) increased as the number of faults
reported also increased. The number of faults
was reduced as program f i e s were released. In
September, as the number of transactions
handled by the modules released in July
increased, new problems broke out. This
accounted for the higher fault rate in September.
Overall, the graph shows that other than the

Table 4. Module Failure Statistics

I Month I No. of Problem Reported 1

333

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:12 UTC from IEEE Xplore. Restrictions apply.

+Source Lines Increase
--t- Blocks Increase - - * - - Edges Increase
+--Uses Increase + P-Uses Increase

+ increase of C-Uses
- - * - -increase of P-Uses

. ~

Figure 8. Number of Failure with C - and P - Us
es Changes

6.3 Data Flow Coverage of Live Test
Cases

Three modules (say 01, 0 2 and 0 3) are
selected for coverage measurement with the
system test and user acceptance test cases before
their last release.

The measurement shown in Table 5
demonstrates ATACOBOL's ability to measure
production scale modules. 0 1 is a newly created
module. In the system test and user acceptance
test, its functionality is tested thoroughly. On the
other hand, 0 2 and 0 3 are enhanced versions.
Only their enhanced features are thoroughly
tested while few basic features are re-tested with
representative regression test cases. The

coverage for 0 2 and 0 3 is, therefore, relatively
low. It would be useful if the measurement tool
can focus only on the affected parts of a program
enhancement.

For further measurement, we would measure
the increase in number of test cases against the
percentage of coverage. The behavior of growth
of coverage relates to the organization of the
program. If the program has evenly distributed
coding on various functions, the growth curve
would linearly increase. On the other hand, if the
program has a large piece of common mainline,
the growth curve is expected to increase fast first
but gradually slow down.

Table 5. Live Test Result Using ATACOBOL

6.4 The Usefulness of Enhanced Rules on
Data Structures

In the current ATACOBOL implementation,
it supports three hierarchical levels of data
structure representation. Module 0 2 is used to
compare the difference if elements of a data
structure are not distinguished from each other.
This experiment is achieved by modifying the
variable table to wipe away level 2 and level 3
identifier of a variable.

The experimental result shown in Table 6
reveals that nearly doubled amount of c-uses and
p-uses are identified by ATACOBOL if the
enhanced rules are not applied. That means

334

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:12 UTC from IEEE Xplore. Restrictions apply.

almost the same amount of c-uses and p-uses are
incorrectly defined and should be eliminated.

All elements in a data
structure are

Table 6 . DeflUse Pair Extracted by Different
Rules

Using enhanced
rules as described in

uses
found

I considered as the same I section 5.
I No. of c- I 5073 I 3156

1
[uses I I I

found I I
No. of p- I 3066 [1589

7. Conclusions

We have surveyed the literature about
coverage techniques and evaluated practical
software tools applied for coverage techniques.

ATACOBOL, a coverage measurement tool
for COBOL in mainframe, is designed and
implemented. ATACOBOL is written in C
language. It carries out instrumentation and
measurement across the mainframe and PC
platforms. ATACOBOL is able to perform
block, decision, c-use and p-use coverage
measures.

The importance of data flow coverage criteria
in identifying real-world Y2K-related
problematic paths is also demonstrated.
Moreover, we have enhanced the rules of data
flow coverage by adapting high-level data
structures for a more accurate measure.

ATACOBOL is applied to measure live
programs from the banking sector with live test
cases. With the extensive application of
ATACOBOL, we hope to explore more about
the usefulness of data flow coverage, and the
relationship between coverage and reliability.

Acknowledgement

References

Lyu, M. R. (ed.), Handbook of Software
Reliability Engineering, McGraw-Hill, 1996.

Clarke, L. A., Podgurski A., Richardson, D. J.,
and Zeil, S. J., “A Formal Evaluation of Data
Flow Path Selection Criteria,” IEEE Transactions
on Software Engineering, vol. 15, no. 11, 1989,
pp. 1318-1332.

Rapps, S., and Weyuker, E. J., “Selecting
Software Test Data Using Data Flow
Information,” IEEE Transactions on Software
Engineering, vol. 11, no. 4, 1985, pp. 367-375.

Frankl, Phyllis G., and Weyuker, Elaine J., “An
Applicable Family of Data Flow -Testing
Criteria,” IEEE Transactions on Software
Engineering, vol. 14, no. 10, 1988, pp. 1483-
1498.

Horgan, J. R., and London, S., “A Data Flow
Coverage Testing Tool for C,” Proceeding of the
2& Symposium on Assessment of Quality
Software Development Tools, 1992, pp. 2-10.

Lyu, M. R., Horgan, J. R., and London, S., “A
Coverage Analysis Tool for the Effectiveness of
Software Testing,” IEEE Transaction on
Reliability, vol. 43, no. 4, 1994, pp. 527-535.

Horgan, J. R., London, S., and Lyu, M. R.,
“Achieving Software Quality with Testing
Coverage Measure,” IEEE Computer, vol. 27, no.
9, 1994, pp. 60-69.

Aho, A. V., Sethi, R., and Ullman, J. D.,
Compilers: Principles, Techniques, and Tools,
Addison Wesley, 1986.

Beecham, B. J., Monetary and Financial System
in Hong Kong, Hong Kong Institute of Bankers,
2“d Edition, 1998.

The work described in this paper was
supported by a grant from the Research Grant
Council of the Hong Kong Special
Administrative Region (HKSAR), with Project
No. CUHK4432/99E.

335

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:12 UTC from IEEE Xplore. Restrictions apply.

