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Abstract 1 Introduction 

Fault tolerance is a survival attribute of complex 
computer systems and software in  their ability to de-  
liver continuous service to their users in the presence of 
faults. Formulating an analytic model for dependabil- 
ily and performance evaluation o f  hardwarelsoftware 
fault tolerant architectures can be quite cumbersome. 
Also, in practice, isolating the effect of various param- 
eters on a system, while holding the others constant 
requires exploring a variety of scenarios. It is econom- 
ically infeasible to build several such systems. Simu- 
lation offers an attractive mechanism for  dependabil- 
ity evaluation and the study of the influence of vari- 
ous parameters on the failure behavior of the system. 
In  this paper, we develop algorithms to  simulate the 
failure behavior of three commonly used fault tolerant 
architectures, viz., Distributed Recovery Block (ORB),  
N -  Version Programming (NVP)  and N-Self Checking 
Programming (NSCP). We demonstrate the ability of 
the approach t o  simulate complex  failure scenarios with 
various dependencies using some illustrative numerical 
examples. 
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The size and complexity of modern software sys- 
tems embedded in sophisticated hardware has grown 
more rapidly in the past decade, than our ability to  
design, implement, test and maintain them. Faults in 
a computer system axe inevitable as the system com- 
plexity grows, and hence computer systems are often 
designed to  tolerate b'oth software and hardware faults, 
by configuring multiple software versions on redundant 
hardware. Fault tolerance is the survival attribute of 
computing systems or software in their ability to  de- 
liver continuous service to  their users in the presence 
of faults [a].  

Dependability and performance modeling of fault 
tolerant software has been done extensively [l, 61, for 
the quantitative evaluation of their relative and abso- 
lute merits. Most of these techniques do not, explic- 
itly consider hardware failures. Dugan et al. [4] model 
fault tolerant architectures providing a unified toler- 
ance to  both hardware and software faults in a hier- 
archical manner. Formulating an analytical model of 
a system, which employs both hardware and software 
fault tolerance, can be quite cumbersome. Rate-based 
simulation can offer an attractive mechanism to  study 
the combined influence of hardware and software fail- 
ures, and the possible interactions between them on 
the overall failure behavior of a system. Also, the ul- 
timate success of modeling is governed by the avail- 
ability of comprehensive, complete and consistent da ta  
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sets. Fault tolerant systems are inherently complex 
due to various dependencies between the software and 
hardware components, and hence collection of compre- 
hensive and homogeneous data  sets for such systems 
is a formidable task. Also, in practice, isolating the 
effect of various parameters on a system, while hold- 
ing the others constant requires exploring a variety of 
scenarios. It is economically infeasible to build several 
systems with diKererit values/levels of the factors of in- 
terest. Simulation can also provide a viable mechanism 
to supply carefully controlled, homogeneous da ta  sets, 
and to  study the overall failure behavior of a system as 
well as the influence of various pnrameters/factors on 
the failure behavior. 

The layout of the paper is as follows: Section 2 
presents an overview of rate-based simulation tech- 
nique for non-homogeneous continuous time Markov 
chains (NHCTMCs) and briefly describes the three 
fault tolcrant architectures studicd hcrc, Section 3 dis- 
cusses various assumptions based on which the algo- 
rithms are developed, Section 4 describes combinations 
of software and hardware failures that could lead to a 
system failure, Section 5 presents some illustrations to 
demonst,rat,e the abilit,y of simula.t,ion to study the fail- 
ure behwior,  and Sectmion 6 concludes the paper and 
discusses directions for future research. 

2 Background 

2.1 Simulation for NHCTMCs 

In this section we provide an overview of rate based 
simulation technique which forms the basis of this 
paper. The failure behavior of an individual com- 
ponent can be described by a process belonging to 
a class of non-homogeneous continuous time Markov 
chains (NHCTMCs). The stochastic process of in- 
terest, { X ( t ) } ,  is the number of faults activated in 
the component, and depends only on a rate function 
X(n,, t ) ,  where n, denot,es t,he stat,? of t,he syst,eml and is 
t,he number of fanlt,s detectred iipt,o time t .  The condi- 
tional probability that an event occurs in the infinitesi- 
nial interval ( t ,  t+dt )  is given by X(n, t ) d t .  If we assume 
that  the number of faults detected at t = 0 is 0 ,  then 
the state of the system is 0 a t  time t = 0,  the fault 
detection rate is given by X ( O , t ) ,  and the probability 
that a fault will not be detected in the time interval 
(O,t), denoted by Po(t), is given by: 

