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Abstract

We study the combinatorial pure exploration (CPE) problem in the stochastic multi-armed
bandit setting, where a learner explores a set of arms with the objective of identifying
the optimal member of a decision class, which is a collection of subsets of arms with
certain combinatorial structures such as size- K subsets, matchings, spanning trees or paths,
etc. The CPE problem represents a rich class of pure exploration tasks which covers not
only many existing models but also novel cases where the object of interest has a non-
trivial combinatorial structure. In this paper, we provide a series of results for the general
CPE problem. We present general learning algorithms which work for all decision classes
that admit offline maximization oracles in both fixed confidence and fixed budget settings.
We prove problem-dependent upper bounds of our algorithms. Our analysis exploits the
combinatorial structures of the decision classes and introduces a new analytic tool. We also
establish a general problem-dependent lower bound for the CPE problem. Our results show
that the proposed algorithms achieve the optimal sample complexity (within logarithmic
factors) for many decision classes. In addition, applying our results back to the problems
of top-K arms identification and multiple bandit best arms identification, we recover the
best available upper bounds up to constant factors and partially resolve a conjecture on the
lower bounds.

1 Introduction

Multi-armed bandit (MAB) is a predominant model for characterizing the tradeoff between explo-
ration and exploitation in decision-making problems. Although this is an intrinsic tradeoff in many
tasks, some application domains prefer a dedicated exploration procedure in which the goal is to
identify an optimal object among a collection of candidates and the reward or loss incurred during
exploration is irrelevant. In light of these applications, the related learning problem, called pure ex-
ploration in MABS, has received much attention. Recent advances in pure exploration MABs have
found potential applications in many domains including crowdsourcing, communication network
and online advertising.

In many of these application domains, a recurring problem is to identify the optimal object with
certain combinatorial structure. For example, a crowdsourcing application may want to find the best
assignment from workers to tasks such that overall productivity of workers is maximized. A network
routing system during the initialization phase may try to build a spanning tree that minimizes the
delay of links, or attempts to identify the shortest path between two sites. An online advertising
system may be interested in finding the best matching between ads and display slots. The literature
of pure exploration MAB problems lacks a framework that encompasses these kinds of problems
where the object of interest has a non-trivial combinatorial structure. Our paper contributes such
a framework which accounts for general combinatorial structures, and develops a series of results,
including algorithms, upper bounds and lower bounds for the framework.

In this paper, we formulate the combinatorial pure exploration (CPE) problem for stochastic multi-
armed bandits. In the CPE problem, a learner has a fixed set of arms and each arm is associated with
an unknown reward distribution. The learner is also given a collection of sets of arms called decision
class, which corresponds to a collection of certain combinatorial structures. During the exploration
period, in each round the learner chooses an arm to play and observes a random reward sampled from
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the associated distribution. The objective is when the exploration period ends, the learner outputs a
member of the decision class that she believes to be optimal, in the sense that the sum of expected
rewards of all arms in the output set is maximized among all members in the decision class.

The CPE framework represents a rich class of pure exploration problems. The conventional pure ex-
ploration problem in MAB, whose objective is to find the single best arm, clearly fits into this frame-
work, in which the decision class is the collection of all singletons. This framework also naturally
encompasses several recent extensions, including the problem of finding the top K arms (henceforth
TopK) [18, 19, 8, 20, 31] and the multi-bandit problem of finding the best arms simultaneously
from several disjoint sets of arms (henceforth MB) [12, 8]. Further, this framework covers many
more interesting cases where the decision classes correspond to collections of non-trivial combina-
torial structures. For example, suppose that the arms represent the edges in a graph. Then a decision
class could be the set of all paths between two vertices, all spanning trees or all matchings of the
graph. And, in these cases, the objectives of CPE become identifying the optimal paths, spanning
trees and matchings through bandit explorations, respectively. To our knowledge, there are no results
available in the literature for these pure exploration tasks.

