
A Generalized Software Reliability Process Simulation Technique and Tool

Robert C. Tausworthe t
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

ctausworthe 0 isd.jpl.nasa.gov>
(81 8)306-6284

Abstract
This paper describes the structure and rationale of the
generalized software reliability process and a set of
simulation techniques that may be applied for the pur-
pose of software reliability modeling. These techniques
establish a convenient means for studying a realistic,
end-to-end software life cycle that includes intricate
subprocess interdependencies, multiple defect
categories, many factors of influence, and schedule and
resource dependencies, subject to only a few fundamen-
tal assumptions, such as the independence of causes of
failures. The goals of this research are dual: jrs t , to
generate data for truly satisfying the simplified assump-
tions of various existing models for the purpose of study-
ing their comparative merits, and second, to enable
these models to extend their merits to a less idealized,
more realistic reliability life cycle. This simulation tech-
nique has been applied to data from a spacecrafi project
at the Jet Propulspn Laboratory; results indicate that
the simulation technique potentially m y lead to more
accurate tracking and more timely prediction of
software reliability than obtainable from analytic model-
ing techniques.

1: Introduction

Software reliability has been the subject of wide
study over the past 20 years. At least 40 different
models have been published in the literature so far[l].
The primary focus of these studies has been on propos-
ing, analyzing, and evaluating the performance of
models that assess current reliability and forecast future
operability from observable failure data using statistical
inference techniques. However, none of these models

t Part of the work reported in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administra-
tion.

Michael R. Lyu
Bellcore

445 South Street
Mom*stown, NJ 07962
clyu @ bellcore.com>

(201)829-3999

extends over the entire reliability process; most tend to
focus only on failure observance during testing or opera-
tions. Moreover, none of these reliability models has
emerged as “the best” predictor in all cases[2].

This may be due to a number of factors, such as
oversimplification of the failure process, the quality of
observed data, the lack of sufficient data to make sound
inferences, and/or serious differences between the pro-
posed model and the true underlying reliability
process(es). It is conceivable that the basic nature of the
failure process(es) may differ among individual
software developments.

This paper proposes a general simulation tech-
nique that removes many current reliability modeling
assumptions, and expands the reliability process to
encompass the entire software life cycle. The usual
assumptions for reliability modeling are:
(1) Testing (or operations) randomly encounters

failures.
(2) Failures in non-overlapping time intervals are

independent.

(3) The test space “covers” the use space (i.e., the
operational profile).

(4) All failures are observed when they occur.
(5) Faults are immediately removed upon failure, or

not counted again.
(6) Execution time is the relevant independent vari-

able.

In particular, the second assumption above can be
weakened to
(2) Faults produce independent failures.
and the final four assumptions are not necessary to the
technique presented here at all. The degree of com-
monality among test space and use space is rarely
known, but can be modeled, if needed. Simulation can
mimic the failure to observe an error when it has, in fact,

264
1071-9458/94 $4.00 0 1994 IEEE

~- -~

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

occurred, and, additionally, mimic any system outage
due to an observed failure. Furthermore, simulation can
easily distinguish those faults that have been removed
and those that have not, so multiple failures from the
same unremoved fault can be readily reproduced.
Finally, while execution time is pertinent to some activi-
ties in the software life cycle, it is not appropriate to all;
simulation can translate all model-pertinent times to
wall-clock (or calendar) time by appropriate use of work
load, computer utilization, and other resource schedules.
This composite process is embodied in a Monte Carlo
simulation tool, SofRel[3], available through NASA's
Computer Software Management Information Center
(COSMIC)[4].

The remaining paper is organized as follows: Sec-
tion 2 provides the basis for simulating the software reli-
ability process; Section 3 briefly describes the structures
and interactions of the reliability simulation package
SofRel; Section 4 presents a case study in which the
implemented simulation technology was applied to a
real-world project. Conclusions and future directions
are presented in Section 5 .

2: Simulation Building Blocks

2.1: Discrete Event Simulation Framework

The fundamental assumption of reliability process
simulation is that every stochastic event is the result of
an underlying instantaneous conditional event-rate ran-
dom process. The most popular example of a condi-
tional event-rate random process is the classic failure
process[5].

