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Abstract

Software reliability measurement problem can be ap-
proached by obtaining the estimates of the residual number
of faults in the software. Traditional black-box based ap-
proaches to software reliability modeling assume that the
debugging process is instantaneous and perfect. The esti-
mates of the remaining number of faults, and hence reliabil-
ity, are based on these oversimplified assumptions and they
tend to be optimistic. In this paper, we propose a framework
relying on rate-based simulation technique for incorporat-
ing explicit debugging activities along with the possibility of
imperfect debugging into the black-box software reliability
models. We present various debugging policies and analyze
the effect of these policies on the residual number of faults
in the software. In addition, we propose a methodology to
compute the reliability of the software, taking into account
explicit debugging activities. An economic cost model to de-
termine the optimal software release criteria in the presence
of debugging activities is described. Finally, we present the
high-level architecture of a tool, called SRSIM, for the pur-
pose of automating the simulation techniques described in
this paper.

1 Introduction

Software reliability is accepted as a key attribute in soft-
ware quality, and is defined as the probability of failure-
free software operation for a specified period of time in a
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specified environment [11]. The residual faults in the soft-
ware system directly contribute to the failure rate, causing
software unreliability. Therefore, the problem of measuring
software reliability can be approached by obtaining the es-
timates of the residual number of faults in the software. The
number of faults that remain in the code is also an impor-
tant measure for the software developer, from the point of
view of planning maintenance activities. This is specially
true for the developer of a commercial off-the-shelf soft-
ware package that will run on thousands of individual sys-
tems. The reliability of a commercial software is important
to its users, however, the users never report their reliability
experience. They report the occurrence of a specific fail-
ure to the software development organization, with the pre-
sumption of getting the underlying fault fixed, so that the
failure does not recur. Thus commercial software organi-
zations focus on the residual number of faults, rather than
reliability as a measure of software quality [7].

A plethora of black-box software reliability models [4]
have appeared in the literature, and most of them, assume
that a software fault is fixed immediately upon detection,
and no new faults are introduced during the debugging pro-
cess. This assumption of instantaneous and perfect debug-
ging is impractical [15], and should be amended in order
to present more realistic testing scenarios. The time lag
between the detection and debugging of a fault is not ex-
plicitly accounted for in the traditional software reliability
models, as it complicates the failure process significantly,
making it impossible to obtain closed-form expressions for
various metrics of interest. However, the estimates of the
residual number of faults in the software is influenced not
only by the detection process, but also by the time required
to debug the detected faults. Debugging process thus affects
the number of faults remaining in the software and conse-
quently its reliability, and makes a direct impact on the qual-
ity of a software product. The other stringent assumption is
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Figure 1. Telecommunications software data

that of perfect debugging. Studies have shown that most of
the faults encountered by customers are the ones that are
reintroduced during debugging of the faults detected during
testing. Thus imperfect debugging also affects the residual
number of faults in the software, and can at times be a ma-
jor cause of its unreliability, and hence customer dissatis-
faction [9]. Figure 1 shows cumulative number of open and
closed modification requests (MRs) as a function of time
from a large telecommunications software project during
its development of a particular release. Open MRs repre-
sent the number of faults detected, and closed MRs repre-
sent the number of faults fixed. As can be seen from the
figure, at any given time, the number of faults fixed is less
than the number of faults detected. Whereas conventional
software reliability models cannot account for this differ-
ence between the detected and debugged faults, simulation
offers a powerful, yet simple alternative to take this differ-
ence into consideration. Data as shown in the Figure 1 can
be easily simulated as we will demonstrate in the sequel.