The CPE framework raises several interesting challenges to the design and analysis of pure explo-
ration algorithms. One challenge is that, instead of solving each type of CPE task in an ad-hoc way,
one requires a unified algorithm and analysis that support different decision classes. Another chal-
lenge stems from the combinatorial nature of CPE, namely that the optimal set may contain some
arms with very small expected rewards (e.g., it is possible that a maximum matching contains the
edge with the smallest weight); hence, arms cannot be eliminated simply based on their own re-
wards in the learning algorithm or ignored in the analysis. This differs from many existing approach
of pure exploration MABs. Therefore, the design and analysis of algorithms for CPE demands novel
techniques which take both rewards and combinatorial structures into account.

Our results. In this paper, we propose two novel learning algorithms for general CPE problem: one
for the fixed confidence setting and one for the fixed budget setting. Both algorithms support a wide
range of decision classes in a unified way. In the fixed confidence setting, we present Combinatorial
Lower-Upper Confidence Bound (CLUCB) algorithm. The CLUCB algorithm does not need to know
the definition of the decision class, as long as it has access to the decision class through a maximiza-
tion oracle. We upper bound the number of samples used by CLUCB. This sample complexity bound
depends on both the expected rewards and the structure of decision class. Our analysis relies on a
novel combinatorial construction called exchange class, which may be of independent interest for
other combinatorial optimization problems. Specializing our result to TOPK and MB, we recover
the best available sample complexity bounds [19, 13, 20] up to constant factors. While for other de-
cision classes in general, our result establishes the first sample complexity upper bound. We further
show that CLUCB can be easily extended to the fixed budget setting and PAC learning setting and
we provide related theoretical guarantees in the supplementary material.

Moreover, we establish a problem-dependent sample complexity lower bound for the CPE problem.
Our lower bound shows that the sample complexity of the proposed CLUCB algorithm is optimal
(to within logarithmic factors) for many decision classes, including TOPK, MB and the decision
classes derived from matroids (e.g., spanning tree). Therefore our upper and lower bounds provide
a nearly full characterization of the sample complexity of these CPE problems. For more general
decision classes, our results show that the upper and lower bounds are within a relatively benign
factor. To the best of our knowledge, there are no problem-dependent lower bounds known for pure
exploration MABs besides the case of identifying the single best arm [24, 1]. We also notice that
our result resolves the conjecture of Bubeck et al. [8] on the problem-dependent sample complexity
lower bounds of TOPK and MB problems, for the cases of Gaussian reward distributions.

In the fixed budget setting, we present a parameter-free algorithm called Combinatorial Successive
Accept Reject (CSAR) algorithm. We prove a probability of error bound of the CSAR algorithm. This
bound can be shown to be equivalent to the sample complexity bound of CLUCB within logarithmic
factors, although the two algorithms are based on quite different techniques. Our analysis of CSAR
re-uses exchange classes as tools. This suggests that exchange classes may be useful for analyzing
similar problems. In addition, when applying the algorithm to back TOPK and MB, our bound
recovers the best known result in the fixed budget setting due to Bubeck et al. [8] up to constant
factors.



2 Problem Formulation

In this section, we formally define the CPE problem. Suppose that there are n arms and the arms
are numbered 1,2,...,n. Assume that each arm e € [n] is associated with a reward distribution

@e. Letw = (w(l),... ,w(n))T denote the vector of expected rewards, where each entry w(e) =
Ex~y, [X] denotes the expected reward of arm e. Following standard assumptions of stochastic
MABESs, we assume that all reward distributions have R-sub-Gaussian tails for some known constant
R > 0. Formally, if X is a random variable drawn from ¢, for some e € [n], then, for all ¢ € R,
one has E[ exp(tX — tE[X])] < exp(R?t?/2). It is known that the family of R-sub-Gaussian tail
distributions encompasses all distributions that are supported on [0, R] as well as many unbounded
distributions such as Gaussian distributions with variance R2 (seee.g., [27, 28]).