A conditional event-rate process is one for which
the probability that an event occurs in the interval
(t , t + dt), given that it had not occurred prior to time t ,
is equal to P(t) dt for some function P(t) . The statistical
behavior of this process is well-known: The probability
that an event E will have occurred prior to a given time t
is related by the expression

Prob [E occurs in (0, t))

= 1 -e-x(o*r)(Eq.l)

When the events of interest are failures, P(t) is
often referred to as the process hazard rate and h(0, t) is
the total hazard. If h(0, t) is known in closed form, the
event probability can be analyzed as a function of time.
But if many related events are intricately combined in
P(t), the likelihood of a closed-form solution for event
statistics dims considerably. The expressions to be
solved can easily become so convoluted that calculation

of results requires a computer programmed with com-
paratively complex algorithms.

Of special interest here are discrete event-count
processes that merely record the occurrences of rate-
controlled events over time. The function P,, (t) denotes
the conditional occurrence rate, given that the n th event
has already occurred by the time t . The integral of
P,,(t) is A,,(?). These processes are termed non-
homogeneous when P,, (?) depends explicitly on t .

One important event-rate process is the discrete
Markoff process[5]. A Markoff process is said to be
homogeneous when its rate function is sensitive only to
time differences, rather than to absolute time values.
The notation P,,(t), in these cases, signifies that t is
measured from the occurrence time t,, of the n th event.

When the hazard rate P,,(t) of a Markoff event-
count process is independent of n , then one may readily
verify that the general event count behavior is a non-
homogeneous Poisson process (NHPP) whose mean and
variance are given by

The homogeneous (constant event rate) Poisson
process is described by h = Pt. Homogeneous Poisson
process statistics thus only apply to the homogeneous
Markoff event-count process when the Markoff
P,, (t) = P is constant.

One may note from (Eq. 3) that as ii increases, the
percentage deviation of the process decreases. In fact,
any event process with independence among events in
non-overlapping time intervals will exhibit relative
fluctuations that behave as 0 (l&), a quantity that gets
increasingly smaller for larger K. This trend signifies
that Poisson and Markoff processes involving large
numbers of event occurrences will tend to become
percentage-wise relatively calm. If physical processes
appear to be very irregular, then it will not be possible to
simulate them using independent-increment assump-
tions.

There is a sense in which the NHPP form is inap-
propriate for describing the overall software reliability
profile. Reliability of software grows only as anomalies
are discovered and repaired, and these events occur only
at a finite number of times during the life cycle. The
true hazard rate presumably changes discontinuously at
these times, whereas the NHPP rate changes continu-
ously. However, recent work[6] suggests that it is not
possible to distinguish between an event-count Markoff

265

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

process with a discontinuous rate function and an overall
NHPP reliability growth model with an appropriately
defined continuous rate function, based merely on exam-
ination of a single realization of eithez process. In any
case, the event-count Markoff model of software relia-
bility is more general than the NHPP form, in that there
is no assumption that its cumulative rate h is indepen-
dent of n or rn .

2.2: Event Simulation

The very definition of conditional event-rate
processes suggests the rather simple computer simula-
tion illustrated in the following C language segment:

/ * t and dt are set prior to this point * /

events = 0;
T = 0.;
while (T < t)
{ T += dt;

if (chance(beta(events, T) dt))
events + + ;

1

/ * the event has occurred a number of times * /

The dt in such simulations must always be chosen
such that the variations in P(t) over the incremental time
intervals (t, t + d t) are negligible, and such that
P(t)dt < 1 (so that the instantaneous event probability
does not reach unity)[7]. In the code segment above,
chance (TI compares a [O,l)-Uniform random(I
value with T, thus attaining the specified instantaneous
probability function. The form of beta (events,
T) acknowledges that the event rate function may
change over time and may be sensitive to the number of
event Occurrences up to the current time.

The above illustration of simulation is simple, and
yet very powerful. For example, some published ana-
lytic models treat (or approximate) the overall reliability
growth as a NHPP in execution time, while others focus
on Markoff execution-time interval statistics. Many of
these differ only in the forms of their rate functions[l]
[8]: Some examples are

1. The Jelinski-Moranda model[9] deals with adjacent
time-interval subprocesses in which
Pn(t) = Q (no-n) , where no is the (unknown)
number of initial software faults and Q is the per-fault
failure rate.

2. The Goel-Okumoto model[101 deals with the overall
reliability growth process, in which
P(t) = no Q exp (+), where no and Q are constant

Parameters. It has been shown[6] that this model pro-
duces results very much like the Jelinski-Moranda
model with n = ndl- exp(+t)) .

3. The Musa-Okumoto model[111 describes the overall
reliability growth process, in which
P(t) = Pd(l+ et), where p0 is the initial failure rate
and 8 is a rate decay factor. Both p0 and 8 are con-
stant parameters.

