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Abstract—Pre-trained models of source code have gained
widespread popularity in many code intelligence tasks. Recently,
with the scaling of the model and corpus size, large language
models have shown the ability of in-context learning (ICL). ICL
employs task instructions and a few examples as demonstrations,
and then inputs the demonstrations to the language models for
making predictions. This new learning paradigm is training-free
and has shown impressive performance in various natural lan-
guage processing and code intelligence tasks. However, the perfor-
mance of ICL heavily relies on the quality of demonstrations, e.g.,
the selected examples. It is important to systematically investigate
how to construct a good demonstration for code-related tasks.
In this paper, we empirically explore the impact of three key
factors on the performance of ICL in code intelligence tasks:
the selection, order, and number of demonstration examples. We
conduct extensive experiments on three code intelligence tasks
including code summarization, bug fixing, and program synthesis.
Our experimental results demonstrate that all the above three
factors dramatically impact the performance of ICL in code
intelligence tasks. Additionally, we summarize our findings and
provide takeaway suggestions on how to construct effective
demonstrations, taking into account these three perspectives. We
also show that a carefully-designed demonstration based on our
findings can lead to substantial improvements over widely-used
demonstration construction methods, e.g., improving BLEU-4,
EM, and EM by at least 9.90%, 175.96%, and 50.81% on code
summarization, bug fixing, and program synthesis, respectively.

I. INTRODUCTION

Recently, there has been an increasing focus on code

intelligence research, aiming at reducing the burden on soft-

ware developers and enhancing programming productivity [1],

[2]. With the large-scale open-source code corpora and the

progress of deep learning techniques, various neural source

code models have been developed and have achieved state-

of-the-art performance on a variety of code intelligence tasks

including code summarization [3], bug fixing [4], and program

synthesis [5].

In recent years, the advent of pre-training techniques

has significantly advanced progress in this area. For in-

stance, CodeBERT [6], a BERT-based model pre-trained on

† The author is now affiliated with The Chinese University of Hong Kong.
∗ Corresponding author. The author is also affiliated with Peng Cheng

Laboratory.

Fig. 1: An example of in-context learning on code summariza-

tion task.

both natural and programming language data, has demon-

strated promising performance in various code intelligence

tasks [4], [7]. Other subsequent pre-trained code models

such as PLBART [8] and CodeT5 [9] further achieve much

improvement over CodeBERT. However, the size and training

data of the above models are limited, which may hinder the

models from achieving their potential [10]. In these years,

we have witnessed explosive growth in the size of pre-

trained models. Various billion-level large language models are

proposed such as GPT-3 [11] and PALM-E [12]. For instance,

the size of the pre-trained model PALM-E [12] (562B) in

2023 is over two thousand times larger than the largest model

BERT [13] (223M) in 2018.

As the size of language models and training data continues

to increase, large language models (LLMs) demonstrate vari-

ous emergent abilities. One such ability is in-context learning

(ICL) [11], [14], which allows models to learn from just a few

examples within a specific context. As shown in Fig. 1, ICL

utilizes a demonstration including task instructions and a few

examples to describe the task, which is then concatenated with

a query question to form an input for the language model to

make predictions. The most significant difference between ICL

and traditional tuning methods such as fine-tuning [6] is that

it is training-free and does not need parameter updates. The

training paradigm enables ICL to be directly used upon any

LLMs and significantly reduces the training costs of adapting

models to new tasks [11]. Recent studies show that ICL has

achieved impressive results in various fields, including logic
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reasoning [15], dialogue system [16], and program repair [17]–

[19], and can even outperform the supervised fine-tuning

methods trained on large task-specific data.

Although ICL has been proven useful in code intelligence

tasks, the performance of ICL is known to strongly rely on

the quality of demonstrations [20], [21]. Existing studies [17],

[19] mainly construct demonstrations by randomly selecting

and arranging the demonstration examples. To the best of our

knowledge, there is a lack of an in-depth investigation of

ICL for code intelligence tasks. Considering the impressive

performance of ICL, it is worth understanding the impact

of demonstration design and investigating the challenges of

applying ICL for code intelligence tasks. In this work, we sys-

tematically analyze how different demonstration construction

methods influence the performance of ICL on code intelligence

tasks, aiming at answering the following question: What
makes good in-context demonstrations for code intelligence
tasks with LLMs? By analyzing the design space of in-

context demonstrations, our study mainly focuses on three

aspects of in-context demonstrations, including the selection,

order, and number of demonstration examples. We conduct

an experimental study on three popular code intelligence

tasks including code summarization, bug fixing, and program

synthesis. Specifically, we mainly investigate the following

four research questions (RQs):

1) What kind of selection methods are helpful for ICL in

code intelligence tasks?

2) How should demonstration examples be arranged for ICL

in code intelligence tasks?

3) How does the number of demonstration examples in a

prompt impact the performance of ICL in code intelli-

gence tasks?

4) How is the generalizability of our findings?

To answer the first RQ, we compare a wide range of

demonstration selection methods such as random selection,

similarity-based selection, and diversity-based selection. We

also experiment with different retrieval methods in the

similarity-based selection to find which retrieval method is

more helpful for ICL in code intelligence tasks. To answer

the second RQ, we compare random ordering with two other

ordering methods including similarity and reverse similarity,

towards exploring the impact of different ordering methods.

To answer RQ3, we change the number of demonstration ex-

amples in the prompt and investigate whether the performance

of ICL also grows with the increase in the number of demon-

stration examples. To answer the last RQ, we experiment on

different LLMs and validate the findings we achieve in the

above RQs.

Key Findings. Based on the extensive experiments, our

study reveals several key findings:

1) Both similarity and diversity in demonstration selection

are important factors for ICL in code intelligence tasks.

They not only enhance the overall performance but also

lead to more stable predictions.

2) The order of demonstration examples has a large impact

on the performance of ICL. In most cases, placing similar

samples at the end of a prompt achieves better results.

