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Abstract 
This paper describes the structure and rationale of the 
generalized software reliability process and a set of 
simulation techniques that may be applied for the pur- 
pose of software reliability modeling. These techniques 
establish a convenient means for studying a realistic, 
end-to-end software life cycle that includes intricate 
subprocess interdependencies, multiple defect 
categories, many factors of influence, and schedule and 
resource dependencies, subject to only a few fundamen- 
tal assumptions, such as the independence of causes of 
failures. The goals of this research are dual: jrs t ,  to 
generate data for truly satisfying the simplified assump- 
tions of various existing models for the purpose of study- 
ing their comparative merits, and second, to enable 
these models to extend their merits to a less idealized, 
more realistic reliability life cycle. This simulation tech- 
nique has been applied to data from a spacecrafi project 
at the Jet Propulspn Laboratory; results indicate that 
the simulation technique potentially m y  lead to more 
accurate tracking and more timely prediction of 
software reliability than obtainable from analytic model- 
ing techniques. 

1: Introduction 

Software reliability has been the subject of wide 
study over the past 20 years. At least 40 different 
models have been published in the literature so far[l]. 
The primary focus of these studies has been on propos- 
ing, analyzing, and evaluating the performance of 
models that assess current reliability and forecast future 
operability from observable failure data using statistical 
inference techniques. However, none of these models 
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extends over the entire reliability process; most tend to 
focus only on failure observance during testing or opera- 
tions. Moreover, none of these reliability models has 
emerged as “the best” predictor in all cases[2]. 

This may be due to a number of factors, such as 
oversimplification of the failure process, the quality of 
observed data, the lack of sufficient data to make sound 
inferences, and/or serious differences between the pro- 
posed model and the true underlying reliability 
process(es). It is conceivable that the basic nature of the 
failure process(es) may differ among individual 
software developments. 

This paper proposes a general simulation tech- 
nique that removes many current reliability modeling 
assumptions, and expands the reliability process to 
encompass the entire software life cycle. The usual 
assumptions for reliability modeling are: 
(1) Testing (or operations) randomly encounters 

failures. 
(2) Failures in non-overlapping time intervals are 

independent. 

(3) The test space “covers” the use space (i.e., the 
operational profile). 

(4) All failures are observed when they occur. 
(5 )  Faults are immediately removed upon failure, or 

not counted again. 
(6) Execution time is the relevant independent vari- 

able. 

In particular, the second assumption above can be 
weakened to 
(2) Faults produce independent failures. 
and the final four assumptions are not necessary to the 
technique presented here at all. The degree of com- 
monality among test space and use space is rarely 
known, but can be modeled, if needed. Simulation can 
mimic the failure to observe an error when it has, in fact, 
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occurred, and, additionally, mimic any system outage 
due to an observed failure. Furthermore, simulation can 
easily distinguish those faults that have been removed 
and those that have not, so multiple failures from the 
same unremoved fault can be readily reproduced. 
Finally, while execution time is pertinent to some activi- 
ties in the software life cycle, it is not appropriate to all; 
simulation can translate all model-pertinent times to 
wall-clock (or calendar) time by appropriate use of work 
load, computer utilization, and other resource schedules. 
This composite process is embodied in a Monte Carlo 
simulation tool, SofRel[3], available through NASA's 
Computer Software Management Information Center 
(COSMIC)[4]. 

The remaining paper is organized as follows: Sec- 
tion 2 provides the basis for simulating the software reli- 
ability process; Section 3 briefly describes the structures 
and interactions of the reliability simulation package 
SofRel; Section 4 presents a case study in which the 
implemented simulation technology was applied to a 
real-world project. Conclusions and future directions 
are presented in Section 5 .  

2: Simulation Building Blocks 

2.1: Discrete Event Simulation Framework 

The fundamental assumption of reliability process 
simulation is that every stochastic event is the result of 
an underlying instantaneous conditional event-rate ran- 
dom process. The most popular example of a condi- 
tional event-rate random process is the classic failure 
process[5]. 

A conditional event-rate process is one for which 
the probability that an event occurs in the interval 
(t  , t + dt ), given that it had not occurred prior to time t , 
is equal to P(t) dt for some function P( t ) .  The statistical 
behavior of this process is well-known: The probability 
that an event E will have occurred prior to a given time t 
is related by the expression 

Prob [ E occurs in (0, t )  ) 

= 1 -e-x(o*r)(Eq.l) 

When the events of interest are failures, P(t) is 
often referred to as the process hazard rate and h(0, t )  is 
the total hazard. If h(0, t )  is known in closed form, the 
event probability can be analyzed as a function of time. 
But if many related events are intricately combined in 
P(t), the likelihood of a closed-form solution for event 
statistics dims considerably. The expressions to be 
solved can easily become so convoluted that calculation 

of results requires a computer programmed with com- 
paratively complex algorithms. 