4. The Duane model[l2] is an overall reliability growth
model with K t) = f i tb- ' , where k and b are con-
stant parameters.

5. The Littlewood-Verrall inverse linear model[l3] is an
overall reliability growth model with
P(t) 4 Q/G, where Q and k are constant
parameters.

6. The Yamada delayed S-shape model[l4] is yet
another overall reliability growth model, with
P(t) = $yt exp (1 - y), where @ (the maximum
failure rate) and y are constant parameters.

Simulating the reliability process underlying these
models is straightforward. Interested readers please
refer to[15] for details.

2.3: Poisson Process Simulation

The NHPP is also easily simulated when V t , , tb)
is known in closed form. The program for counting the
overall number of NHPP events that will occur over a
given time interval is merely

#define produce(x) randouoisson(x)
events = produce(lambda(ta, tb));

where randomqoisson(x) is a subprogram that
produces a Poisson-distributed random value when
passed the parameter x. An algorithm for generating
Poisson random numbers may be found in[161.

The time profile of an NHPP may be simulated by
slicing the (0, t) interval into dr time slots, recording the
behavior in each slot, and progressively accumulating
the details to obtain the overall event count profile, as in
the following algorithm:

t = 0.;
while (t < t m x)
{ n = produce(lambda(t, t + dt));

/ * n is the fine structure * /
events += n;
t += dt;

1

266

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

The form of the cumulative rate function
lambda (t , t + dt 1 may be extended to include a
dependence on events, thereby causing the algorithm
above to approximate a non-homogeneous Markoff
event-count process with increasing fidelity as dt
becomes sufficiently small that multiple events per d t
interval become rare. As mentioned above, however,
the behavior of such simulations may be indistinguish-
able, even at larger dt, on the basis of single realiza-
tions of the event process. This hybrid form can speed
up the simulation by removing the necessity of slicing
time into extremely small intervals.

This modified form of the simulation algorithm is
called the piecewise-Poisson approximation of the
Markoff event-count process.

2.4: Multiple Event Processes

Conditional event-rate processes are also charac-
terized by the property that the occurrences of several
independent classes of events, &I, . . . , &j, with rate
functions PJ'](t), . . . , P p l (t) , respectively, together
behave as i f f algorithms of the single-event variety
were running simultaneously, each with its own separate
rate function, beta [i] (n, t 1, controlling the n th
occurrence of event &i at time t . That is, the event
occurrence process is equivalent to a single event-rate
process governed by its composite rate function,

f
P n (0 , t > = cP:I(o, t) . (Eq.4)

i= 1

When event occurrences in non-overlapping inter-
vals are independent, each (to , tb) interval is governed
by a non-homogeneous Markoff process with rate
P n (t 7 tn >.

(Eq.5)
111 P" (t 9 tn 1 = Z P n , (t , t", 1

i=l

When a new event &i is added (or deleted) to (or
from) the distinguished class of events, Pn (t , tn) read-
justs to include (or exclude) the corresponding P(l(t , tn ,)
function and the simulation proceeds. This characteris-
tic provides a simple and straightforward method to
simulate the effects of fault and defect injections and
removals.

2.5: Multiple Categories of Events

If the set of events {&i : i = 1, . . . , n] that were
classed together above are now partitioned into categor-
ized subsets according to some given differentiation cri-

teria (as for example, faults distinguished as being criti-
cal, major, or minor), then the partitioning of events into
categories likewise partitions their rate functions into
corresponding categories, and equivalently, the brack-
eted indices of the rate functions into sets of integers.

When an event occurs, the algorithm of Subsec-
tion 2.4 produces the index of a rate function. Finding
h s index among the categorized subsets of integers
relates the event to the distinguished category of
occurrences. The behavior of multiple categories of
events is thus easily simulated by changing from a single
event counter, events, to an array of event counters,
events [I , and altering the program as follows:

i = event-index(n, t);
c = event-category(n, i);
events[cl++;

The overall event classification scheme is thus
encapsulated within a single event-category ()
function for the entire categorization of events.

2.6: Other Event Processes

In the software life cycle, it is often the case that,
if an event of one type occurs, then there is a uniform
probability p < 1 that another event of a different type
will be triggered. (For example, suppose that for each
unit of code is generated, there is a probability p that a
fault is created.) If there are n events of the first type,
then the k events of the second type are governed by the
binomial distribution function, which is also easily simu-
lated[l6].

Moreover, when n itself is a Poisson random vari-
able with parameter h, the distribution of k is also Pois-
son, with parameter p h. Thus, occurrences of events of
the second type may be simulated without actually
counting events of the first type by using the pro-
duce () function with parameter p h.