3) Increasing the number of demonstration examples can be

beneficial for ICL, provided that the examples are not cut

off due to the input length limitation of LLMs. Careful

attention should be paid to this issue, as the length of

code is generally longer than natural language.

We also show that a carefully-designed demonstration based

on the achieved findings can lead to substantial improve-

ments over the widely-used demonstration construction meth-

ods [17], [19], [22], e.g., improving BLEU-4, EM, and EM by

at least 9.90%, 175.96%, and 50.81% on code summarization,

bug fixing and program synthesis, respectively.

Contributions. In summary, the main contributions of this

work are as follows:

1) To the best of our knowledge, this paper represents

the first systematic study on how to construct effective

demonstrations for code intelligence tasks.

2) Our comprehensive exploration of demonstration design

highlights a range of findings for improving ICL’s per-

formance in code intelligence tasks.

3) We discuss the implications of our findings for re-

searchers and developers and future work for code in-

telligence tasks in the era of large language models.

II. BACKGROUND

A. Large Language Models

LLMs have become a ubiquitous part of Natural Language

Processing (NLP) due to their exceptional performance [11],

[23]. These models typically follow the Transformer [24]

architecture and are trained on large-scale corpora using self-

supervised objectives such as masked language modeling [13].

The size of LLMs has increased significantly in the past few

years. For example, the parameters of recent LLMs like GPT-

3 [11] and PALM-E [12] are over one hundred billion. Apart

from the LLMs for general purposes, there are also LLMs

with billion-level parameters trained on code corpora, such

as AlphaCode [25], and Codex [2]. The OpenAI’s Codex is

a large pre-trained code model that is capable of powering

Copilot. AlphaCode [25] is a 41-billion-large model trained for

generating code in programming competitions like Codeforces.

Recently, LLMs like ChatGPT [26] and GPT-4 [23] have

also shown impressive performance in many code intelligence

tasks.

Apart from proposing new LLMs, how to effectively lever-

age them has also become an important research topic. A

prevalent method is to fine-tune the model and update its

parameters on downstream datasets [13]. Recently, prompt-

based fine-tuning has been proposed, which aims to convert the

training objective of downstream tasks into a similar form as

the pre-training stage [27], [28]. Considering the cost of tuning

the whole model, various Parameter Efficient Tuning methods

have been proposed, such as Adapter [29], Lora [30], and

prefix tuning [31]. These methods keep most of the parameters

in the model frozen and only tune a small portion of them.
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Fig. 2: Illustration of design space of in-context demonstra-

tions.

B. In-context Learning

Tuning a large pre-trained model can be expensive and

impractical for researchers, especially when limited fine-tuned

data is available for certain tasks. ICL offers a new alterna-

tive that uses language models to perform downstream tasks

without requiring parameter updates [11], [14]. It leverages a

demonstration in the prompt to help the model learn the input-

output mapping of the task. This new paradigm has achieved

impressive results in various tasks such as logic reasoning and

program repair [15], [17], [19].

Specifically, as shown in Fig. 1, ICL employs N
demonstration examples {(x1, y1), (x2, y2), ..., (xN , yN )} and

further reconstructs them into reconstructed examples

{(x′
1, y

′
1), (x

′
2, y

′
2), ..., (x

′
N , y′N )} by natural language instruc-

tions and prompt template, where xi, yi, x′
i, y′i are the

input, output, reconstructed input, and reconstructed output,

respectively. Typically, The value of N is relatively small, i.e.,

fewer than 50 samples, which is significantly smaller than the

size of the training set in previous fine-tuned methods [6],

[9]. This setting is referred to as few-shot in-context learning.

Specially, when the value of N is zero, it is called the zero-
shot in-context learning setting. Then, ICL concatenates the

reconstructed demonstration examples d1 to dN literally into

demonstration D = x′
1 ‖ y′1 ‖ x′

2 ‖ y′2 ‖ ... ‖ x′
N ‖ y′N ,

and further adds the test sample at the end to construct the

input prompt P = D ‖ x′
test, where ‖ denotes the literal

concatenation operation. This prompt is finally fed into the

language model for predicting the label ytest for test samples.

Previous studies in NLP have shown that the performance of

ICL is strongly dependent on the quality of the demonstration.

For example, Liu et al. [20] show that selecting demonstration

examples with higher similarity or increasing the number of

demonstration examples can improve ICL’s performance. The

results in [21] show that the order of demonstration examples

also has a large impact on the results. Following previous

studies, we summarize three key factors to consider when

designing a demonstration for ICL: the selection, ordering,

and number of demonstration examples, as shown in Fig. 2.

We would like to further clarify that there are two types of

demonstration in ICL: task-level demonstration and instance-
level demonstration [32], [33]. The task-level demonstration

uses the same demonstration examples for all test samples and

does not take the difference of each test sample into consider-

ation, while the instance-level demonstration selects different

demonstration examples for different test samples. Although

instance-level demonstrations generally perform better than

task-level demonstrations, it requires a labeled training set in

advance for retrieval. The task-level demonstration is more

flexible as it can be used in scenarios where very few data

are labeled, or no labeled data are available by selecting few

representative data for human labeling [33]. In this paper, we

investigate both the task-level and instance-level demonstration

construction methods for code intelligence tasks.

III. EXPERIMENTAL EVALUATION

A. Research Questions

We design experiments to investigate the impact of the

selection, ordering, and number of demonstrations on ICL

for code intelligence tasks. Our research aims to answer the

following questions:

RQ1: What kind of selection methods are helpful for ICL

in code intelligence tasks?

RQ2: How should demonstration examples be arranged for

ICL in code intelligence tasks?

RQ3: How does the number of demonstration examples in

a prompt impact the performance of ICL in code

intelligence tasks?

RQ4: How is the generalizability of our findings?