We define a decision class M C 2[") as a collection of sets of arms. Let M, = arg max mem w(M)
denote the optimal member of the decision class M which maximizes the sum of expected rewards'.
A learner’s objective is to identify M, from M by playing the following game with the stochastic
environment. At the beginning of the game, the decision class M is revealed to the learner while
the reward distributions {¢.}cc[n) are unknown to her. Then, the learner plays the game over a
sequence of rounds; in each round ¢, she pulls an arm p; € [n] and observes a reward sampled
from the associated reward distribution ¢,,,. The game continues until certain stopping condition is
satisfied. After the game finishes, the learner need to output a set Out € M.

We consider two different stopping conditions of the game, which are known as fixed confidence
setting and fixed budget setting in the literature. In the fixed confidence setting, the learner can stop
the game at any round. She need to guarantee that Pr[Out = M,] > 1 — § for a given confidence
parameter 6. The learner’s performance is evaluated by her sample complexity, i.e., the number of
pulls used by the learner. In the fixed budget setting, the game stops after a fixed number 7’ of rounds,
where T is given before the game starts. The learner tries to minimize the probability of error, which
is formally Pr[Out # M.,], within T rounds. In this setting, her performance is measured by the
probability of error.

3 Algorithm, Exchange Class and Sample Complexity

In this section, we present Combinatorial Lower-Upper Confidence Bound (CLUCB) algorithm, a
learning algorithm for the CPE problem in the fixed confidence setting, and analyze its sample com-
plexity. En route to our sample complexity bound, we introduce the notions of exchange classes and
the widths of decision classes, which play an important role in the analysis and sample complexity
bound. Furthermore, the CLUCB algorithm can be extended to the fixed budget and PAC learning
settings, the discussion of which is included in the supplementary material (Appendix B).

Oracle. We allow the CLUCB algorithm to access a maximization oracle. A maximization oracle
takes a weight vector v € R™ as input and finds an optimal set from a given decision class M with
respect to the weight vector v. Formally, we call a function Oracle: R™ — M a maximization oracle
for M if, for all v € R™, we have Oracle(v) € argmax,;c \, v(M). It is clear that a wide range
of decision classes admit such maximization oracles, including decision classes corresponding to
collections of matchings, paths or bases of matroids (see later for concrete examples). Besides the
access to the oracle, CLUCB does not need any additional knowledge of the decision class M.

Algorithm. Now we describe the details of CLUCB, as shown in Algorithm 1. During its execution,
the CLUCB algorithm maintains empirical mean @, (e) and confidence radius rad;(e) for each arm
e € [n] and each round ¢. The construction of confidence radius ensures that |w(e) — w(e)| <
rad,(e) holds with high probability for each arm e € [n] and each round ¢ > 0. CLUCB begins
with an initialization phase in which each arm is pulled once. Then, at round ¢ > n, CLUCB uses
the following procedure to choose an arm to play. First, CLUCB calls the oracle which finds the
set M; = Oracle(w;). The set M, is the “best” set with respect to the empirical means w;. Then,
CLUCB explores possible refinements of M;. In particular, CLUCB uses the confidence radius to
compute an adjusted expectation vector w; in the following way: for each arm e € My, w;(e) is
equal to to the lower confidence bound w0, (e) = w;(e) —rads(e); and for each arm e ¢ My, w;(e) is
equal to the upper confidence bound w;(e) = w;(e) + rad;(e). Intuitively, the adjusted expectation
vector w; penalizes arms belonging to the current set M; and encourages exploring arms out of

'We define v(S) £ 3, 5 v(4) for any vector v € R™ and any set S C [n]. In addition, for convenience,
we will assume that M. is unique.