#define select(n, p) random-binomial(n, p)

n = produce(lambda(t, t + dt) ;
k = select(n, p);

. . .

Finally, when there is an ultimate number of
events N that a Poisson process may reach before it is
terminated, and N is specified in advance, then the
growth of events over time must be stopped after the
Nth occurrence. This type of goal-limited processes is
also easily simulated.

2.7: General Event-Rate Processes

The simulation method of this paper is more gen-
eral than is required for mere production of Markoff

261

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

processes and NHPPs. Since the algorithm of Subsec-
tion 2.2 springs directly from the definition, the method
is capable of simulating all event-rate random processes.

It thus is possible to simulate life cycle activities
that may have event count dependencies between non-
overlapping time intervals and rate functions that
depend on variable schedules and other irregularities
over time. Whenever event functions produce homo-
geneous Markoff processes in a piecewise fashion, then
the event processes simulated during each of these seg-
ments will follow the piecewise-Poisson approximation.
The programs presented above are thus capable of simu-
lating a much more general and realistic reliability pro-
cess than has been hypothesized by any analytic model
known to the authors.

Model
Traits 3: Structure of the Simulation Tool

Resource and
Schedule

3.1: Overall Simulation Context

The techniques described in the previous Section
are embodied in a software reliability process simulation
package, called SofRel. SofRel simulates the entire
software reliability life cycle, including the effects of
interrelationships among activities. For example, Sof-
rRel provides for an increased likelihood of faults
injected into code as the result of missing or defective
requirements specifications. SofRel also acknowledges
that testing requires the preparation and consumption of
test cases, and that repairs must follow identification and
isolation. SoftRel further requires that human and com-
puter resources be scheduled for all activities.

The SofRel package is a prototype, currently
configured to simulate processes having constant event
rates per causal unit. The authors do not advocate that
such processes necessarily model software reliability,
nor do they endorse the prototype as a model ready for
industrial use. Rather, it is regarded as a framework for
experimentation, for generating data typical of analytic
model assumptions for comparison with actual collected
project data, and for inference of project characteristics
from comparisons. Other event-rate functions can be
accommodated in later versions by changing current
program references to rates and other parameters to
invocations of properly defined functions, supplied by
the user.

The current input to SoftRel consists of a single
file that specifies the dt time slice, about 70 traits of
the software project and its reliability process, and a list
of activity, schedule, and resource allocations. Inter-
nally, these form a data structure called the model.
Also internally, the set of status monitors at any given
time are stored in a data structure called facts, which

records the overall clock time, the time and resources
consumed by each activity (42 measures in total), and a
snapshot of 48 measures of project status. The output
from SofRel is a single file containing the series of
facts produced at each dt interval of time.

SofRel simulates two types of failure events,
namely, defects in specification documents and faults in
code. Figure 1 shows the execution context of SoftRel.

Project
Characteristics

Input

File f'
vs Time
output

Figure 1: SofRel Execution Context

3.2: The Major Components of the Simulator

SofRel is initialized by setting sizes of items for
construction, integration, and inspection. These could
have been designed just to equal the goal values given in
the model, but the model values are considered only
approximate. Sizes are set to Poisson random values,
with the model input values as means.

In a typical software engineering life cycle,
several interrelated software reliability subprocesses are
taking place concurrently. The activities in these sub-
processes are characterized by 14 major components in
the simulator, with appropriate staffing and resource lev-
els devoted to each activity:

(1) Document Construction: Document generation and
integration are assumed to be piecewise-Poisson
approximations with constant mean rates per work-

268

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

day specified in the model, not to exceed the goal
values. Defects are injected at a constant probabil-
ity per documentation unit. At each injection of a
defect, the document hazard increases according to
the defect detection characteristic.

Document Integration: Document integration con-
sists of acquisition of reusable documentation, dele-
tion of unwanted portions, addition of new
material, and minor changes. Each of these subac-
tivities is assumed to be a goal-limited piecewise-
Poisson approximation of a type similar to the con-
struction process described above. Defects are
created as a result of each subactivity. Documenta-
tion is integrated at a constant mean rate per work-
day, and defects are injected at a constant probabil-
ity per documentation unit. Hazard increases at
each defect according to the defect detection
characteristic assumed.

Document Inspection: Document inspection is a
goal-limited piecewise-Poisson approximation of a
type similar to document construction. Documen-
tation is inspected at a mean constant rate per
workday. Inspected units are allocated among new
documents and reused documents in proportion to
the relative amounts of documentation in these two
categories. The defect discovery rate is assumed to
be proportional to the current accumulated docu-
ment hazard and the inspection efficiency.