In RQ1, we aim at verifying whether selecting similar and

diverse demonstration examples is helpful. Besides, we also

compare different retrieval methods to analyze the impact

of different similarity measurement methods for ICL. RQ2

aims at investigating the influence of ordering methods by

comparing random ordering with similarity-based ordering. In

RQ3, we want to explore whether increasing the number of

examples could bring better performance for ICL. In RQ4, we

evaluate whether the findings achieved in RQ1-RQ3 are also

applicable to different LLMs for verifying the generalizability

of the findings.

B. Evaluation tasks

We conduct experiments on three popular code intelligence

tasks: code summarization, bug fixing, and program synthesis.
1) Code Summarization: Code summarization, also known

as code comment generation, aims to generate useful com-

ments automatically for a given code snippet [7]. Recent work

mainly formulates it as a sequence-to-sequence neural machine

translation (NMT) task and involves pre-trained techniques to

achieve better performance [9], [34].
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TABLE I: Statistics of the benchmark datasets.

Task Datasets Train Dev Test

Code Summarization
CSN-Java 164,923 5,183 10,955
TLC 69,708 8,714 6,489

Bug Fixing
B2Fsmall 46,628 5,828 5,831
B2Fmedium 53,324 6,542 6,538

Program Synthesis CoNaLa 2,389 - 500

Datasets. To evaluate the performance of code summa-

rization, we use two widely-used datasets: CodeSearchNet

(CSN) [35] and TLCodeSum (TLC) [7]. CSN is a large-

scale source code dataset mined from open-source GitHub

repositories. It contains code summarization data in six pro-

gramming languages, i.e., Java, Go, JavaScript, PHP, Python,

and Ruby. The dataset is split into training, validation, and

test sets in the proportion of 8:1:1. In this study, considering

our time and resource limitation, we use the Java portion of

the filtered CSN dataset in CodeBERT [6], which contains

181,061 samples across the training, validation, and test sets

for evaluation. TLC has 87,136 code-comment pairs crawled

from 9,732 open-source Java projects on GitHub with at least

20 stars. The code snippets are all at the method level and

the comments of corresponding Java methods are considered

as code summaries. The portion of training, validation, and

test set is also 8:1:1. As reported in previous work, there

are duplicated data in the training and test set. Therefore, we

follow previous work [36] and remove the duplicated data, and

finally get a test set with 6,489 samples.

Metrics. We use three widely-adopted metrics for code

summarization evaluation: BLEU-4 [37], ROUGE-L [38] and

METEOR [39] for evaluation. These metrics evaluate the

similarity between generated summaries and ground-truth

summaries and are widely used in code summarization [3],

[36], [40].

2) Bug Fixing: Bug fixing is the task of automatically fixing

bugs in the given code snippet. It helps software developers

find and fix software errors [4], [41].

Datasets. The dataset for bug fixing is B2F which is col-

lected by Tufano et al. [4] from bug-fixing commits in GitHub.

We use the multi-model version proposed in MODIT [42]

for experiments as it contains both the code changes and the

fix instruction. The model is given both the buggy code and

natural language fix guidance to predict the fixed code. We

follow their original setting to split the dataset into two parts

B2Fmedium and B2Fsmall based on the length of code tokens

(the code length of B2Fmedium is between 50 and 100 tokens

and that of B2Fsmall is below 50 tokens).

Metrics. We follow previous work [43] and use Exact

Match (EM) and BLEU-4 for both datasets.

3) Program Synthesis: Program synthesis is the task of

generating source code based on the given natural language

description. It provides practical assistance to developers and

enhances their productivity [2].

Datasets. For program synthesis, we use the CoNaLa [44]

dataset for evaluation. This dataset consists of 2,889 〈intent,

code〉 pairs mined from Stack Overflow in Python. We directly

TABLE II: Prompt template for each task. Here text in the

form of {#xxx} will be filled in actual inputs from the dataset.

Task Template

Code Summarization
Generate comment (summarization) for this code

[input] {#code} [output] {#comment}

Bug Fixing
Fix the bug according to the guidance [input]

{#buggy code} <s> {#instruction} [output] {#fixed code}

Program Synthesis
Generate code based on the requirement

[input] {#requirement}[output] {#code}

use the original partition of the dataset, which includes 2,389

samples for training and 500 samples for testing.

Metrics. We follow previous work [43] and evaluate the

performance of program synthesis with four metrics including

Exact Match (EM), CodeBLEU (CB), Syntax Match (SM),

and Dataflow Match (DM). EM measures whether the code

generated by the model is identical to the goal code. CB [45]

is a modified version of BLEU designed specifically for

code, which leverages syntax and semantic information such

as Abstract Syntax Tree (AST) and data flow to measure

the similarity of two code snippets. SM and DM are two

components that calculate the matching subtrees and data flow

edges’ proportion, respectively.

C. Implementation

We utilize the OpenAI Codex (code-davinci-002) API [2]

in our paper for all experiments in the first three RQs. In RQ4,

we further use the API of GPT-3.5 (text-davinci-003) [11] and

ChatGPT (gpt-3.5-turbo) [26] for experiments. As for the hy-

perparameters of the APIs, following the previous work [46],

[47], we set the temperature to 0 to get the deterministic

output. The frequency penalty and presence penalty are also

set to 0. The input length limitation of Codex, GPT-3.5,

and ChatGPT is 8,001, 4,096, and 4,097 tokens, respectively.

Hence we cut off the input code of each demonstration ex-

ample to 8001
N+1 , 4096

N+1 , and 4097
N+1 tokens, respectively, where N

represents the number of demonstration examples. Empirically,

it took approximately 6 hours to evaluate 1,000 examples for

Codex. To avoid excessive time costs, we randomly sample a

small test set (2,000 samples) for each dataset with over 2,000

test samples. We use four examples in the demonstration in

RQ1 and RQ2, and further discuss the impact of the number

of demonstration examples in RQ3. The templates used in this

study are shown in Table II. We also show some examples in

our GitHub repository1. We conduct all the experiments on a

server with 2 Nvidia RTX 3090 GPUs. The GPUs are used in

the dense retrieval process.