Algorithm 1 CLUCB: Combinatorial Lower-Upper Confidence Bound

Require: Confidence ¢ € (0, 1); Maximization oracle: Oracle(-) : R™ — M
Initialize: Play each arm e € [n] once. Initialize empirical means w,, and set T, (e) + 1 for all e.

1: fort =n,n+1,...do

2 My + Oracle(;)

3 Compute confidence radius rad:(e) for all e € [n] > rad, (e) is defined later in Theorem 1
4: fore=1,...,ndo

5: if e € M, then @, (e) < w:(e) — rad;(e)

6: else wt(e) — u’;t(e) + radt(e)

7 M, « Oracle(w;)

8: if ’I_I)t (Mt) = ’lI)t(Mt) then

9: Out + M,
10: return Out
11 pe < argmax, ¢ iz, \ a,)u(m,\ a1, ) Tade(€) > break ties arbitrarily
12: Pull arm p; and observe the reward
13: Update empirical means w1 using the observed reward

14: Update number of pulls: Ty4+1(p:) < Ti(p:) + 1 and Ty41(e) < Ti(e) for all e # pe

M;. CLUCB then calls the oracle using the adjusted expectation vector w; as input to compute a
refined set M; = Oracle(w;). If w;(M;) = w(M;) then CLUCB stops and returns Out = M;.
Otherwise, CLUCB pulls the arm that belongs to the symmetric difference between M, and M; and
has the largest confidence radius (intuitively the largest uncertainty). This ends the ¢-th round of
CLUCB. We note that CLUCB generalizes and unifies the ideas of several different fixed confidence
algorithms dedicated to the TOPK and MB problems in the literature [19, 13, 20].

3.1 Sample complexity
Now we establish a problem-dependent sample complexity bound of the CLUCB algorithm. To for-
mally state our result, we need to introduce several notions.

Gap. We begin with defining a natural hardness measure of the CPE problem. For each arm e € [n],
we define its gap A, as

A — {w(M*> — MaxXpyeM:ee M ’LU(M) ife g M*7

1
’LU(M*) — MaXpreM:egM ’LU(M) ife e M,, (1

where we adopt the convention that the maximum value of an empty set is —oo. We also define the
hardness H as the sum of inverse squared gaps

H= Y A2 @
e€n]

We see that, for each arm e ¢ M,, the gap A, represents the sub-optimality of the best set that
includes arm e; and, for each arm e € M,, the gap A, is the sub-optimality of the best set that does
not include arm e. This naturally generalizes and unifies previous definitions of gaps [1, 12, 18, 8].

Exchange class and the width of a decision class. A notable challenge of our analysis stems from
the generality of CLUCB which, as we have seen, supports a wide range of decision classes M.
Indeed, previous algorithms for special cases including TOPK and MB require a separate analysis
for each individual type of problem. Such strategy is intractable for our setting and we need a unified
analysis for all decision classes. Our solution to this challenge is a novel combinatorial construction
called exchange class, which is used as a proxy for the structure of the decision class. Intuitively,
an exchange class B for a decision class M can be seen as a collection of “patches” (borrowing
concepts from source code management) such that, for any two different sets M, M’ € M, one can
transform M to M’ by applying a series of patches of BB; and each application of a patch yields a
valid member of M. These patches are later used by our analysis to build gadgets that interpolate
between different members of the decision class and serve to bridge key quantities. Furthermore, the
maximum patch size of B will play an important role in our sample complexity bound.

Now we formally define the exchange class. We begin with the definition of exchange sets, which
formalize the aforementioned “patches”. We define an exchange set b as an ordered pair of disjoint
sets b = (b4, b_) where by Nb_ = () and by, b_ C [n]. Then, we define operator & such that, for
any set M C [n] and any exchange set b = (by,b_), we have M © b = M\b_ U b, . Similarly, we
also define operator © such that M ©b = M\b, Ub_.