Document Correction: Defect corrections are pro-
duced at a rate determined by the staff level and the
attempted-fix rate given in the model; actual
corrections take place according to the defect-fix
adequacy, not to exceed the actual number of
defects discovered (a goal-limited binomial situa-
tion). Attempted fixes can also inject new defects
and can change the overall amount of documenta-
tion via the numbers of documentation units
deleted, added, and changed.

Code Construction: Production of code follows the
same formulation as does document construction.
However, the average pace at which faults are
created is influenced not only by the usual fault
density that may occur as a normal consequence of
coding, but also by the density of undiscovered
defects in documentation, and by the amount of
missing documentation. Each fault injected
increases the code hazard. But whereas document
defects are only found by inspection, code faults
may be found by both inspection and testing, and at
different rates.

Code Integration: Simulation of code integration is
comparable in structure to document integration,
except that code units replace document units and
coding rates replace documentation rates. The fault
injection rate is of the same form as that for code
construction, above. Each fault increases the code
hazard.

Code Inspection: Code inspection mirrors the docu-
ment inspection process, except that the number of
faults discovered will not exceed the total number
of as-yet undiscovered faults. The fault discovery
rate is assumed to be proportional to the current
accumulated fault hazard and the inspection
efficiency. Since previously discovered faults may
not yet have been removed at the time of discovery,
the number of newly discovered faults is assumed
to be in proportion to the number of as-yet
undiscovered faults.

Code Correction: Code correction simulation fol-
lows the same algorithm given for document
correction, translated to code units. Fault hazard is
reduced upon correction of a fault, and increased if
any new faults are injected by the correction pro-
cess. Documentation changes are produced at
assumed constant mean rates per attempted correc-
tion.

Test Preparation: Test preparation consists merely
of producing a number of test cases in each d t
slot in proportion to the test preparation rate, which
is a constant mean number of test cases per work-
day.

(10) Testing: The testing activity simulation has two
parts: If a test outage is in effect, the outage time
indicator decrements and the time and effort incre-
ment. If an outage is not in effect, failures occur at
the modeled rate; the number observed is com-
puted as a binomial process that is regulated by the
probability of observation. The failure ra te
function returns a value proportional to the current
hazard level. The function additionally consumes
computer resources and test cases, the latter at a
mean constant rate.

(1 1) Fault Ident$cation: The total number of failures
analyzed may not exceed the number of failures
observed. Failures are analyzed at a mean constant
rate per workday. The identification of faults is
limited in number to those still remaining in the
system. The isolation process is regulated by the
fraction of faults remaining undiscovered, the ade-
quacy of the analysis process, and the probability

269

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

of faithful isolation.

(12) Fault Repair: The number of attempted repairs may
not exceed the number of faults identified by
inspections and testing, less those corrected after
inspection, plus those identified for rework by vali-
dation and retesting. Of those attempted, a
select number will really be repaired, while the
rest will mistakenly be reported as repaired.
Repairs are assumed here to be made on faults
identified for rework first. A select number of
new faults may be created by the attempt, and code
units may be altered (deleted, added, or changed).

(13) Validation of Repairs: The validation of attempted
repairs takes place at an assumed mean constant
rate per workday. The number of faulty repairs
detected is a select number determined by the
probability that validation will recognize an
unrepaired fault when one exists and the probabil-
ity that unrepaired faults are among those
attempted repairs being validated (the repair ade-
quacy).

(14) Retesting: Retesting takes place at a mean constant
number of retests per workday and consumes com-
puter resources at the scheduled rate per day. No
new test cases are generated (or consumed), since
the original test cases are assumed available for
regression.

3.3: Simulator Input and Output

It is beyond the scope of this paper to describe
each of the 70 input model parameters and the 90 out-
put fact s parameters. Interested readers will find
these described more fully in[3]. The input file addition-
ally contains a list of staffing and computer resource
packets, each of which allocates resources to specified
activities and time slots. Slot times may overlap or
leave gaps, at the discretion of the user. Such schedules
are the natural outcomes of development process plan-
ning and are of fundamental importance in shaping the
reliability process. At least 14 schedule packets are
needed to allocate resources and time slots to each of the
14 assumed reliability process activities. More packets
may appear when an activity repeats or has a non-
constant resource allocation profile.

Output values consist of all product, work, CPU,
resource, fault, failure, and outage values. These are
time-tagged in the form of a facts data structure and
written to the output file at each dt time interval for
later scrutiny (e.g., plotting, trending, and model read-
justments) by other application programs.