Of special interest here are discrete event-count 
processes that merely record the occurrences of rate- 
controlled events over time. The function P,, ( t )  denotes 
the conditional occurrence rate, given that the n th event 
has already occurred by the time t .  The integral of 
P,,(t) is A,,(?). These processes are termed non- 
homogeneous when P,, (?) depends explicitly on t . 

One important event-rate process is the discrete 
Markoff process[5]. A Markoff process is said to be 
homogeneous when its rate function is sensitive only to 
time differences, rather than to absolute time values. 
The notation P,,(t), in these cases, signifies that t is 
measured from the occurrence time t,, of the n th event. 

When the hazard rate P,,(t) of a Markoff event- 
count process is independent of n , then one may readily 
verify that the general event count behavior is a non- 
homogeneous Poisson process (NHPP) whose mean and 
variance are given by 

The homogeneous (constant event rate) Poisson 
process is described by h = Pt. Homogeneous Poisson 
process statistics thus only apply to the homogeneous 
Markoff event-count process when the Markoff 
P,, ( t )  = P is constant. 

One may note from (Eq. 3) that as ii increases, the 
percentage deviation of the process decreases. In fact, 
any event process with independence among events in 
non-overlapping time intervals will exhibit relative 
fluctuations that behave as 0 (l&), a quantity that gets 
increasingly smaller for larger K. This trend signifies 
that Poisson and Markoff processes involving large 
numbers of event occurrences will tend to become 
percentage-wise relatively calm. If physical processes 
appear to be very irregular, then it will not be possible to 
simulate them using independent-increment assump- 
tions. 

There is a sense in which the NHPP form is inap- 
propriate for describing the overall software reliability 
profile. Reliability of software grows only as anomalies 
are discovered and repaired, and these events occur only 
at a finite number of times during the life cycle. The 
true hazard rate presumably changes discontinuously at 
these times, whereas the NHPP rate changes continu- 
ously. However, recent work[6] suggests that it is not 
possible to distinguish between an event-count Markoff 
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process with a discontinuous rate function and an overall 
NHPP reliability growth model with an appropriately 
defined continuous rate function, based merely on exam- 
ination of a single realization of eithez process. In any 
case, the event-count Markoff model of software relia- 
bility is more general than the NHPP form, in that there 
is no assumption that its cumulative rate h is indepen- 
dent of n or rn . 

2.2: Event Simulation 

The very definition of conditional event-rate 
processes suggests the rather simple computer simula- 
tion illustrated in the following C language segment: 

/ *  t and dt are set prior to this point * /  

events = 0; 
T = 0.; 
while (T < t) 
{ T += dt; 

if (chance(beta(events, T) dt)) 
events + + ; 

1 

/ *  the event has occurred a number of times * /  

The dt in such simulations must always be chosen 
such that the variations in P(t )  over the incremental time 
intervals (t, t + d t )  are negligible, and such that 
P(t)dt < 1 (so that the instantaneous event probability 
does not reach unity)[7]. In the code segment above, 
chance (TI compares a [O,l)-Uniform random( I 
value with T, thus attaining the specified instantaneous 
probability function. The form of beta (events, 
T) acknowledges that the event rate function may 
change over time and may be sensitive to the number of 
event Occurrences up to the current time. 

The above illustration of simulation is simple, and 
yet very powerful. For example, some published ana- 
lytic models treat (or approximate) the overall reliability 
growth as a NHPP in execution time, while others focus 
on Markoff execution-time interval statistics. Many of 
these differ only in the forms of their rate functions[l] 
[8]: Some examples are 

1. The Jelinski-Moranda model[9] deals with adjacent 
time-interval subprocesses in which 
Pn( t )  = Q (no-n ) ,  where no is the (unknown) 
number of initial software faults and Q is the per-fault 
failure rate. 

2. The Goel-Okumoto model[ 101 deals with the overall 
reliability growth process, in which 
P(t)  = no Q exp (+), where no and Q are constant 

Parameters. It has been shown[6] that this model pro- 
duces results very much like the Jelinski-Moranda 
model with n = ndl-  exp(+t)) .  

3. The Musa-Okumoto model[ 111 describes the overall 
reliability growth process, in which 
P(t )  = Pd( l+  et), where p0 is the initial failure rate 
and 8 is a rate decay factor. Both p0 and 8 are con- 
stant parameters. 

4. The Duane model[l2] is an overall reliability growth 
model with K t )  = f i tb- ' ,  where k and b are con- 
stant parameters. 

5.  The Littlewood-Verrall inverse linear model[l3] is an 
overall reliability growth model with 
P(t)  4 Q/G, where Q and k are constant 
parameters. 