We call a collection of exchange sets I3 an exchange class for M if B satisfies the following property.
For any M, M’ € M such that M # M’ and for any e € (M\ M), there exists an exchange set
(b4,b_) € B which satisfies five constraints: (a) e € b_, (b) by C M'\M, (¢) b_ C M\M’, (d)
(M ®b) e Mand(e) (M'©b) € M.

Intuitively, constraints (b) and (c) resemble the concept of patches in the sense that b, contains
only the “new” elements from M’ and b_ contains only the “o0ld” elements of M; constraints (d)
and (e) allow one to transform M one step closer to M’ by applying a patch b € B to yield (M &
b) € M (and similarly for M’ & b). These transformations are the basic building blocks in our
analysis. Furthermore, as we will see later in our examples, for many decision classes, there are
exchange classes representing natural combinatorial structures, e.g., augmenting paths and cycles of
matchings.

In our analysis, the key quantity of exchange class is called width, which is defined as the size of the
largest exchange set as follows

idth(B) = by|+|b-]. 3
width(B) = | max_[he |+ o] ®

Let Exchange(M) denote the family of all possible exchange classes for M. We define the width
of a decision class M as the width of the thinnest exchange class

width(M) = min width(B). 4)
BeExchange(M)

Sample complexity. Our main result of this section is a problem-dependent sample complexity
bound of the CLUCB algorithm which show that, with high probability, CLUCB returns the optimal

set M, and uses at most O ( width(M)?H) samples.

Theorem 1. Given any ¢ € (0,1), any decision class M C 2"l and any expected rewards w € R™.
Assume that the reward distribution @, for each arm e € [n] has mean w(e) with an R-sub-Gaussian

tail. Let M, = argmax ;¢ w(M) denote the optimal set. Set rad;(e) = R\/Q log (4?3) /Ti(e)
forallt > 0 and e € [n]. Then, with probability at least 1 — 6, the CLUCB algorithm (Algorithm 1)
returns the optimal set Out = M, and

T < O (R? width(M)*Hlog (nR*H/0)) (5)

where T denotes the number of samples used by Algorithm 1, H is defined in Eq. (2) and width(M)
is defined in Eq. (4).

3.2 Examples of decision classes

Now we investigate several concrete types of decision classes, which correspond to different CPE
tasks. We analyze the width of these decision classes and apply Theorem 1 to obtain the sample
complexity bounds. A detailed analysis and the constructions of exchange classes can be found in
the supplementary material (Appendix F). We begin with the problems of top-K arm identification
(TopPK) and multi-bandit best arms identification (MB).

Example 1 (ToPK and MB). For any K € [n], the problem of finding the top K arms with the
largest expected reward can be modeled by decision class Mropk () = {M C [n] | |M ‘ = K}.
Let A = {A1,..., Ay} be a partition of [n]. The problem of identifying the best arms from each
group of arms Ay, ..., A, can be modeled by decision class Mgy = {M C [n] | Vi €
[m],|M N A;| = 1}. Note that maximization oracles for these two decision classes are trivially the
Sfunctions of returning the top k arms or the best arms of each group.

Then we have width(Mropk (i) < 2 and width(Myga)) < 2 (see Fact 2 and 3 in the sup-
plementary material) and therefore the sample complexity of CLUCB for solving TOPK and MB is
O(H log(nH/ 5)) which matches previous results in the fixed confidence setting [19, 13, 20] up to
constant factors.

Next we consider the problem of identifying the maximum matching and the problem of finding
the shortest path (by negating the rewards), in a setting where arms correspond to edges. For these
problems, Theorem 1 establishes the first known sample complexity bound.



Example 2 (Matchings and Paths). Let G(V, E) be a graph with n edges and assume there is a one-
to-one mapping between edges E and arms [n]. Suppose that G is a bipartite graph. Let My ren(c)
correspond to the set of all matchings in G. Then we have width(Mwyxren(a)) < |V (In fact, we
construct an exchange class corresponding to the collection of augmenting cycles and augmenting
paths of G; see Fact 4).