The reliability process embodied in the prototype
is meant to be fairly comprehensive with respect to what
really transpires during a software development. The
simulator therefore requires parameters relating to the
ways in which people and processes interact. The large
number of parameters in the simulator might, at first,
seem to present an overwhelming, impractical barrier to
modeling, but it must be remembered that the true relia-
bility process is even more complex. It was felt that the
number of parameters used was the least that would be
capable of reproducing the realism hoped for. Reducing
the number of parameters might either reduce the fidel-
ity of the simulation or the generality of the reliability
process model. This belief may change after sufficient
experimentation has taken place, whereupon selective
alteration of the parameters and rates may be indicated.

If projects do not have sufficient data about past
projects to give values to certain parameters, then sensi-
tivity analyses using SofrRel can indicate which are the
most influential and thereby where a metrics effort may
prove most useful in reliability management. Alterna-
tively, users may simplify the model to focus only on
one or two activities at a time by making some of the
parameters inactive. This may be done by assigning
typical or default values (usually 0 or 1) to them,
thereby reducing the number of measured parameters to
only those that are deemed pertinent and realistic within
the project context.

4: Applications: A Project Case Study

This Section describes the application of SofrRel
to a real-world project. Project data and parameters
from a subsystem of the Galileo Flight Project at the Jet
Propulsion Laboratory were collected as a case study for
evaluating the simulation technique. The remainder of
this Section describes the project, applies the simulation
technique, and compares the results with those obtained
from several traditional reliability models.

4.1: Project Description

Galileo is an outer planet spacecraft project that
began at the start of fiscal year 1977, a mission that was
originally entitled “Jupiter Orbiter and Probe,” or JOP.
Unlike previous outer solar system missions, the Galileo
orbiter was intended to remain in Jovian orbit for an
extended interval of time. This would allow observa-
tions of variations in planetary and satellite features over
time to augment the information obtained by single-
observation opportunities afforded by previous fly-by
missions. Galileo was launched in October of 1989, and
will reach the Jovian system in 1995.

270

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

There are two major on-board flight computers in
the Galileo spacecraft: The Attitude and Articulation
Control Subsystem (AACS), and the Command and
Data System (CDS). A significant portion of each of
these systems is embodied in software. This case study
focuses on the CDS software reliability profile.

The CDS flight software is characterized as real-
time embedded software, written in 17,000 lines of
assembly language code (16.5K lines new, 500 lines
reused), with about 1400 pages of documentation (1300
pages new, 100 pages reused), produced over a period of
approximately 1500 days (300 weeks). The project
recorded and tracked failures during the software testing
period.

4.2: Parameter Estimations and Results

This Subsection presents a simulation of an end-
to-end development project based on data from the
Galileo CDS project. Some of the CDS project parame-
ters were taken from project records; other values were
estimated by personnel within the project; the remaining
values were chosen by the authors as being probably
typical of this project’s behavior, but for which there
were no immediately available data. Believed-typical
values were adopted, for example, for parameters
related to the injection of faults in the correction and
repair processes. None of the model input parameters
was set to zero.

Thus, even though few verifiable model param-
eters were available outside the software testing phase,
an entire plausible hypothetical model was nevertheless
formed in order to illustrate simulation of an end-to-end
reliability process. For lack of better development life
cycle data, all CDS activities other than testing (e.g.,
construction, inspection, and anomaly removal) were
presumed to take place serially, merely to observe what
their simulated behaviors would be. This overall study
also presumed that each activity took place without
resource and schedule variations, in order to view typi-
cal Markoff reliability behavior. The model parame-
ters that were used are available from the authors upon
request.

Figures 2 through 5 show the simulated documen-
tation, code, defect, and fault profiles of the software,
sampled every 10 days. Of particular note are behaviors
of the documentation, code, injected defects, and
injected faults (precisely those activities where no pro-
ject data exists). Because the numbers of units are com-
paratively large, the relative irregularity levels are low,
as predicted from (Eq. 3). Although there is no actual
CDS data contesting this behavior, it seems doubtful that
this almost-linear profile reflects actuality.

If this doubt were confirmed, then an assumption
of a homogeneous reliability process would clearly be
proved invalid. A more realistic extension to the case
study would be to introduce irregular schedules, since it
is known that people rarely dedicate their time
exclusively to one single activity at a time. If actual
CDS schedule information were available and entered
into the model, these processes could easily have
appeared to be more irregular.