'System in this section is a single component 

/* Input parameters and functions are assumed 
to be defined at this point */ 
double single-event(doub1e t, double dt, 
double ( *lambda) (int ,double)) 

int event = 0; 
while (event == 0) 
c 
if (occurs(lambda(n,t) * dt)) 

t += dt; 

return t ; 

c 

event ++; 

1 

1 

Figure 1. Single Event Simulation Routine 

where 
P t  

X ( 0 , t )  is often referred to  as failure intensity, since 
the events of interest are failures, and mo(0, t )  is the 
mean value function. The  subscript 0 on mo(0,t) in- 
dicates that no failure have occurred prior to  time 
t = 0. The cumulative distribution function F l ( t )  and 
the probability density function fl(t) of the t,ime to 
occurrence of t,he first event are t,hen given by [13]: 

F l ( t )  = 1 - PlJ(t) = 1 - e-mo(oJ) 

f i ( t )  = --F1(t) = X(O, t )e - (OJ)  

( 3 )  

(4) 

and 
d 
dt 

Expressions for occurrence times of further events 
are rarely analytically tractable [13]. These processes 
are also known as conditional event-rate processes [ll]. 

The Occurrence tiimc of the ( n  + l)st event of the 
NHCTMC based process described above can be gen- 
erated (sampled) using the C-like routine shown in Fig- 
ure 1 [ll], The function s ingle-event ( )  returns the oc- 
currence time of the ( n  + l)st event. In the routine 
above, o c c u ~ s ( 2 )  compares a random number with 2 ,  

and retiirns 1 if random() < 2 ,  and 0 otherwise. This 
routine is the basis of all the algorithms developed in 
this paper. 

2.2 Fault Tolerant Architectures 

In this section we briefly discuss the t,hree systpm ar- 
chit,ectures, viz., Distributed Recovery Block(DRB), N- 
Version Programming(NVP) and N Self-checking Pro- 
gramming (NSCP), studied in this paper. Each system 
is characterized by the number of software variants, the 
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number of hardware replications, and the decision al- 
gorithm. 

2.2.1 Distributed Recovery Block (DRB) 

The recovery block (RB) [lo] approach t o  software fault 
tolerance consists of a set of diverse program versions 
called alternates, along with an error detection routine 
known as the Acceptance Test (AT). The  acceptability 
of a computation performed by the primary is deter- 
mined by an acceptance test. If the results are deemed 
unacceptable, the state of the system is rolled back to  
that  on entry to the RB and a spare is execut,ed. This 
process is repeated until an acceptable result is deliv- 
ered or no more alternates are available. Alternates are 
designed to  provide the same functionality as the pri- 
mary but  deliberately as independent as possible. The  
Distributed Recovery Block (DRB) proposed by Kim 
et. a1 [7] provides a way of combining hardware redun- 
dancy with recovery blocks. The RB/1/1 [8] structure 
used in this study and is obtained by the duplication 
of RB composed of two alternates and an acceptance 
test on two hardware components. 

2.2.2 N-Version Programming (NVP) 

The NVP method employs N independently devel- 
oped, functionally equivalent software versions, from 
the same initial specification, to perform the same 
task [3]. The  programming efforts are carried out by N 
individuals or groups that  do not interact with respect 
to  the programming process, so that the versions are as 
diverse as possible. These versions are executed in par- 
allel using identical inputs, and their outputs are col- 
lected and evaluated by a decider/voter/adjudicator. 
In the event that  all the outputs do not match, the out- 
put  produced by the majority of the versions is taken 
t o  be correct. The  NVP/1/1 [8] system studied here is 
assumed t o  have three identical hardware components, 
each running a distinct software version. 

2.2.3 N Self-checking Programming (NSCP) 

The  NSCP/1/1 [SI architecture considered in this study 
is comprised of four software versions and four hard- 
ware components, each grouped in two pairs, essen- 
tially dividing the system in two halves. The  hardware 
pairs operat'e in hot standby redundancy with each 
hardware component supporting one software version. 
The  version pairs form self-checking software compo- 
nents, so that  error detection is done by comparison. 
The  four software versions are executed and the re- 
sults of the two versions executing in each half of the 
system are compared. If either pair of results do  not 

match, they are discarded and only the remaining two 
are used. If the results do match, the results of the 
two pairs are then coimpared. A hardware fault causes 
the software version running on it to  produce incorrect 
results, as would a fault in the software version itself. 
This results in a discrepancy in the output of the two 
versions, causing that pair to  be ignored. 