In this paper, we develop procedures to incorporate ex-
plicit debugging activity into the black-box models, and an-
alyze the effect of various debugging policies on the resid-
ual number of faults. We also present a procedure to incor-
porate imperfections in the debugging process. We propose
a methodology to compute the failure rate of the software
in the presence of debugging. An economic cost model
to determine the optimal release time of the software tak-
ing into account explicit debugging is also presented. The
simulation results could be used to guide decision making
regarding the allocation of resources towards testing and de-
bugging, so that a maximum number of faults are detected
and debugged in a cost-effective manner. Simulation can
enable us to assess quickly and safely the implications of
an intended resource allocation policy before it is imple-
mented. Controlled experiments to develop new insights
into the project and sensitivity analysis to the variations in
some of the resource factors can also be easily conducted
using simulation. In addition, we describe a software reli-
ability simulation tool (SRSIM) to automate the simulation

process. The objective of the tool is to encapsulate the simu-
lation techniques in a systematic, user-friendly environment
to allow practical applications.

The layout of this paper is as follows: Section 2 presents
an overview of non-homogeneous continuous time Markov
chains (NHCTMC) processes, and rate-based simulation for
these processes, Section 3 presents the simulation scheme
with debugging activities, which includes a discussion of
the debugging policies, imperfect debugging, a methodol-
ogy to compute the failure rate in the presence of debug-
ging, and an economic model to determine the optimal soft-
ware release criteria, Section 4 presents some numerical re-
sults, simulates the open and closed MRs data shown in
Figure 1, computes the failure rate for the data shown in
Figure 1, and studies the influence of explicit debugging
activities on the optimal software release times, Section 5
presents the simulation tool, and Section 6 presents con-
cluding remarks.

2 NHCTMC processes

Some of the popular software reliability models are non-
homogeneous continuous time Markov chain (NHCTMC)
based, namely, Goel-Okumoto model, Musa-Okumoto
model, Yamada S-shaped model, Duane model, and
Littlewood-Verrall [13]. Thus the stochastic failure pro-
cess can be described by a NHCTMC. Introducing debug-
ging into this stochastic failure process gives rise to a birth-
death process with complex failure and debugging rates,
and makes it impossbile to obtain closed-form expressions.
Simulation, on the other hand can take into account the
fault detection as well as the debugging process under a uni-
fied framework as will be discussed in the sequel. Towards
this end, in this section, we present a brief overview of the
NHCTMC processes, and rate-based simulation procedure
for these processes.

2.1 Overview

We consider a class of non-homogeneous continuous
time Markov chain (NHCTMC) processes, where the be-
havior of the stochastic processfX(t)g of interest depends
only on a rate function�(n; t). The rate function�(n; t) de-
pends on the state of the system at timet. LetX(t) be the
number of “events” occurring in an interval(0; t). “Events”
here refers to the number of times the phenomenon of inter-
est occurs (number of failures, for example) and this num-
bern denotes the state of the system.fX(t)g can be viewed
as a pure death process if we assume that the maximum
number of events that can occur in the time interval of in-
terest is fixed, and the remaining number of events forms
the state-space of the NHCTMC. Thus, the system is said to
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be in statei at timet, if we assume that the maximum num-
ber of events that can occur isN , andN � i events have
occurred by timet. It can also be viewed as a pure birth
process, if the number of occurrences of the event forms the
state space of the system. In this case, the system is said
to be in statei at timet, if the event has occurredi num-
ber of times up to timet. Let N0(0; t) denote the cumu-
lative number of events in the interval(0; t), andm0(0; t)
denote its expectation, thusm0(0; t) = E[N0(0; t)]. The
notationm0(0; t) indicates that the process starts at time
t = 0, and the subscript0 indicates no events have occurred
prior to that time. Pure birth processes can be further clas-
sified as “finite events” and “infinite events” processes (if
the events of interest are failures, then finite failures and
infinite failures), based on the value thatm0(0; t) can as-
sume in the limit. In case of a finite event pure birth pro-
cess, the expected number of events occurring in an infinite
interval is finite (i.e.,lim

t!1
m0(0; t) = a, wherea denotes

the expected number of events that can occur in an infinite
interval), whereas in case of an infinite event process, the
expected number of events occurring in an infinite interval
is infinite (i.e.,lim

t!1
m0(0; t) = 1). Although these defini-

tions are presented for specific initial conditions (the state
of the process is 0 att = 0), they hold in the case of more
general scenarios. In the sequel we assume that the process
starts from timet = 0, and no events have occurred prior to
that time, and denote the number of events occurring in the
interval(0; t) bym(t).