Figure 2 shows that the volume of documentation
units (DU-t) did reach its goal, but in this case, only
about 63% of the documentation was actually inspected
(DI-t), even though the model placed a goal of 95%
on inspection. This is an instance where too little
resource was allocated to the inspection process. More
resources would have been required to reach the goal.
The effects of correcting defects on page count are not
visible. The second rise in documentation is due to the
integration of the reused 100 pages.

Figure 3 similarly shows that the volume of code
units (CU-t) did reach its goal and that the 90% inspec-
tion goal was met as well. The effects of correcting and
repairing faults on code size, however, are again not
visible.

The injection, detection, and removal of defects
(E-d, D , d), shown in Figure 4, are a little noisier
than documentation and code production, but not much.
All the detected defects were corrected (D = d), but a
sizable number of defects were inserted during the
correction period (days 520-580). Finally, more than
100 defects were left in the documents.

The fault activity is shown in Figure 5. It exhibits
the noisiest behavior of all, but is still fairly regular.
The initial rise in injected faults (E-f) is due to con-
struction; the second rise, due to integration, is not visi-
ble; the third, a sharp rise again, is due to the imperfect
fault correction process; and the final gradual rise is due
to the imperfect fault repair process. By the end of the
1500-day project, about 7 faults per kiloline of code (e)
had been found in inspections and corrected (h), and
about 22 faults per kiloline of code (f) had been
uncovered by testing and removed (r); the fault density
at delivery was about 0.2 faults per kiloline of code.

Although the final fault discovery count is con-
sidered to be accurate, the time profile of the simulation
results do not appear to be as irregular as the actual pro-
ject data. On the basis of this case study, it appears that
the simulation of all reliability subprocesses will require
the use of non-homogeneous event-rate models that
reflect irregular workloads and schedules of life cycle
activities. An example of this is given in the next Sub-
section.

27 1

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

1600 1

1200

1000

800

600

400

200

1400 *

. i

. 1

. f

x

.
i

O L I
0 200 400 600 800 1000 1200 1400 1600

time, days

Figure 2: CDS Simulated Documentaion Development

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

,--------------- code goal (CUI -
code v o l m (cu-t) = E

isuected code (CI-t) ;

200 400 600 800 1000 1200 1400 1600
time. days

Figure 3: CDS Simulated Code Development

500 I I

350

300

250 . I .

150 l o o t I I .
I injected defects (E-d) - : detected defects (D)

removed defects (d) = , "

0 200 400 600 800 1000 1200 1400 1600
time, days

Figure 4: CDS Simulated Defect Discovery and Correction

v1
Y ?I

I

450 500 7
400

350

300

250

200

150

100

50

0
0 200 400 600 800 1000 1200 1400 1600

time, days

Figure 5: CDS Simulated Fault Accumulation

4.3: Comparisons with Other Models

To simulate the details of Galileo CDS testing
activity, its testing phase was separated into five subac-
tivities with constant staffing, but having irregular CPU
and schedule allocations, as shown in Table 1. These
schedule parameters were obtained by "eye-ball regres-
sion" of the simulator output against project data. The
fit appears adequate to describe the underlying nature of
the failure process (an exact fit is not expected, since the
failure process is considered random).

staff CPU total begin end
failures week week activity

functional test 90 0 5 2.0 0.4
60 5 13 2.0 0.4 feature test

operation test1 150 13 23 2.0 1.2
operation test2 25 23 33 2.0 1.0
operationtest3 16 33 40 2.0 2.0

Table 1: Schedule of the CDS Testing

Figure 6 shows the field data and the results
obtained from the piecewise-homogeneous simulation
process, as well as those from three other models,
Jelinski-Moranda Model(JM), Musa-Okumoto
Model(MO), and Littlewood-Verrall Model(LV). For
better visibility of process granularity, data is shown in
the form of failures per week, rather than cumulatively.
The JM, MO, and LV statistics were calculated to be
"one-week-ahead'' predictions, in which all the failure
data up to a given week were used to predict the number
of failures for the next week.

It can be seen from the figure that the simulation
technique produced a very good early forecast that could
have been used for tracking the reliability status during
the entire testing phase. The forecast could have been

272

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

calculated prior to the start of testing from schedule and
resource plans. The other models above were inade-
quate to predict even one week ahead.