IV. EXPERIMENTAL RESULTS

A. RQ1: Demonstration Selection

1) Experimental design: We first explore the impact of

demonstration selection methods on ICL for code-related

tasks. To provide a comprehensive study, we adopt different

1https://github.com/gszsectan/ICL/tree/master/prompts
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TABLE III: Experimental results of different demonstration selection methods on Code Summarization. “Avg” and “CV” denote

the average results and Coefficient of Variation over three different orders, respectively.

Approach Code Summarization
CSN TLC

BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR
Avg CV Avg CV Avg CV Avg CV Avg CV Avg CV

Task-level Demonstration
Random 19.64 1.44 35.46 1.88 15.30 1.54 17.29 0.71 34.28 0.61 12.48 0.67
KmeansRND 20.71 0.82 38.03 0.44 16.34 0.83 17.91 1.19 35.69 1.60 13.48 0.91

Instance-level Demonstration
BM-25 22.35 0.46 38.31 0.56 17.01 0.78 36.96 0.84 51.42 0.79 24.22 0.99
SBERT 22.27 0.23 38.39 0.42 16.91 0.22 36.42 0.61 50.47 0.40 23.86 0.68
UniXcoder 22.11 0.61 38.23 0.53 16.81 0.23 36.77 0.52 51.11 0.29 24.08 0.79
CoCoSoDa 21.92 0.46 37.85 0.22 16.78 0.24 36.91 0.69 50.69 0.53 24.08 0.39
Oracle (BM-25) 27.69 0.43 46.17 0.14 20.26 0.22 43.16 0.15 59.17 0.09 28.09 0.16

TABLE IV: Experimental results of different demonstration

selection methods on Bug Fixing.

Approach

Bug Fixing
B2Fmedium B2Fsmall

BLEU-4 EM BLEU-4 EM
Avg CV Avg CV Avg CV Avg CV

Task-level Demonstration
Random 86.96 0.16 7.26 16.18 71.18 0.56 9.95 6.33
KmeansRND 86.91 0.17 9.03 5.45 72.89 1.36 10.37 3.86

Instance-level Demonstration
BM-25 88.05 0.09 21.85 1.78 77.54 0.13 30.45 0.96
SBERT 87.98 0.06 19.00 2.88 76.26 0.16 26.15 0.87
UniXcoder 87.87 0.09 19.14 2.00 77.52 0.07 29.93 0.51
CoCoSoDa 87.73 0.07 19.23 0.74 76.45 0.07 27.40 1.04

kinds of demonstration selection methods for the three code

intelligence tasks.

For task-level demonstration, we need to select a group of

demonstration examples for the whole test set, as illustrated in

Section II-B. To explore the influence of different in-context

demonstration examples on the performance of ICL, we ran-

domly select three groups of demonstration examples from the

training set, and evaluate their performance on different tasks,

denoted as Random. Besides, we further investigate whether

improving the diversity of demonstration examples is bene-

ficial to ICL. We select the demonstration examples by first

dividing the whole samples into N clusters and then randomly

selecting one sample from each cluster, namely KmeansRND.

Specifically, we use UniXcoder [48] for vectorization and use

the K-means++ algorithm [49] for clustering, where K is set

to N that represents the number of demonstration examples.

Similar to Random, we also investigate the performance of

different groups of examples for KmeansRND and conduct

the selection process three times, resulting in three groups of

demonstration examples.

For instance-level demonstration, we need to select exam-

ples for each test sample, as illustrated in Section II-B. Fol-

lowing [20], we formulate the selection process as a retrieval

problem and compare the performance of different retrieval-

based methods including:

1) BM-25: BM-25 is a classic sparse retrieval method in the

information retrieval field. It has also been widely used

in many code intelligence models [50], [51].

2) SBERT: SBERT [52] is a popular sentence modeling

method and has been widely used in text retrieval [52],

[53]. Specifically, in this paper, we use the version that is

further trained on the code-related dataset to obtain code

and text representations [54].

3) UniXcoder: UniXcoder [48] is a unified cross-modal

pre-trained model that is pre-trained with three sequence

modeling tasks and two contrastive learning-based tasks.

It shows promising performance on zero-shot code-to-

code search.

4) CoCoSoDa: CoCoSoDa [55] is a state-of-the-art code

search model that utilizes contrastive learning for code

and text representation learning.

For BM-25, we implement with the gensim package [56]

by retrieving samples with the highest similarity from the

training set. For dense retrieval methods, we directly use these

pre-trained models in the replication packages released by

the authors without further tuning. Based on the code/text

representations output by the pre-trained models, we select the

training samples presenting the highest cosine similarities with

the test sample. We also follow the previous work [32] and

create a method called Oracle, which selects demonstration

examples by calculating the similarity between the output of

the test sample and the output of all training set examples.

The Oracle method is usually regarded as an upper bound

of the performance, considering that the output of the test

sample is not available in practice. The retrieval process in

Oracle is implemented by BM-25, since BM-25 shows the best

performance compared with other dense retrieval methods as

shown in Table III-V.

To avoid the influence of different orders of demonstration

examples, we run each experiment three times with different

orders and report the average results on each metric. Besides,

we further evaluate the sensitivity of each method to different

orders by Coefficient of Variation (CV) [57]. The CV is

calculated by σ/μ, where σ is the standard deviation and μ
is the mean. A lower CV indicates smaller data variation. It

takes the magnitude of data into account and has been widely

used to measure the data dispersion in many fields such as

economics and software engineering [57], [58].

2) Analysis: We present the experimental results in Ta-

ble III-V. For each metric, we report the average results over
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TABLE V: Experimental results of different demonstration

selection methods on Program Synthesis.