2.2 Rate-based simulation

Rate-based simulation technique can be used to obtain a
possible realization of the arrival process of a NHCTMC.
The occurrence time of the first event of a pure-birth
NHCTMC process can be generated using Procedure A ex-
pressed in a C-like form [13], in Appendix A. The function
single event() returns the occurrence time of the event. In
the code segment in Procedure A,occurs(x) compares a
random number withx, and returns 1 ifrandom() < x,
and 0 otherwise. Therecurrent event() procedure pre-
sented in Procedure B (6) is a simple extension of the
single event() procedure and counts the number of occur-
rences of the event over the interval(ta; tmax). Theevents
parameter must be initialized by the calling program to the
number of occurrences prior to timeta, and it will contain
an updated count of the number of occurrences after the
function returns. Though the procedure is described for a
pure-birth process, it is equally applicable to a pure-death
process with suitable modifications.

Thus the rate-based simulation technique offers a very
attractive mechanism for the study and enhancement of con-
ventional software reliability models.

3 Simulation scheme for debugging activities

In this section we present a framework based on the rate-
based simulation technique to incorporate explicit debug-
ging activity into the black-box software reliability models.
Towards this end, we first describe the assumptions and the
various debugging policies.

3.1 Assumptions and debugging policies

We assume that the testing process is unaffected by de-
bugging activity, i.e., testing continues even during debug-
ging. The detected faults are queued to be debugged. The
fault detection rate is�(n; t), and depends on the number of
faults detected, or time, or both. The debugging rate, or the
rate at which the faults are removed,�(j; t), also depends
on time, or the number of faults queued to be debugged, or
both. Thus at timet, if the number of faults detected isn,
and the number of faults queued to be debugged isj, then
n� j faults have been debugged.

The debugging rate,�(j; t) is assumed to be of the fol-
lowing types:

� Constant: This is the simplest possible situation where
the debugging rate is independent of the number of
faults pending as well as time. The debugging process
discussed by Kremer [8], Levendel [9] and Dalal [2]
has been of this type. The debugging rate�(j; t) in
this case is given by:

�(j; t) = � (1)

� Fault dependent: The debugging rate could depend on
the number of faults queued. As the number of faults
pending increases, it is likely that more resources are
allocated for debugging and hence the faults are re-
moved faster, which reflects as a faster debugging rate.
If j is the number of faults pending, the debugging rate
�(j; t) is given by:

�(j; t) = j � k (2)

where the constantk can depend on the portion of re-
sources allocated for debugging.

� The debugging rate could also be time-dependent. In-
tuitively, the debugging rate is lower at the beginning
of the testing phase and increases as testing progresses
or as the project deadline approaches. The debugging
rate reaches a constant value beyond which it cannot
increase, and this may reflect budget constraints or ex-
haustion of resources, etc. The time-dependent debug-
ging rate is hypothesized to be of the form:

�(j; t) = �(1� e��t) (3)
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for some constants� and� which reflect the charac-
teristics of a particular project, andt is the length of
the test interval. We refer to this as the time-dependent
debugging rate # 1.

� Debugging rate could also be time-dependent in the
case of latent faults, which are inherently harder to re-
move, and can be hypothesized to be:

�(j; t) = �e��t (4)

We refer to this as the time dependent debugging rate
# 2.

� Time-dependent debugging rate could also have any
other functional form as dictated by the software pro-
cess for a particular project.

Debugging activities can also be deferred to a later point
in time in case of some software development scenarios,
based on the following two constraints:

� Debugging can be deferred till a certain number� of
faults are detected and are pending to be debugged.