30
f i e l d data -
JM model
MO model +

LV model A

simulation - * -

0 5 10 1 5 20 2 5 30 35 40
Calendar Week

Figure 6: Various Predictions for CDS Failures per Week Data

5: Conclusions

Reliability modelers seldom seem to have the lux-
ury of several realizations of the same failure process to
test their hypotheses concerning the nature of a system’s
reliability. Nor are they ever provided with data that
faithfully match the assumed natures of their models.
Nor are they able to probe into the underlying error and
failure mechanisms in a controlled way. Rather, they
are faced with the problem of not only guessing the
forms and particulars of the underlying error and failure
random processes from the scant, uncertain data they
possess, but also with the problem of best forecasting
future failures from this single data set.

The assumptions of the simulation approach are
certainly less restrictive than those underlying analytic
models. The simulation approach solves software relia-
bility prediction problems by producing data conforming
precisely to the software failure assumptions. Simula-
tion enables investigation of questions such as, “How
does a project’s observed data compare with that
emanating from a NHPP having the following charac-
teristics? ...” and ”Which analytic prediction model is
the best under the following assumptions? ...“ The Sof-
tRel tool and its offspring offer significant assistance to
researchers and practitioners in answering such ques-
tions, in evaluating sensitivities of predictions to various
error and failure modeling assumptions, and in forecast-
ing software project status profiles, such as time-lines of
work products and the progress of testing, fault isola-
tion, repair, validation, and retest efforts.

Simulation of a real-world project has proved the
validity of the approach. It was shown that neither

NHPP nor homogeneous Markoff event-count models
adequately reproduced the statistical failure profile of an
actual project. A non-homogeneous event-rate simula-
tion model was demonstrated that produced very good
early forecasts of reliability growth that would have
proved adequate for process status assessment.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16

J.D. Musa, A. Iannino, and K. Okumoto, Software Reli-
ability - Measurement, Prediction, Application,
McGraw-Hill Book Company, New York, New York,
1987.
M.R. Lyu and A. Nikora, “Using Software Reliability
Models More Effectively,” IEEE Sofrware, pp. 43-52,
July 1992.
R. Tausworthe, “A General Software Reliability Pro-
cess Simulation Technique,” Technical Report 91-7, Jet
Propulsion Laboratory, Pasadena, Califomia, March
1991.
R. Tausworthe, “SofRel Program NPO-1825 (CP-
7814),” COSMICcatalog, NASA, 1991.
A. Papoulis, Probability, Random Variables, and Sto-
chastic Processes, McGraw-Hill, New York, 1965.
D.R. Miller, “Exponential Order Statistic Models of
Software Reliability Growth,” IEEE Transactions on
Software Engineering, vol. SE-12, no. 1, pp. 12-24,
January 1986.
N. Roberts et al., Introduction to Computer Simulation,
Addison-Wesley, Reading, Massachusetts, 1983.
Y. Malaiya and N. Karunanithi, “Predictatility Meas-
ures for Software Reliability Models,” in Proceedings
COMPSAC-90, pp. 7-12, Chicago, Illinois, October
1990.
Z. Jelinski and P.B. Moranda, “Software Reliability
Research,” in Statistical Computer Pegormance
Evaluation, ed. W. Freiberber, pp. 465-484, Academic,
New York, 1972.
A.L. Goel and K. Okumoto, “Time-Dependent Error-
Detection Rate Model for Software Reliability and
Other Performance Measures,” IEEE Transactions on
Reliability, vol. R-28, pp. 206-21 1, 1979.
J.D. Musa and K. Okumoto, “A Logarithmic Poisson
Execution Time Model for Software Reliability Meas-
urement,” in Proceedings Seventh International
Conference on Software Engineering, pp. 230-238,
Orlando, Florida, 1984.
J.T. Duane, “Learning Curve Approach to Reliability
Monitoring,” IEEE Transactions on Aerospace, vol.

B. Littlewood and J.L. Verrall, “A Bayesian Reliability
Growth Model for Computer Software,” Journal Royal
Statistics Society C, vol. 22, pp. 332-346, 1973.
S. Yamada, M. Ohba, and S . Osaki, ‘%Shaped Relia-
bility Growth Modeling for Software Error Detection,”
IEEE Transactions on Reliability, vol. R-32, pp. 475-
478, December 1983.
R. Tausworthe and M.R. Lyu, “Software Reliability
Process Simulation,” in McGraw-Hill Sofrware Relia-
bility Engineering Handbook, ed. M.R. Lyu, McGraw-
Hill, New York, February 1995.
D.E. Knuth, The Art of Computer Programming: Semi-
Numerical Algorithms, Addison-Wesley, 1970.

AS-2, pp. 563-566, 1964.

273

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 15:05:29 UTC from IEEE Xplore. Restrictions apply.