6. The Yamada delayed S-shape model[l4] is yet 
another overall reliability growth model, with 
P(t)  = $yt exp (1 - y), where @ (the maximum 
failure rate) and y are constant parameters. 

Simulating the reliability process underlying these 
models is straightforward. Interested readers please 
refer to[15] for details. 

2.3: Poisson Process Simulation 

The NHPP is also easily simulated when V t , ,  tb) 
is known in closed form. The program for counting the 
overall number of NHPP events that will occur over a 
given time interval is merely 

#define produce(x) randouoisson(x) 
events = produce(lambda(ta, tb)); 

where randomqoisson(x) is a subprogram that 
produces a Poisson-distributed random value when 
passed the parameter x. An algorithm for generating 
Poisson random numbers may be found in[ 161. 

The time profile of an NHPP may be simulated by 
slicing the (0, t )  interval into dr time slots, recording the 
behavior in each slot, and progressively accumulating 
the details to obtain the overall event count profile, as in 
the following algorithm: 

t = 0.; 
while (t < t m x )  
{ n = produce(lambda(t, t + dt)); 

/ *  n is the fine structure * /  
events += n; 
t += dt; 

1 
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The form of the cumulative rate function 
lambda ( t , t + dt 1 may be extended to include a 
dependence on events, thereby causing the algorithm 
above to approximate a non-homogeneous Markoff 
event-count process with increasing fidelity as dt 
becomes sufficiently small that multiple events per d t  
interval become rare. As mentioned above, however, 
the behavior of such simulations may be indistinguish- 
able, even at larger dt, on the basis of single realiza- 
tions of the event process. This hybrid form can speed 
up the simulation by removing the necessity of slicing 
time into extremely small intervals. 

This modified form of the simulation algorithm is 
called the piecewise-Poisson approximation of the 
Markoff event-count process. 

2.4: Multiple Event Processes 

Conditional event-rate processes are also charac- 
terized by the property that the occurrences of several 
independent classes of events, &I, . . . , &j, with rate 
functions PJ'](t), . . . , P p l ( t ) ,  respectively, together 
behave as i f f  algorithms of the single-event variety 
were running simultaneously, each with its own separate 
rate function, beta [ i] (n, t 1, controlling the n th 
occurrence of event &i at time t .  That is, the event 
occurrence process is equivalent to a single event-rate 
process governed by its composite rate function, 

f 
P n ( 0 ,  t >  = cP:I(o, t ) .  (Eq.4) 

i= 1 

When event occurrences in non-overlapping inter- 
vals are independent, each ( to ,  tb) interval is governed 
by a non-homogeneous Markoff process with rate 
P n  ( t  7 tn >. 

(Eq.5) 
111 P" ( t  9 tn 1 = Z P n ,  ( t ,  t", 1 

i=l 

When a new event &i is added (or deleted) to (or 
from) the distinguished class of events, Pn ( t  , tn ) read- 
justs to include (or exclude) the corresponding P(l( t ,  tn , )  
function and the simulation proceeds. This characteris- 
tic provides a simple and straightforward method to 
simulate the effects of fault and defect injections and 
removals. 

2.5: Multiple Categories of Events 

If the set of events {&i  : i = 1, . . . , n ] that were 
classed together above are now partitioned into categor- 
ized subsets according to some given differentiation cri- 

teria (as for example, faults distinguished as being criti- 
cal, major, or minor), then the partitioning of events into 
categories likewise partitions their rate functions into 
corresponding categories, and equivalently, the brack- 
eted indices of the rate functions into sets of integers. 

When an event occurs, the algorithm of Subsec- 
tion 2.4 produces the index of a rate function. Finding 
h s  index among the categorized subsets of integers 
relates the event to the distinguished category of 
occurrences. The behavior of multiple categories of 
events is thus easily simulated by changing from a single 
event counter, events, to an array of event counters, 
events [ I , and altering the program as follows: 

i = event-index(n, t); 
c = event-category(n, i); 
events[cl++; 

The overall event classification scheme is thus 
encapsulated within a single event-category ( ) 
function for the entire categorization of events. 

2.6: Other Event Processes 

In the software life cycle, it is often the case that, 
if an event of one type occurs, then there is a uniform 
probability p < 1 that another event of a different type 
will be triggered. (For example, suppose that for each 
unit of code is generated, there is a probability p that a 
fault is created.) If there are n events of the first type, 
then the k events of the second type are governed by the 
binomial distribution function, which is also easily simu- 
lated[l6]. 

Moreover, when n itself is a Poisson random vari- 
able with parameter h, the distribution of k is also Pois- 
son, with parameter p h. Thus, occurrences of events of 
the second type may be simulated without actually 
counting events of the first type by using the pro- 
duce ( ) function with parameter p h. 