� Debugging may have to be suspended for a certain av-
erage amount of time� after the detection of the fault,
or in other words there is a time lag of� units between
the detection of the fault and the initiation of debug-
ging. Debugging can also be delayed for a certain pe-
riod of time after testing begins, and once initiated it
can proceed as per any of the debugging policies de-
scribed above.

The debugging rate could have any of the forms de-
scribed above in case of deferred debugging.

Therecurrent event() simulation procedure shown in
Procedure B (Appendix A) is modified as in Procedure C
(Appendix A) to count the number of faults detected as well
as debugged for the various debugging policies in an inter-
val (ta; tmax). The calling program must initializeevents
to the number of detected faults,pending to the number of
faults remaining to be debugged andremoved to the num-
ber of faults already debugged prior to timeta. Procedure
C is general and can represent any of the specialized de-
bugging policies or a combination of them by initializing
the appropriate parameters to the desired values. For exam-
ple, fault-dependent delay can be incorporated by setting
the parameterfd delay to the number of faults after which
the debugging activity begins,time lag can be initialized
to reflect the expected time lag between the detection of the
fault and its debugging, etc. The algorithm at each time step
checks for pending faults if any, and invokes the debugging
process. Upon return, the parametersevents, pending, and
removed contain the updated counts of the number of faults
detected, pending to be debugged, and debugged, respec-
tively.

3.2 Imperfect debugging

The importance of fault reintroduction has been recog-
nized by several researchers and a few models have been
proposed=extended [5, 6, 8, 9] to incorporate imperfect de-
bugging, but most of them are restricted to either instanta-
neous debugging or constant debugging rate. The frame-
work discussed in the previous section is extended here to
account for fault reintroduction based on the following as-
sumptions. Whenever a fault is detected, there are three
mutually exclusive possibilities to the corresponding de-
bugging effort: reduction in the fault content by 1 with
probability p, no change in the fault content with prob-
ability q, and an increase in the fault content by 1 with
probability r. We assume other cases (additional fault re-
moval or fault reintroduction) are rare and negligible. Thus
p + q + r = 1 [8]. It is important to note that simulation
does not impose any restrictions on the nature of the de-
bugging process, and reintroduction could be used in con-
junction with any of the debugging policies described in the
previous section.

The simulation procedure with imperfections in the de-
bugging activity is presented in Procedure D (Appendix
A). For the time being we ignore the testing process, and
assume that a certain number of faults are pending to be
debugged, and we are attempting to debug these pending
faults. The calling program must initialize the parameters
pending andremoved to the number of faults pending to
be debugged and the number of faults debugged, prior to
time ta. These parameters contain the updated counts of
these quantities when the function returns.

3.3 Computation of failure rate

In this section we propose a methodology to compute
the failure rate of the software in the presence of debug-
ging. Under the idealized assumption of instantaneous and
perfect debugging, the expected number of faults debugged
is the same as the expected number of faults detected. How-
ever, if we take into consideration the time required for de-
bugging, the expected number of faults debugged by any
given time is less than the expected number of faults de-
tected as seen in Figure 2. Thus at any timet, �(n; t),
which is the failure rate of the software based on the as-
sumption of instantaneous and perfect debugging, needs to
be adjusted in order to reflect the expected number of faults
that have been detected but not yet debugged. We calculate
this adjustment as follows: letmR(t) denote the expected
number of faults debugged by timet, andmD(t) denote the
expected number of faults detected by timet. The approach
consists of computing timetR, such thatmD(tR) = mR(t),
i.e., timetR at which the expected number of faults detected
as well as debugged under the assumption of instantaneous

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:40 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150 200 250
0

5

10

15

20

25

30

Time

E
xp

ec
te

d 
N

um
be

r 
of

 F
au

lts

Expected Number of Faults vs. Time

 Faults detected
 Faults removed

Figure 2. An example of failure rate adjust-
ment

debugging is equal to the expected number of faults de-
bugged with explicit fault removal. Whereas the perceived
failure rate at timet, under the assumption of instantaneous
and perfect debugging is�(n; t), we postulate that the ac-
tual failure rate (failure rate after adjustment), denoted by
�

0

(n; t), can be approximately given by�(n; tR), where
tR � t. The conditiont = tR represents the situation of in-
stantaneous and perfect debugging. This can be considered
as a “roll-back” in time, and is like saying that accounting
for fault detection and debugging separately up to timet
is equivalent to instantaneous and perfect debugging up to
time tR.