3 Simulation Assumptions 

In this section, we describe the assumptions regard- 
ing the failures of the software versions, permanent and 
hansient hardware failures, failures of the acceptance 
test/voter, and coincident failures among versions. The 
simulation algorithms are based on these assumptions. 

Task Computation: We assume that the com- 
putation being performed is a task or (a set of 
tasks) that  is repeated periodically. A set of sen- 
sor inputs is gat,hered and analyzed and a set of 
actuations are produced. Each repetition of the 
task is independent. We do not address timing 
or performabilitl issues in this study. The inter- 
ested reader is referred to  [la] for a performability 
analysis. 

Failures of software versions 
and AT/Decider: We assume that the failure 
process of the versions/alternates and acceptance 
test/voter can be described by the failure intensity 
function associated with one of the six software 
reliability growth models [ll]. Most of t,he exist- 
ing approaches to  dependability modeling of fault 
tolerant systems #either assign a fixed failure prob- 
ability or a constant failure rate to the software, 
except the one by Kanoun et a1 [6]. Simulation 
can easily accommodate reliability growth of the 
software versions, as we will see in the sequel. 

Coincident errors: When two software ver- 
sions fail, they produce either similar or dif- 
ferent erroneous results. We use the Ar- 
lat/Kanoun/Laprie [l] terminology for software 
failures and assume that  similar erroneous, or 
identical-and-wrong (IAW) results [9] are caused 
by related software faults, and different erroneous 
results are caused by unrelated or independent 
software faults. \Ne also assume that  related and 
unrelated software faults are mutually exclusive. 

Permanent hardware faults: The rate of oc- 
currence of a permanent hardware fault is assumed 
to  be time independent. 
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Transient hardware faults: They are modeled 
separately from permanent hardware faults. A 
transient hardware fault is assumed to  upset the 
software running on the processor and produce an 
erroneous result which is indistinguishable from an  
input activated software error. We assume that 
the lifetime of a transient hardware fault is shorter 
when compared to  the length of task computation. 
We assume that  a hardware transient fault occurs 
with a fixed probability during each time frame. 

Fault Treatment: No fault treatment mecha- 
nisms are employed to make a faulty software 
version passive. Should a version produce an  
incorrect result as detected by the acceptance 
test/voter, i t  is still kept in the system architec- 
ture and supplied with new input data  [l]. 

Most of the assumptions described above, except the 
one which assumes tha t  related and unrelated faults are 
mutually exclusivq, are the same as in [4]. Software 
error detection is performed at the end of each time 
frame of fixed duration. 

4 Failure Scenarios 

In this section, we describe various combinations of 
software and hardware failures for the three fault tol- 
erant architectures that  could lead to a system failure. 
Simulation programs for these failure scenarios have 
been developed. 

4.1 DRB System 

The recovery block is executed on redundant hard- 
ware in the initial configuration, and can lead to  an 
unacceptable result if the software recovery block fails, 
or a transient fault occurs in both the hardware hosts. 
The  software R B  can fail as follows: the execution 
of the primary can (1) result in a success, ( 2 )  acti- 
vation of an independent fault, ( 3 )  activation of a re- 
lated fault between primary and secondary, or (4) the 
activation of a related fault between primary and ac- 
ceptance test. An independent fault can be activated 
in the acceptance test after the activation of an inde- 
pendent fault in the primary. The  activation of a re- 
lated fault between primary and secondary or primary 
and AT leads to a failure. Thus the secondary alter- 
nate is executed only when an independent fault has 
been activated either in the primary and/or AT [l]. 
The activation of a fault in the secondary alternate 

leads to  an unacceptable result, and hence an unre- 
liable operation of the RB. The  activation of an in- 
dependent fault in the acceptance test after the suc- 
cessful execution of the secondary also leads to a fail- 
ure. Further distinction of the fault activated in the 
secondary into related/independent is necessary from 
the point of view of safety analysis, since they lead to 
undetected/detected failures respectively. After the oc- 
currence of a permanent hardware fault, the DRB is re- 
configured and a single copy of the RB is executed. An 
unacceptable result in the reconfigured mode of opera- 
tion can be caused by an error in the RB, or a transient 
failure of the hardware host on which the software is 
executing. Thus the key difference between the initial 
and the reconfigured mode is the reduction in hardware 
redundancy. 