Next suppose that G is a directed acyclic graph and let s,t € V be two vertices. Let Mpyy(G,s,1)
correspond to the set of all paths from s to t. Then we have width(Mpyru(c,s,t)) < |V (In fact,
we construct an exchange class corresponding to the collection of disjoint pairs of paths; see
Fact 5). Therefore the sample complexity bounds of CLUCB for decision classes Myjxrcn(c) and

Mpxrn(c,s,t) are O(|V[*Hlog(nH/0)).

Last, we investigate the general problem of identifying the maximum-weight basis of a matroid.
Again, Theorem 1 is the first sample complexity upper bound for this type of pure exploration tasks.

Example 3 (Matroids). Let T = (E,ZI) be a finite matroid, where E is a set of size n (called
ground set) and T is a family of subsets of E (called independent sets) which satisfies the axioms of
matroids (see Footnote 3 in Appendix F). Assume that there is a one-to-one mapping between E and
[n]. Recall that a basis of matroid T is a maximal independent set. Let My ATROID(T') COTTEspond
to the set of all bases of T. Then we have Width(MMATROID(T)) < 2 (derived from strong basis
exchange property of matroids; see Fact 1) and the sample complexity of CLUCB for Myiarrom (1)

is O(Hlog(nH/9)).

The last example Myarrom () 18 @ general type of decision class which encompasses many pure
exploration tasks including TOPK and MB as special cases, where TOPK corresponds to uniform
matroids of rank K and MB corresponds to partition matroids. It is easy to see that My, ATROID(T')
also covers the decision class that contains all spanning trees of a graph. On the other hand, it has
been established that matchings and paths cannot be formulated as matroids since they are matroid
intersections [26].

4 Lower Bound

In this section, we present a problem-dependent lower bound on the sample complexity of the CPE
problem. To state our results, we first define the notion of §-correct algorithm as follows. For any
d € (0,1), we call an algorithm A a §-correct algorithm if, for any expected reward w € R", the
probability of error of A is at most 6, i.e., Pr[M, # Out] < §, where Out is the output of A.

We show that, for any decision class M and any expected rewards w, a d-correct algorithm A must
use at least 2 (Hlog(1/4)) samples in expectation.

Theorem 2. Fix any decision class M C 2" and any vector w € R™. Suppose that, for each
arm e € [n), the reward distribution ¢, is given by ¢. = N(w(e), 1), where we let N'(u,c?)
denote Gaussian distribution with mean y and variance . Then, for any § € (0,e~16/4) and any
d-correct algorithm A, we have

— 16 46
where T' denote the number of total samples used by algorithm A and H is defined in Eq. (2).

E[T] > -~ Hlog (1) , ©)

In Example 1 and Example 3, we have seen that the sample complexity of CLUCB is
O(Hlog(nH/J)) for pure exploration tasks including TOPK, MB and more generally the CPE
tasks with decision classes derived from matroids, i.e., Myiarrom(7) (including spanning trees).
Hence, our upper and lower bound show that the CLUCB algorithm achieves the optimal sample
complexity within logarithmic factors for these pure exploration tasks. In addition, we remark that
Theorem 2 resolves the conjecture of Bubeck et al. [8] that the lower bounds of sample complexity
of ToPK and MB problems are Q(H log(1/ 5)), for the cases of Gaussian reward distributions.

On the other hand, for general decision classes with non-constant widths, we see that there is a gap of
O(width(M)?) between the upper bound Eq. (5) and the lower bound Eq. (6). Notice that we have
width(M) < n for any decision class M and therefore the gap is relatively benign. Our lower bound
also suggests that the dependency on H of the sample complexity of CLUCB cannot be improved up
to logarithmic factors. Furthermore, we conjecture that the sample complexity lower bound might
inherently depend on the size of exchange sets. In the supplementary material (Appendix C.2), we



provide evidences on this conjecture which is a lower bound on the sample complexity of exploration
of the exchange sets.