Approach
Program Synthesis

CB SM DM EM
Avg CV Avg CV Avg CV Avg CV

Task-level Demonstration
Random 28.36 1.30 44.37 0.83 39.70 1.33 16.00 1.60
KmeansRND 28.03 1.47 44.41 0.54 37.31 1.54 17.03 1.06

Instance-level Demonstration
BM-25 30.37 0.91 46.22 0.84 40.75 1.06 18.53 0.50
SBERT 29.08 0.70 44.91 0.31 39.81 3.01 16.13 2.54
UniXcoder 28.96 0.50 43.93 0.67 37.96 1.12 16.00 3.53
CoCoSoDa 29.42 0.82 44.62 0.70 40.91 1.12 16.30 0.86

three random orders and CV which measures their sensitivity

to different orders. In Fig. 3, we show the distribution of

results with different groups of examples for Random and

KmeansRND.

Diversity of examples is beneficial for task-level demon-
stration. As can be seen in Table III-V and Fig. 3, by

comparing the results on Random and KmeansRND, we can

find that in most cases improving the diversity of task-level

demonstrations can not only improve the average performance

of ICL but also reduce the fluctuation brought by different

groups of examples. For example, as shown in Table III,

comparing the results of code summarization on CSN, the av-

erage improvements of KmeansRND over Random are 5.45%,

7.25%, and 6.80% with respect to BLEU-4, ROUGE-L, and

METEOR, respectively. Besides, we can also find that the

performance of different in-context demonstration examples of

Random varies a lot, and improving the diversity of selected

examples can reduce this variation in general. For example, as

shown in Fig. 3 (a), the gap between the best and worst BLEU-

4 score of Random is about 2.5 while that of KmeansRND

is only about 0.6. This indicates that improving the diversity

of selected demonstration examples is beneficial for building

task-level demonstration.

Finding 1: Diversity of examples is helpful for the

demonstration selection of ICL. It can help improve

overall performance and lead to a more stable predic-

tion regarding different groups of examples.

BM-25 is a simple and effective method for instance-
level demonstration. By comparing the results of different

instance-level demonstration methods, we can find that the

simple BM-25 method can achieve comparable or even better

performance than other dense retrieval methods on demon-

stration selection in ICL. For example, the average EM of

BM-25 on Program Synthesis is 18.53, which outperforms

three strong dense retrieval methods SBERT, UniXcoder, and

CoCoSoDa by 14.88%, 15.81%, and 13.68%, respectively.

This result indicates that BM-25 serves as an effective baseline

approach and could be taken into account in future studies of

demonstration selection for code intelligence tasks.

(a) CSN. (b) TLC.

(c) B2Fmedium. (d) B2Fsmall. (e) CoNaLa.

Fig. 3: Comparison of the performance distribution of Random

and KmeansRND regarding different groups of examples on

three tasks.

Finding 2: The retrieval methods for demonstration

selection can impact the performance of ICL, among

which BM-25 is a simple and effective method.

Instance-level demonstration outperforms task-level
demonstration greatly. As shown in Table III-V, we can

find that instance-level demonstration can achieve much bet-

ter performance in all tasks. Specifically, the instance-level

selection methods improve the best task-level demonstration’s

exact match results by at least 141.97% and 193.64% on

B2Fmedium and B2Fsmall, respectively. These results indicate

that selecting similar demonstration examples specifically for

each test sample can benefit ICL in code intelligence tasks a

lot.

The task-level demonstration is more sensitive to the
order than the instance-level demonstration. By compar-

ing the CV of task-level demonstration and instance-level

demonstration, we can find that the performance of instance-

level demonstration is generally more stable than task-level

demonstration regarding different example orders. Specifically,

as shown in Table IV, the CV of BLEU-4 of task-level

demonstration KmeansRND to the order is 0.17 and 1.36 on

two bug fixing datasets, which is much larger than that of

instance-level demonstration methods (e.g., 0.09 and 0.13 for

BM-25, respectively). This indicates that selecting examples

by similarity is more robust to the changes in the demon-

stration order and we should carefully arrange the order of

766

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:02:10 UTC from IEEE Xplore.  Restrictions apply. 



TABLE VI: Experimental results of different demonstration ordering methods.

Approach Code Summarization (CSN) Bug Fix (B2Fsmall) Program Synthesis (CoNaLa)
BLEU-4 ROUGE-L METEOR BLEU-4 EM CB SM DM EM

Random
Random 20.46 36.71 16.17 72.40 9.52 27.72 44.46 37.53 15.53

Similarity 21.04 37.86 16.26 72.02 9.93 28.47 44.87 37.79 16.00
Reverse Similarity 19.78 33.71 15.64 71.44 9.02 27.62 44.48 37.96 15.20

KmeansRND
Random 20.67 37.64 15.97 72.29 8.60 26.64 42.97 37.24 16.87

Similarity 20.69 37.62 16.05 72.90 10.15 27.20 42.97 36.93 16.40
Reverse Similarity 20.55 37.43 16.20 72.05 9.78 27.09 43.74 37.19 16.60

BM-25
Random 22.35 38.31 17.01 77.54 30.45 30.37 46.22 40.75 18.53

Similarity 22.23 38.12 17.01 77.76 30.95 30.83 46.41 41.33 17.60
Reverse Similarity 22.13 38.26 16.91 77.60 29.80 30.01 45.72 39.60 18.20

demonstration examples when using task-level demonstration

Finding 3: Compared with task-level demonstration,

instance-level demonstrations can achieve much better

performance and are generally more robust to the

changes in the demonstration order.

Apart from the above, we can also observe in Table III that

the best demonstration selection method BM-25 still has a

large gap with the Oracle. This indicates that these retrieval

methods may fail to select semantic similar examples and there

exists a large space for further improvement concerning the

demonstration selection method for code intelligence tasks.

B. RQ2: Demonstration Order

1) Experimental setup: In RQ1, we have found that the

order of demonstration examples impacts the performance

of ICL on code intelligence tasks, especially on task-level

demonstration. Therefore, in this section, we explore how to

better arrange the demonstration examples in ICL. Inspired by

the finding that the task-level demonstration is more sensitive

to the example order than the instance-level demonstration, we

suppose that the order of similarities between each demonstra-

tion example and test sample plays an important role in ICL.