4.2 NVP System 

The 3-version programming system consists of three 
software versions running on three different processors, 
and hence different failure scenarios, including related 
and unrelated software faults, hardware transients, and 
combination of hardware and software faults must be 
considered. The NVP system in its initial configura- 
tion can fail from several causes: (1) if two of the three 
versions activate unrelated faults, or if any related fault 
between two versions is activated; (2) if the input acti- 
vates a fault which affects all three versions or a fault 
in the voter; ( 3 )  two of the three processors experience 
faults; and (4) if a hardware host fails and one of the 
software version on the other host also fails (via an 
unrelated or related fault) [4]. Thus the activation of 
either an independent or a related fault between two or 
three software versions leads to an unreliable behavior 
of the NVP system. The  activation of an independent 
fault leads to a detected failure, whereas the activation 
of a related fault leads to an undetected failure. We 
assume that  the system is reconfigured to  the simplex 
mode after the first permanent hardware fault. In this 
reconfigured state,  an unacceptable result is produced 
by either a hardware transient or a software fault acti- 
vation. 

4.3 NSCP System 

The  NSCP system is vulnerable to related faults, 
whether they involve versions running in the same or 
different half of the system. We have ignored the pos- 
sibility of a related fault among all three versions to 
enable comparisons with NVP and DRB systems. The  
various causes due to  which NSCP system can fail in its 
initial configuration are: (1) any two versions activate 
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related faults; (2) activation of a related fault among 
all four versions, or voter failure; (3) activation of inde- 
pendent faults among two versions, if the versions are 
running on two hardware hosts in two different halves; 
(4) activation of an independent fault in two versions 
in the same half of the system and the activation of a 
transient fault in the hardware host in the other half; 
and (5) activation of a transient hardware fault in each 
half of the system. The  key difference between NVP, 
DRB and NSCP systems is that  in case of NSCP, two 
independent faults in the software versions can be tol- 
erated as long as they occur in the same half of the 
system, and the hardware host in the other half does 
not fail. 

# 1 
# 2 
it 3 

5 Numerical Results and Discussion 

34 * 0.0057 * e(-o.oo57**) 
34 * 0.0020 * e ( - 0 . 0 0 2 0 * t )  

3.4 * 0.0020* e(-' 0020**) 

In this section, we describe the results of the sim- 
ulation of the failure behavior of the three systems. 
The failure profile is expressed in terms of the expected 
number of failures experienced by the system over a pe- 
riod of time. The rate functions and the values of the 
parameters chosen are merely to  demonstrate the util- 
ity of simulation, and are not based on any systematic 
experimental study. 

Without loss of generality we assume that the fail- 
ure intensities of the versions / alternates / voter / AT 
are given by the failure intensity of the Goel-Okumoto 
model [5]. Thus X(n, t )  = a b e P b t ,  where a is the ex- 
pected number of faults that  would be detected given 
infinite testing time, and b is the failure occurrence rate 
per fault. The  failure intensities used in this study are 
summarized in Table 1. The parameters of Failure In- 
tensity # 1 are estimated from NTDS data  [5]. Ini- 
tially, we study the vulnerability of the fault tolerant 
architectures to  related faults among software versions. 
The failure intensity of the AT / voter is assumed t o  
be Failure Intensity # 4 in this case. The effect of 
the failure behavior of AT/voter on the overall failure 
behavior of the fault tolerant architectures was stud- 
ied next. The  probability of a related fault among the 
software versions was set to  a very low value in this 
case. Simulations were carried out by setting the fail- 
ure intensities of the acceptance test / voter to  all the 
four intensities in Table 1. Figure 2,  Figure 3 and Fig- 
ure 4 show the expected number of failures for vari- 
ous values of correlation and failure intensities of the 
acceptance test/voter, for DRB, NVP and NSCP, re- 
spectively. The  figure also shows the expected number 
of faults that  would be detected from a single version 
with the same failure intensity, for the sake of com- 
parison. Initially we assume that  the hardware hosts 
are perfect, by setting the probability of activation of 