We illustrate this approach with the help of an exam-
ple. Referring to Figure 2, the expected number of faults
detected,mD(t), by time t = 200 is 23:16, while the
expected number of faults debugged by timet, mR(t) is
17:64. The failure rate for this particular example is as-
sumed to be of the Goel-Okumoto model and is given by
�(n; t) = 34:05 � 0:0057 � e�0:0057t. tR computed using
these values is given by128:1. Thus the perceived failure
rate is0:062072, whereas the actual failure rate after ad-
justment is0:093043. In other words if the software were
released at timet = 200, its failure rate will be0:093043.
The methodology discussed here can be applied for every
time stepdt, which will give the actual failure rate during
testing.

3.4 Optimal software release criteria

Software testing is an expensive process, and typically
consumes about one-third to one-half of the cost of a typi-
cal software development project. Overzealous testing can
increase the cost of testing, and delay the introduction of
the product into a market, in which an early product release
may mean the difference between success and failure. On
the other hand, if testing stops too soon, there is a risk of re-
leasing the software with latent bugs, and fixing a fault in a

released system is order of magnitude more expensive than
fixing the fault during the test phase. In addition, there is a
cost of customer dissatisfaction and loss of goodwill, and of
system downtime and restoration. Thus there is a tradeoff,
and the issue is to find a optimal point at which costs justify
the stop decision.

The stopping rule problem has been addressed by several
researchers in the literature [2, 3, 12, 17]. As discussed by
Ehlrichet al [3], the economic consequences E, involved in
stopping testing at timetr units or releasing the software at
tr units after test execution, should take into consideration
the following costs:

� The cost of testing activities, like running test cases
and analyzing data, the amount of man-power, and
the CPU time spent by the timetr, or equivalently
“testing-effort” [16, 18] denoted byC1. The cost asso-
ciated with test planning and test case development is
normally completed before testing, so it is not included
in this value.

� The cost of resolving a failure, which consists of activ-
ities like opening a modification request, diagnosing
the underlying fault, removing the fault, and verifying
that the failure no longer occurs, denoted byC2.

� The cost of fixing a failure in the operational phase,
denoted byC3

� The cost to customer operations in the field, denoted by
C4, which is a function of the failure rate,�(n; tr) of
the software at the release time, the expected execution
time � of the software release per field site, and the
number of field sites,l.

The economic model is thus given by:

E = C1(tr) + C2m(tr) + C3(a�m(tr))

+C4(�(n; tr)�l)
(5)

wherea denotes the total expected number of faults in
the software, andm(tr) denotes the expected number of
faults detected and hence debugged if the debugging pro-
cess is assumed to be instantaneous.

These costs are based on software reliability models
which assume that the fault is debugged as soon as it is
detected and the debugging process is perfect. The time
required to debug a fault, however cannot be neglected and
hence at any given time, the number of faults debugged will
be less than the number of faults detected. Thus, the cost
of resolving a failure actually consists of two parts: the first
part being the cost of opening a modification request and
diagnosing the fault that caused a failure, and the second
part being the cost of removing a fault and verifying that
the failure no longer occurs, during the testing phase. The
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Figure 3. Profile for constant debugging rate

former depends on the fault detection process and the later
depends on the debugging process. LetC21 denote the cost
associated with the former andC22 with the later. For a re-
lease timetr, the economic model presented in Equation (5)
can be modified to reflect this as follows:

E = C1(tr) + C21mD(tr) + C22mR(tr)

+C3(a�mR(tr)) + C4(�
0

(n; tr)�l)
(6)

wheremD(tr) andmR(tr) denote the expected number of
faults detected and removed respectively, by timetr. Note
thatC4, which is the cost to customer operations in the field
is now a function of the adjusted failure rate�

0

(n; tr) of the
software.