To verify this, in this RQ, we compare random order

with two basic ordering methods, i.e., Similarity and Reverse
Similarity. In the Similarity method, we compare the similarity

of each example with the test sample and the example with a

higher similarity will be placed closer to the test sample. On

the contrary, for the Reverse Similarity method, the demon-

stration examples will be placed in descending order according

to their similarity to the test sample. We experiment with

three demonstration selection methods here. As illustrated in

RQ1, since the order arrangement is important for task-level

demonstration, we use both the Random and KmeansRND for

experiments. As for instance-level demonstration, we conduct

experiments on BM-25, since it shows the best performance

among all the instance-level demonstration selection methods.

2) Analysis: From the results in Table VI, we can find

that placing the demonstration examples in ascending order

based on their similarity to the test sample performs generally

better than the reverse. Specifically, Similarity consistently

outperforms Reverse Similarity on code summarization and

bug fixing by at least 0.45% and 0.21% with respect to BLEU-

4 and EM, respectively. By further comparing all the results

together, we can observe that similarity achieves the best

performance in most cases. Specifically, it achieves the best

performance in 62.96% (17/27) metrics and tasks. However,

we can also observe that there are some cases in which

both Similarity and Reverse Similarity perform worse than the

average results of using random order, indicating that more

complex demonstration ordering methods can be explored by

the future work.

Finding 4: The different orders of demonstration ex-

amples can impact the performance of ICL. Arranging

the demonstration examples based on their similarity

to the test sample in ascending order can achieve

relatively better results in most cases.

C. RQ3: The Number of Demonstration Examples

1) Experimental setup: In this section, we investigate

whether the increase in the number of examples will improve

the performance of ICL on code intelligence tasks. We vary

the number of demonstration examples from 1 to 64. We

use BM-25 and Similarity as demonstration selection and

demonstration ordering methods, respectively, based on the

above findings.

2) Analysis: As shown in Fig. 4, we can find that the

performance of ICL on all the tasks increases with the number

of demonstration examples at first. However, when the number

of examples is above 16, the results on different tasks show

different trends. For example, for bug fixing, the performance

achieves the peak when the number of demonstration exam-

ples is 32 and suffers from a significant drop when further

increasing the number to 64. As for program synthesis, the

performance keeps increasing and tends to be stable when the

number exceeds 32. We believe that the different trends are

caused by the truncation problem [59], [60]. As illustrated

in Section III-C, when increasing the number of examples,

the length of the whole demonstration will increase and the

examples might be cut off to avoid exceeding the length

limitation of LLMs. Specifically, for the B2Fsmall dataset,

all the examples are complete without cutting off when the

number of examples is below 32. However, when the number

becomes 32, 2.33% demonstration examples are cut off. When
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Fig. 4: Experimental results of ICL with different number of demonstration examples.

TABLE VII: Experiments of generalization of findings on

GPT3.5 and ChatGPT.

Approach CB EM

Selection Order Avg CV Avg CV

GPT-3.5
Random Random 26.60 3.01 12.32 4.73
KmeansRND Random 28.26 1.93 13.60 1.65
UniXcoder Random 30.06 0.53 13.73 1.13
BM-25 Random 30.81 1.05 14.40 1.81
BM-25 Similarity 30.69 0.00 15.20 0.00

ChatGPT
Random Random 28.17 1.98 11.88 4.24
KmeansRND Random 28.25 2.31 12.92 1.78
UniXcoder Random 29.33 1.85 14.32 2.87
BM-25 Random 28.95 5.75 13.47 1.82
BM-25 Similarity 30.03 0.00 14.20 0.00

further increasing the number to 64, the truncation problem

happens on over 80% examples and 44.32% characters in those

examples are discarded, resulting in a dramatic performance

degradation. Since the length of samples in CSN and B2Fsmall

datasets is much larger than that of the CoNaLa dataset, i.e.,

557, 492, 101 characters per sample for CSN, B2Fsmall, and

CoNaLa, respectively, the truncation problem does not appear

on program synthesis even though the number grows to 64.

Therefore, balancing the number of examples and the ensuing

truncation problem is important for ICL.

Since the code is generally much longer than natural lan-

guage [35], the truncation problem is easier to appear in code

intelligence tasks. Besides, more examples will also lead to a

larger cost of using external API and the inference time [61].

A smaller number of examples may be more appropriate for

code intelligence tasks. From the results (Fig. 4), we can also

find that the performance with four demonstration examples

is good enough, achieving 96.48%, 97.80%, and 94.80% of

the best performance on the three tasks with respect to EM,

BLEU-4, and CodeBLEU, respectively. Therefore, considering

the above trade-off, using four examples in the demonstration

is a good choice for code intelligence tasks.

(a) GPT-3.5. (b) ChatGPT.

Fig. 5: Comparison of the performance distribution of Random

and KmeansRND regarding different groups of examples on

GPT-3.5 and ChatGPT.

Finding 5: More demonstration examples in the

prompt will not always lead to better performance

considering the truncation problem. To save costs,

it is suggested that four examples are used in the

demonstration.

D. RQ4: The Generalization of Findings

1) Experimental setup: In this section, we evaluate the

generalization of our findings on different LLMs. Apart from

Codex, we experiment on two other LLMs including GPT-

3.5 [11] and ChatGPT [26]. To validate the finding 1-4, we

experiment with the following combinations of demonstration

selection and ordering methods: Random+Random, Kmean-

sRND+Random, UniXcoder+Random, BM-25+Random, and

BM-25+Similarity. As for the finding 5 in RQ3, we use

BM-25+Similarity as the selection and ordering method and

vary the number of demonstration examples from 1 to 128

to validate whether the truncation will lead to performance

degradation. Due to the cost limit, we choose the program

synthesis task for evaluation.

We also measure how much improvement could our findings

bring by comparing the performance of ICL with a carefully-
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TABLE VIII: Comparison of different demonstration construction methods on three LLMs.