5 Fixed Budget Algorithm

In this section, we present Combinatorial Successive Accept Reject (CSAR) algorithm, which is a
parameter-free learning algorithm for the CPE problem in the fixed budget setting. Then, we upper
bound the probability of error CSAR in terms of gaps and width(M).

Constrained oracle. The CSAR algorithm requires access to a constrained oracle, which is a func-
tion denoted as COracle : R™ x 21" x 2[" — A U { L} and satisfies

1 ifMA,B = Q)a

where we define My g = {M € M| A C M,BN M = (} as the collection of feasible sets
and L is a null symbol. Hence we see that COracle(v, A, B) returns an optimal set that includes all
elements of A while excluding all elements of B; and if there are no feasible sets, the constrained
oracle COracle(v, A, B) returns the null symbol L. In the supplementary material (Appendix G),
we show that constrained oracles are equivalent to maximization oracles up to a transformation on
the weight vector. In addition, similar to CLUCB, CSAR does not need any additional knowledge of
M other than accesses to a constrained oracle for M.

Algorithm. The idea of the CSAR algorithm is as follows. The CSAR algorithm divides the budget
of T" rounds into n phases. In the end of each phase, CSAR either accepts or rejects a single arm. If
an arm is accepted, then it is included into the final output. Conversely, if an arm is rejected, then it
is excluded from the final output. The arms that are neither accepted nor rejected are sampled for an
equal number of times in the next phase.

COracle(v, A, B) = {arg maxyre g, , V(M) if Ma g # 0 -

Now we describe the procedure of the CSAR algorithm for choosing an arm to accept/reject. Let
Ay denote the set of accepted arms before phase ¢ and let B; denote the set of rejected arms before
phase ¢. We call an arm e to be active if e ¢ Ay U By. In the beginning of phase ¢, CSAR samples
each active arm for T, — T,_; times, where the definition of T} is given in Algorithm 2. Next,
CSAR calls the constrained oracle to compute an optimal set M, with respect to the empirical means
wy, accepted arms A; and rejected arms By, i.e., My = COracle(w;, A, By). It is clear that the
output of COracle(w;, A, By) is independent from the input w;(e) for any e € A; U By. Then, for
each active arm e, CSAR estimates the “empirical gap” of e in the following way. If e € M, then
CSAR computes an optimal set Mt . that does not include e, i.e., Mt e = COracle(wy, Af, B, U
{e}). Conversely, if e ¢ M, then CSAR computes an optimal Mt - which includes e, i.e., Mt e =
COracle(w;, A;U{e}, By). Then, the empirical gap of ¢ is calculated as @, (M, )—; (M; . ). Finally,
CSAR chooses the arm p; which has the largest empirical gap. If p; € M; then p; is accepted,
otherwise p; is rejected. The pseudo-code CSAR is shown in Algorithm 2. We note that CSAR can
be considered as a generalization of the ideas of the two versions of SAR algorithm due to Bubeck
et al. [8], which are designed specifically for the TOPK and MB problems respectively.

5.1 Probability of error

In the following theorem, we bound the probability of error of the CSAR algorithm.

Theorem 3. Given any T > n, any decision class M C 2" and any expected rewards w €
R™. Assume that the reward distribution @, for each arm e € [n| has mean w(e) with an R-sub-
Gaussian tail. Let Ay, ..., A, be a permutation of Ay,..., A, (defined in Eq. (1)) such that

Ay < oo An). Define Hy ES maX;e(p, zA . Then, the CSAR algorithm uses at most T'
samples and outputs a solution Out € M U {J_} such that

T
Pr[Out # M,] < n*exp <— = ( - n) > , (8)
18 R?log(n) width(M)?H,

where log(n) 2 321" i~1, M, = argmax ;. v w(M) and width(M) is defined in Eq. (4).
One can verify that Hs is equivalent to H up to a logarithmic factor: Hy < H < log(2n)Hs (see
[1]). Therefore, by setting the probability of error (the RHS of Eq. (8)) to a constant, one can see
that CSAR requires a budget of T = O(width(M)?H) samples. This is equivalent to the sample
complexity bound of CLUCB up to logarithmic factors. In addition, applying Theorem 3 back to
TopPK and MB, our bound matches the previous fixed budget algorithm due to Bubeck et al. [8].