4 Numerical results

In this section we demonstrate the utility of the simula-
tion technique to generate the fault detection and debugging
profiles, with the help of some case studies. Without loss
of generality, we use the failure rate of the Goel-Okumoto
model for the case studies in this section. The parameters
of the rate function of the Goel-Okumoto model for NTDS
data [5] were estimated using CASRE [10]. The failure rate
used is given by�(n; t) = 34:05 � 0:0057 � e�0:0057�t.

The expected number of faults detected and debugged
for the various debugging policies described in Section 3.1
were simulated, however, we present the results only for
constant debugging rate due to space constraints. We simu-
lated the expected number of faults detected and debugged
for various values of constant debugging rate,�. The values
of the debugging rate�, were set to be approximately100%,
50%, 25% and12:5% of the maximum fault detection rate.
The expected number of faults debugged decreases as� de-
creases, and expectedly so. The cumulative fault removal
curve has a form similar to the cumulative fault detection
curve, and as the debugging rate increases, the fault removal
curve almost follows the fault detection curve.
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Figure 4. Profile for imperfect debugging

For the sake of illustration, the scenario of imperfect
fault removal is simulated assuming a constant debugging
rate of0:1, and the number of faults pending for removal is
34. The expected number of faults remaining in the system
for different values ofp, q andr [8] is shown in Figure 4.
The expected number of remaining faults depends on the
probability of perfect debugging,p, the probability of in-
troducing one fault,r, and the probability of no change in
the fault content,q. As p decreases andr increases, the ex-
pected number of faults remaining increases, and beyond a
certain threshold ofp andr, the fault content of the software
may actually increase.

We then simulate the open and closed MRs data shown
in Figure 1. Figure 1 clearly indicates that the open and
closed MRs profiles follow two distinct processes, and in
the conventional software reliability realm, these curves
would have to be modeled separately using two different
analytical models, which makes the underlying reliability
process difficult to understand. Data like the one in Figure 1
can be easily simulated using a software reliability model
for the open MRs curve, and a suitable debugging process
for the closed MRs curve. We simulated these two pro-
files, and the results are shown in Figure 5. The open MRs
profile is simulated using the rate function of the S-shaped
model, while the closed MRs profile is simulated using a
time-dependent debugging rate. These two processes were
chosen because they provided the best possible fit to the ob-
served curves. The fault detection rate�(n; t), is given by
1257:5 � (0:0198)

2
� t � e�0:0198�t, and the fault debugging

rate�(j; t) is given by1352:5 � (0:0143)2 � t � e�0:0143�t.
The perceived and the actual failure rate of the software
are then computed for the time period fromt = 0:0 to
t = 400:0 based on the methodology proposed in Sec-
tion 3.3, and are shown on the in Figure 6.

We now assess the impact of explicit debugging on the
optimal software release criteria with the help of an exam-
ple. To enable this, we adapt the parameters of the eco-
nomic cost model described in Equation (5) from Ehlrichet

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:40 UTC from IEEE Xplore.  Restrictions apply. 