Approach Code Summarization (CSN) Bug Fix (B2Fsmall) Program Synthesis (CoNaLa)
BLEU-4 ROUGE-L METEOR BLEU-4 EM CB SM DM EM

Codex
Zero-shot 1.82 4.27 4.19 34.65 1.43 8.71 9.26 23.81 0.20

Baseline demonstration 17.37 32.04 13.43 69.07 9.70 27.54 44.56 37.07 14.20
Carefully-designed demonstration 22.73 39.52 17.35 77.54 32.25 32.07 48.03 42.88 21.40

GPT-3.5
Zero-shot 6.34 15.05 14.08 2.81 0.15 0.06 0.26 0.00 0.20

Baseline demonstration 14.55 21.53 13.81 62.87 9.15 26.36 36.94 41.67 10.00
Carefully-designed demonstration 15.99 26.78 16.70 71.70 25.25 30.69 43.95 44.78 15.20

ChatGPT
Zero-shot 3.63 11.40 13.16 2.32 0.05 25.70 37.64 54.44 3.40

Baseline demonstration 10.76 20.02 14.83 41.57 4.60 27.62 41.83 46.85 9.40
Carefully-designed demonstration 11.90 23.31 16.93 53.92 18.15 30.03 45.04 44.26 14.20
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Fig. 6: Experimental results of different number of demonstra-

tion examples on GPT-3.5 and ChatGPT.

designed demonstration, ICL with the widely-used demon-

stration construction method [17], [19], [22], and zero-shot

ICL. In the carefully-designed demonstration, we use BM-

25 and Similarity as demonstration selection and ordering

methods and employ four demonstration examples; while for

the widely-used baseline demonstration construction method,

we use the settings in previous work [17], [19], [22] and

randomly select two demonstration examples from the training

set with random order. As for zero-shot ICL, as illustrated in

section II-B, no demonstration example is used and the model

predicts only based on the instruction.

2) Analysis: We present the average results and CV of GPT-

3.5 and ChatGPT in Table VII. In Fig. 5 and Fig. 6, we present

the performance distribution of different groups of examples

and the impact of the number of examples on these two LLMs,

respectively. The comparison of different demonstrations is

shown in Table VIII. Due to the space limitation, we only

present the performance on EM and CB and the results on

other metrics can be found in our replication package. From

these results, we can observe that our findings can also be

applied to GPT-3.5 and ChatGPT.

As shown in Table VII and Fig. 6, we can ob-

serve that KmeansRND+Random not only outperforms Ran-

dom+Random on the average results, but also has a more sta-

ble prediction distribution regarding different groups of exam-

ples. Taking GPT-3.5 as an example, KmeansRND+Random

improves Random+Random by 6.24% and 10.39% with re-

spect to CB and EM, respectively. This indicates that diver-

sity is also beneficial for the demonstration construction of

these two models (finding 1). Similarly, by comparing BM-

25+Random and UniXcoder+Random, we can also find that

BM-25 can achieve similar performance and even outperforms

UniXcoder on GPT-3.5 by 2.50% and 4.88% with respect to

CB and EM, respectively. This shows that BM-25 is also a

simple and effective demonstration selection method in these

two models (finding 2). Besides, on GPT-3.5 and ChatGPT,

instance-level demonstrations also consistently outperform

task-level demonstrations and achieve lower CV to different

orders in general. It indicates that selecting demonstration

examples by similarity is also beneficial for these two LLMs

(finding 3). As for the impact of example order, we can

also find that BM-25+Similarity consistently improves BM-

25+Random on all metrics and LLMs, e.g., improving the

average EM by 5.56% and 5.42% on GPT-3.5 and ChatGPT,

respectively (finding 4). As for the impact of numbers, we can

observe similar trends on GPT-3.5 and ChatGPT in Fig. 6, the

EM first increases with the number of demonstration examples.

As the number further increases to 128, 25.05% examples

suffer from the truncation problem, resulting in a sudden

degradation (finding 5).
Table VIII shows the comparison of different demonstra-

tions. We can also observe that the performance of zero-shot

ICL is very poor on all tasks, which indicates the importance

of using demonstration examples to guide the LLM to un-

derstand the task. Besides, by comparing the performance of

the carefully-designed demonstration with the baseline demon-

stration, we can find that ChatGPT with a carefully-designed

demonstration outperforms the baseline demonstration by at

least 10.59%, 294.57%, and 51.06% on code summarization,

bug fixing, and program synthesis with respect to BLEU-4,

EM, and EM, respectively. The results indicate the importance

of constructing a good demonstration, and the generalizability

of the findings.

V. DISCUSSION

A. Implications of Findings

In this section, we discuss the implications of our work for

researchers and developers.

Researchers: Our research demonstrates that the perfor-

mance of few-shot in-context learning is highly dependent on

the design of demonstrations. With well-constructed demon-

strations, ICL can achieve much better performance. Our

experimental results also show potential research directions in

the era of LLM and ICL for the code intelligence community.

Specifically:
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• As shown in the results of RQ1, current state-of-the-art

code retrieval models still have a large gap with the Or-

acle, indicating that these models fail to select examples

with the highest semantic similarities. Therefore, effective

code representation models for zero-shot code-to-code

search are worth studying. Besides, designing example

selection strategies based on the prior knowledge of each

task or the properties of source code are also interesting

directions that are worth exploring.

• Placing similar examples in the back of all examples leads

to relatively better performance than random and reverse

placings. However, such improvement is not consistent.

Therefore, how to automatically design a better ordering

method for code intelligence tasks needs to be further

investigated.

• Different from natural language text, the length of a code

snippet is often much longer. This limits the number of

examples in the prompt and could bring large computa-

tion and time costs for LLMs. Therefore, incorporating

program slicing and reduction techniques into ICL to

reduce the costs is worth investigating.

Developers: In-context learning is a paradigm that allows

for learning from a few examples in the prompt without

requiring parameter updates. This new approach has also

fascinated the language-model-as-a-service community. Our

findings indicate that the selection, order, and number of

demonstration examples have significant impacts on the per-

formance of ICL for code intelligence tasks. Based on our

findings, we conclude the following insights and takeaways

for developers to use LLM in their work:

• Including demonstration examples in the prompt, which

help the model understand the task and guide the output

format.