7



Algorithm 2 CSAR: Combinatorial Successive Accept Reject

Require: Budget: 7" > 0; Constrained oracle: COracle : R™ x 2l ol 5 MU {L}.
1: Define log(n) £ 37 | 1

i=1 71

2: Ty (—0,A1 < @,B1 %@
3: fort=1,...,ndo

. 2 T—n
o T Lég(n)(n—m)w L
5: Pull each arm e € [n]\(A: U By) for Ty — Ty times
6: Update the empirical means 1w, for each arm e € [n]\(A; U By) >setwy(e) =0, Ve € Ay U By
7.
8
9

M; + COI‘&Cle(’lI}t, At, Bt)
if M; = 1 then
: fail: set Out <— _L and return Out
10: for each e € [n]\(A; U B;) do

11: if e € M; then J\;[me + COracle(w;, A+, B: U {e})

12: else M; . < COracle(, A; U {e}, B:)

13: Pt 4 ATEMAX ¢\ (4,UB,) Ot (Me) — ¢ (M) > define w: (L) = —oo; break ties arbitrarily
14: if p; € M, then

15: Ay — At U{p:}, Beg1 < By

16: else

17: At+1 — At, Bt+1 +— B: U {pt}

18: Out «+ An+1
19: return Out

6 Related Work

The multi-armed bandit problem has been extensively studied in both stochastic and adversarial
settings [22, 3, 2]. We refer readers to [5] for a survey on recent advances. Many work in MABs focus
on minimizing the cumulative regret, which is an objective known to be fundamentally different
from the objective of pure exploration MABs [6]. Among these work, a recent line of research
considers a generalized setting called combinatorial bandits in which a set of arms (satisfying certain
combinatorial constraints) are played on each round [9, 17, 25, 7, 10, 14, 23, 21]. Note that the
objective of these work is to minimize the cumulative regret, which differs from ours.

In the literature of pure exploration MABSs, the classical problem of identifying the single best arm
has been well-studied in both fixed confidence and fixed budget settings [24, 11, 6, 1, 13, 15, 16].
A flurry of recent work extend this classical problem to TOPK and MB problems and obtain algo-
rithms with upper bounds [18, 12, 13, 19, 8, 20, 31] and worst-case lower bounds of ToPK [19, 31].
Our framework encompasses these two problems as special cases and covers a much larger class of
combinatorial pure exploration problems, which have not been addressed in current literature. Ap-
plying our results back to TOPK and M B, our upper bounds match best available problem-dependent
bounds up to constant factors [13, 19, 8] in both fixed confidence and fixed budget settings; and our
lower bound is the first proven problem-dependent lower bound for these two problems, which are
conjectured earlier by Bubeck et al. [8].

7 Conclusion

In this paper, we proposed a general framework called combinatorial pure exploration (CPE) that
can handle pure exploration tasks for many complex bandit problems with combinatorial constraints,
and have potential applications in various domains. We have shown a number of results for the
framework, including two novel learning algorithms, their related upper bounds and a novel lower
bound. The proposed algorithms support a wide range of decision classes in a unifying way and our
analysis introduced a novel tool called exchange class, which may be of independent interest. Our
upper and lower bounds characterize the complexity of the CPE problem: the sample complexity of
our algorithm is optimal (up to a logarithmic factor) for the decision classes derived from matroids
(including ToPK and MB), while for general decision classes, our upper and lower bounds are
within a relatively benign factor.
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