0 50 100 150
0

100

200

300

400

500

600

700

800

900

1000

Time

C
um

ul
at

iv
e 

N
um

be
r 

F
au

lts
Cumulative number of open and close MRs (actual and simulated)

 Faults detected
 Faults removed

Figure 5. Actual and simulated MRs
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Figure 6. Actual and perceived failure rates

al. [3]. The values of the parameters are specified in terms
of staff units rather than actual units due to the proprietary
nature of resource use and cost data. The cost of resolv-
ing failures during system test, denoted byC1 is assumed
to be60 staff units per fault. This cost includes the cost of
failure identification, fault diagnosis and fault removal.C2,
effort per CPU test-execution unit is assumed to be1900
staff units. The effort to resolve failures after system re-
lease,C3, is assumed to be600 staff units per failure. This
cost is based on the observations of Boehm [1] and Dalal
at al. [2], that the cost of fixing a software fault after sys-
tem release is an order of magnitude greater than the cost
of fixing while testing.C1, C2, andC3 were multiplied by
a value of75 to arrive at the value of the staff, assuming
a loaded salary of75 monetary units per staff-unit. To de-
termine the consequences of field failures, we assume that
the system would typically execute371 CPU units at a sin-
gle field site before a new version was installed and that
there were six field sites. The economic effect of the sys-
tem failure was assumed to be5000 monetary units. For
the modified economic cost model which takes into account
debugging activities, the cost of resolving a failure during
system test, denoted byC2 is split into two costs, namely,
C21, which is the cost of failure identification, and fault di-
agnosis, andC22 which is the cost of fault removal. We as-
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Figure 7. Optimal software release criteria
with and without debugging

sume bothC21 andC22 to be30 staff units. Figure 7 shows
the optimal software release criteria for the data shown in
Figure 1. As can be seen from the figure, the release time as
well as the cost at release is higher if debugging activities
are explicitly accounted for, instead of assuming instanta-
neous and perfect debugging.

5 Tool

The simulation framework described in this paper is
available in a prototype tool called SRSIM. In its present
form, SRSIM is capable of simulating the fault detection
profile of all six software reliability models enumerated in
Section 2. It can simulate the fault removal profile corre-
sponding to all the debugging policies except delayed de-
bugging. The graphical user interface of the tool is adapted
from CASRE [10], and is developed using Tcl/Tk for the
X-windows environment. A pull-down menu-driven user
interface guides the user through the necessary steps. SR-
SIM comprises of seven major functional areas: File opera-
tions, Parameters to control the simulation, Selection of the
models, Parameters of the selected models, Selection of the
debugging process, Parameters of the debugging process,
and Graphics display window. Figure 8 shows the high level
architecture of SRSIM.

SRSIM allows the user to set the following simulation
parameters: maximum simulation time, time step used for
simulation, units of time, maximum number of faults that
can be detected, and number of simulation runs. The pa-
rameters maximum number of faults and maximum simula-
tion time control the duration of the simulation runs. It is
imperative that these parameters be set by the user before
proceeding to select the models and the debugging process
to be simulated since no default values of the parameters are
supplied. The debugging option is set to be instantaneous
by default. The user can then choose to select a debugging
process or proceed directly to select the models whose fail-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2021 at 05:08:40 UTC from IEEE Xplore.  Restrictions apply. 



Parameters of
Selected Models

To screen

printer, or disk

START Selection
Models

Plotting

Selection of 

Simulate
Parameters of Detect. / Debug.

Debugging Process

Debugging Process

Parameters
Simulation

Figure 8. High level architecture of the SRSIM
tool

ure occurrence profile is to be simulated. After selecting
the debugging process, the user is prompted to provide the
parameters of the selected debugging process. The user can
then select from one of the following six software reliabil-
ity models, viz., Littlewood-Verrall, Goel-Okumoto, Musa-
Okumoto, Yamada S-shaped, Jelinski-Moranda, and Du-
ane. After the selection of the models, the user is prompted
to supply the values of the parameters of the selected mod-
els. Once the specification of the parameters corresponding
to the fault detection and debugging is complete, simulation
results are plotted on a canvas, and the simulated fault de-
tection and removal data is displayed on the workspace on
a separated window.