• Using a retrieval method to select demonstration exam-

ples when a labeled training set is available. For the

retrieval methods, consider using BM-25 as it is a simple

yet effective method.

• Improving the diversity of task-level demonstration ex-

amples with clustering to obtain more accurate and stable

predictions.

• When arranging the order of demonstration examples,

placing similar samples at the end of the list is a good

choice in most cases.

• Using as many demonstration examples as possible, but

be mindful of the maximum length limitation to avoid

truncation issues. To save costs, it is also suggested that

four examples are used in the demonstration.

B. Threats to Validity
We identify three main threats to validity of our study:

1) Potential data leakage. In this paper, we conduct ex-

periments by using the API of OpenAI Codex, GPT-

3.5, and ChatGPT. However, since they are closed-source

models, their parameters and training sets are not publicly

available, which raises concerns about potential data leak-

age. Specifically, there is a possibility that the model has

already been trained on the test set and merely memorizes

the results instead of predicting them. However, we can

observe from our experiments that the model’s perfor-

mance in a zero-shot setting is catastrophic, indicating

a low probability of direct memorization of the dataset.

Moreover, all experiments in our paper were conducted

using these models and we use the relative performance

improvement to measure the effectiveness of different

demonstration construction strategies. Therefore, the find-

ings of our paper remain convincing.

2) The selection of tasks. In this study, we investigate

constructions of the demonstration on representative three

tasks including code summarization, bug fixing, and

program synthesis. These tasks cover different types such

as Code → Text, Code+Text → Code, and Text → Code.

Hence, we believe the finding of our paper can generalize

to a wide arrange of code intelligent tasks. In the future,

we plan to conduct experiments on other types of tasks

such as Code → Class tasks (e.g., vulnerability detection)

and Code → Code tasks (e.g., code translation).

3) The selection of models. In this paper, we select

three LLMs for experiments. Nonetheless, there are

other LLMs available, such as CodeGen [62] and

CodeGeeX [63]. In the future, we plan to conduct ex-

periments on a broader range of LLMs to verify the

generalizability of our findings.

4) The selection of languages. For each task, we select one

popular dataset for evaluation. The datasets of three tasks

only contain two programming languages, i.e., Java and

Python. In the future, we will validate the effectiveness of

demonstration construction methods in other languages.

VI. RELATED WORK

A. Pre-trained Models of Code

Recently, with the development of pre-trained techniques,

the pre-trained models of code have been widely used and

achieved state-of-the-art performance on various software en-

gineering tasks. One such model is CodeBERT [6], which is an

encoder-only pre-trained model on six programming languages

with two self-supervised tasks. Another model, CodeT5 [9]

is an encoder-decoder pre-trained model following the same

architecture as T5. CodeGPT [64] is a decoder-only model that

pre-trains on programming languages dataset and has the same

architecture as GPT-2. PLBART [8] uses denoising sequence-

to-sequence pretraining for both program understanding and

generation purposes. UniXCoder [48] involves multi-modal

contrastive learning and cross-modal generation objective to

learn the representation of code fragments.

Apart from these smaller pre-trained models in academic

circles, many pre-trained code models with much larger sizes

have been proposed in the industry in recent years. Codex [2]

is a large code pre-trained model proposed by OpenAI that

supports the service of Copilot. In addition to Codex, the

models recently released by OpenAI, such as ChatGPT [26]

and GPT-4 [23], are also pre-trained on source code data
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and demonstrate impressive programming abilities. Alpha-

Code [25] is trained for generating code for programming

competitions like Codeforces, using 715G data and 41B

parameters. CodeGen [62] is a large pre-trained model for

multi-turn program synthesis with more than 16B parameters,

while CodeGeeX [63] is a recently proposed open-source

multilingual code generation model with 13B parameters.

B. In-context Learning
Large language models have revolutionized natural language

processing (NLP) in recent years. Based on large pre-training

data and model sizes, LLMs show impressive emergent abili-

ties that have not been observed in small models [10]. Brown

et al. [11] first show that GPT-3 has the ability to learn

from a few examples in the context without parameter update.

Liu et al. [20] first explore selecting the closest neighbors as

the in-context examples. Recently, Levy et al. [65] propose

to improve the diversity of in-context examples and achieve

better performance on NLP compositional generalization tasks.

Lu et al. [21] find that the order of in-context examples has

a large impact on the performance and propose two methods

LocalE and GlobalE based on the entropy. Recently, a series

of work [15], [66] focus on the complex reasoning tasks and

propose chain-of-thought prompt by guiding the model to

output its reasoning path.
In addition to NLP, there has been increasing interest in

applying in-context learning to code intelligence tasks [17],

[19], [22], [47], [67], [68]. For example, Xia et al. [17] evaluate

the effectiveness of LLMs on program repair. Nashid et al. [47]

propose to use the BM-25 to retrieve similar examples and

construct the demonstrations for assert generation and program

repair. However, these works mainly focus on the evaluation of

LLMs on one or two tasks and do not discuss the construction

of in-context demonstrations in-depth. In contrast, our work

aims at conducting a systematic study of designing better

demonstrations for ICL in code intelligence tasks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we experimentally investigate the impact of

different demonstration selection methods, different demon-

stration ordering methods, and the number of demonstra-

tion examples on the performance of in-context learning for

code intelligence tasks. Our research demonstrates that a

carefully-designed demonstration for ICL outperforms simpler

demonstrations a lot. We summarize our findings and provide

suggestions to help researchers and developers construct better

demonstrations for code intelligence tasks. In the future, we

will explore more aspects of source code on the performance

of in-context learning such as the quality of the code and

the naturalness of the code. Additionally, we will also further

verify our findings on other large language models. Our

source code and full experimental results are available at

https://github.com/shuzhenggao/ICL4code.
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