Table 1. Failure Intensities of 
AT/Voter/Versions/ Alternates 

I .. , 1 Failure Intensity # 4 I 0.34 * 0.0020r e ( - 0 . 0 0 2 0 * * )  1 

a transient hardware fault, and rate of occurrence of a 
permanent hardware fault to  0.0. Figures 2 ,  3 and 4 
depict that  for a given value of the probability of a re- 
lated fault, the expected number of failures is highest 
for NSCP, followed by NVP, followed by DRB. This 
could be attributed to the fact that  NSCP has four 
software versions executing in parallel, NVP has three, 
while two versions execute sequentially in case of DRB. 
Also, as the probability of a related fault increases, re- 
lated fault increases. the expected number of failures 
increases, and after a" certain threshold probability, the 
single version soft'ware is in fact less failure-prone than 
the fault tolerant software. The  expected number of 
failures increases as the failure intensity of the AT / 
voter ranges from Failure Intensity #4 to  Failure In- 
tensity #l. 

We then compared the failure profiles of DRB, NVP, 
NSCP and a single version. An extreme case of an ac- 
ceptance test is another module. The expected number 
of failures observed by DRB and NVP systems in this 
extreme situation (assuming that  NVP system has a 
perfect voter), was comparable. The  expected number 
of failures of NSCP s,ystem is higher than NVP system, 
followed by the DREl system. The  probability of a re- 
lated fault among two versions is assumed to  be 0.1, 
and the probability of a related fault among all ver- 
sions is assumed to  be 0.0. For a low probability of a 
related fault among software versions, fault tolerance 
does improve the reliability of a system over a single 
version. NSCP system experiences a larger number of 
failures than NVP, and hence is more unreliable than 
NVP. 

Failures experienced by a fault tolerant system can 
be classified into two categories, viz., detected and un- 
detected. Undetected failures lead to  an unsafe opera- 
tion of the system, a.nd it could be highly undesirable 
if the system is a part of a safety-critical application. 
Simulation was used to  compute the percentage of un- 
detected faults for N V P  and NSCP systems, for differ- 
ent values of the probability of a related fault among 
two versions, which is the most comon source of unde- 
tected failures. The  effect of the probability of a related 
fault was studied assuming a perfect voter. The results 
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Expected Number of Failures YS Time 
< m a  of Car.i.(ml 

Figure 2. DRB - Failure Behavior in the Absence of Hardware Failures 

Figure 3. NVP - Failure Behavior in the Absence of Hardware Failures 

Figure 4. NSCP - Failure Behavior in the Absence of Hardware Failures 

Percentage of Undetected Faults YS Time Percentage of Undetected Failures vs Time 

Figure 5. NVP 81 NSCP - Percentage of Undetected Software Failures 
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are shown in Figure 5. 
Similar experiments can be conducted under the in- 

fluence of permanent and transient hardware faults. 
The  expected number of failures in case of all the three 
systems will increase, due to  the contribution of hard- 
ware faults. 

6 Conclusions and Future Research 

In this paper we have explored simulation technique 
t o  study the failure behavior of the three commonly 
used fault tolerant archit,ectures, viz., Distributed Re- 
covery Block (DRB) , N-Version Programming (NVP) 
and N-Self Checking programming (NSCP). We have 
demonstrated the ability of simulation to  study com- 
plex failure scenarios with interactions among the var- 
ious components comprising the system, by choosing 
the rate functions to  describe the reliability growth 
of the software versions, and failure probabilities and 
rates for the hardware hosts. The simulations have 
been used to  study the effect of various parameters 
like the probability of a related fault, failure behav- 
ior of the acceptance test/voter, etc. on the expected 
number of failures of the system. Simulation can also 
be used to  compute other metrics of interest like the 
mean time between failures (MTBF), expected num- 
ber of hardware failures, expected number of failures 
caused by related and independent software faults, ex- 
pected number of failures of the acceptance test/voter 
etc,. Simulations have been developed specifically for 
2 alternates in case of DRB, 3 versions in case of NVP, 
and 4 versions in case of NSCP, and are not scalable. 
Future work involves developing scalable simulations, 
and studying the influence of the other parameters like 
coverage etc. on the failure behavior of the system, 
along with faster and better simulation techniques. 
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