Figure 9 shows a typical window dump from SRSIM.
The fault detection is simulated using the rate function of
the Goel-Okumoto model, and the debugging rate is set
to constant. The left hand side shows the workspace in
which the simulated fault detection and debugging data is
displayed, while the right hand side shows the plots of
these profiles. The menu items on the right hand side can-
vass includePlot which allows the user to save the plot
in a file or to draw a plot from a saved file,Sim Results
which allows the user to display the simulated data in the
workspace on the right,Display which allows the user to
display other metrics of interest like interfailure and inter-
debugging times, reliability, failure rate, etc.,Settingspro-
vides options for controlling the attributes of the display like
color, grey-scale display, etc., andHelp would provide on-
line assistance. TheFile option on the left hand side allows
for file operations,Edit allows the editing of the simulated
data,Sim has sub-menus for setting the simulation param-
eters, selecting and setting the parameters of the debugging
process, model selection and setting the parameters of the
selected models, of which model selection menu is shown

in the figure,Setupallows the user to include external ap-
plications (e.g., editors) into theEdit menu andHelp would
provide on-line help.

6 Conclusions

In this paper, we have incorporated explicit debugguing
activities into the NHCTMC based black-box software re-
liability models, using rate-based simulation. We have dis-
cussed various debugging policies and analyzed their effect
on the residual number of faults in the software. The ap-
proach presented here reflects the testing phase in a soft-
ware development cycle more closely than the conventional
black-box software reliability models. Various metrics of
interest like reliability, failure rate, etc., which were com-
puted based on the idealized assumptions of instantaneous
and perfect debugging, can now be re-computed taking into
account explicit and imperfect debugging, to give more ac-
curate and realistic values. Optimal release times of the
software based on the black-box models can now take into
account time and resources expended in debugging activi-
ties. We have also presented the SRSIM tool which is cur-
rently under development, to automate the simulation pro-
cess. The purpose of SRSIM is to automate the simulation
task, and to aid in managerial decision making about the
allocation of resources to testing, debugging, and allied ac-
tivities.
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Appendix A: Simulation Procedures

Procedure A: Single Event Simulation Procedure

/* Input parameters and functions are
assumed to be defined at this point */
double single_event (double t, double

dt, double ( *lambda) (int,double))
{

int event = 0;
while (event == 0) {

if (occurs (lambda (0,t) * dt))
event++;

t += dt;
}
return t;

}

Procedure B: Recurrent Event Simulation Procedure

/* Input parameters and functions are
assumed to be defined at this point */
int recurrent_event (double ta, double

tmax, double dt, double (* lambda)
(int,double), int *events)

{
double t = ta;
while ((t < tmax) &&

(*events < max_events)) {
if (occurs(lambda (*events, T) * dt))

++(*events);
t += dt;

}
}

Procedure C: Simulation Procedure with Explicit
Debugging

/* Input parameters and functions are
assumed to be defined at this point */
void recurrent_event_repair (double tmax,

double ta, double dt, double
max_events, double (*m) (int, double),
double (*mu) (int, double),
int *events, int *pending,
int *removed, int fd_delay,
double time_delay,
double time_detected[])

{
double t = ta;
while ((t < tmax) &&

(*events < max_events)) {
if (occurs (m (*events, t) * dt)) {

++(*events);
++(*pending);
time_detected[*events] = t;

}

if (((*pending + *removed)
> fd_delay)

&& (t > time_del)) {
if ((*pending > 0) &&

(t >
time_detected[*removed+1]

+ time_del)) {
if (occurs

(mu (*pending, t) * dt)) {
--(*pending);
++(*removed);

}
}
t += dt;

}
}

}

Procedure D: Simulation Procedure with Fault
Reintroduction

/* Input parameters and functions are
assumed to be defined at this point */
void imp_fault_removal (double ta,

double tmax, double dt, double q,
double q, double r, double
(* mu)(int, double), int *pending,
int *removed)

{
double t = ta;

while ((t < tmax) &&
(*pending > 0)) {

if (occurs (mu (*pending,t) *
dt)) {

temp = random ();
if (temp < r)

++(*pending);
else {

temp = random ()
if (temp > q+r) {

--(*pending);
++(*removed);

}
}

}
}

}
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