#define select(n, p) random-binomial(n, p) 

n = produce(lambda(t, t + dt) ; 
k = select(n, p); 

. . .  

Finally, when there is an ultimate number of 
events N that a Poisson process may reach before it is 
terminated, and N is specified in advance, then the 
growth of events over time must be stopped after the 
Nth occurrence. This type of goal-limited processes is 
also easily simulated. 

2.7: General Event-Rate Processes 

The simulation method of this paper is more gen- 
eral than is required for mere production of Markoff 
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processes and NHPPs. Since the algorithm of Subsec- 
tion 2.2 springs directly from the definition, the method 
is capable of simulating all event-rate random processes. 

It thus is possible to simulate life cycle activities 
that may have event count dependencies between non- 
overlapping time intervals and rate functions that 
depend on variable schedules and other irregularities 
over time. Whenever event functions produce homo- 
geneous Markoff processes in a piecewise fashion, then 
the event processes simulated during each of these seg- 
ments will follow the piecewise-Poisson approximation. 
The programs presented above are thus capable of simu- 
lating a much more general and realistic reliability pro- 
cess than has been hypothesized by any analytic model 
known to the authors. 

Model 
Traits 3: Structure of the Simulation Tool 

Resource and 
Schedule 

3.1: Overall Simulation Context 

The techniques described in the previous Section 
are embodied in a software reliability process simulation 
package, called SofRel. SofRel simulates the entire 
software reliability life cycle, including the effects of 
interrelationships among activities. For example, Sof- 
rRel provides for an increased likelihood of faults 
injected into code as the result of missing or defective 
requirements specifications. SofRel also acknowledges 
that testing requires the preparation and consumption of 
test cases, and that repairs must follow identification and 
isolation. SoftRel further requires that human and com- 
puter resources be scheduled for all activities. 

The SofRel package is a prototype, currently 
configured to simulate processes having constant event 
rates per causal unit. The authors do not advocate that 
such processes necessarily model software reliability, 
nor do they endorse the prototype as a model ready for 
industrial use. Rather, it is regarded as a framework for 
experimentation, for generating data typical of analytic 
model assumptions for comparison with actual collected 
project data, and for inference of project characteristics 
from comparisons. Other event-rate functions can be 
accommodated in later versions by changing current 
program references to rates and other parameters to 
invocations of properly defined functions, supplied by 
the user. 

The current input to SoftRel consists of a single 
file that specifies the dt time slice, about 70 traits of 
the software project and its reliability process, and a list 
of activity, schedule, and resource allocations. Inter- 
nally, these form a data structure called the model. 
Also internally, the set of status monitors at any given 
time are stored in a data structure called facts, which 

records the overall clock time, the time and resources 
consumed by each activity (42 measures in total), and a 
snapshot of 48 measures of project status. The output 
from SofRel is a single file containing the series of 
facts produced at each dt interval of time. 

SofRel simulates two types of failure events, 
namely, defects in specification documents and faults in 
code. Figure 1 shows the execution context of SoftRel. 

Project 
Characteristics 

Input 

File f' 
vs Time 
output 

Figure 1: SofRel Execution Context 

3.2: The Major Components of the Simulator 

SofRel is initialized by setting sizes of items for 
construction, integration, and inspection. These could 
have been designed just to equal the goal values given in 
the model, but the model values are considered only 
approximate. Sizes are set to Poisson random values, 
with the model input values as means. 

In a typical software engineering life cycle, 
several interrelated software reliability subprocesses are 
taking place concurrently. The activities in these sub- 
processes are characterized by 14 major components in 
the simulator, with appropriate staffing and resource lev- 
els devoted to each activity: 

(1) Document Construction: Document generation and 
integration are assumed to be piecewise-Poisson 
approximations with constant mean rates per work- 
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day specified in the model, not to exceed the goal 
values. Defects are injected at a constant probabil- 
ity per documentation unit. At each injection of a 
defect, the document hazard increases according to 
the defect detection characteristic. 

Document Integration: Document integration con- 
sists of acquisition of reusable documentation, dele- 
tion of unwanted portions, addition of new 
material, and minor changes. Each of these subac- 
tivities is assumed to be a goal-limited piecewise- 
Poisson approximation of a type similar to the con- 
struction process described above. Defects are 
created as a result of each subactivity. Documenta- 
tion is integrated at a constant mean rate per work- 
day, and defects are injected at a constant probabil- 
ity per documentation unit. Hazard increases at 
each defect according to the defect detection 
characteristic assumed. 

Document Inspection: Document inspection is a 
goal-limited piecewise-Poisson approximation of a 
type similar to document construction. Documen- 
tation is inspected at a mean constant rate per 
workday. Inspected units are allocated among new 
documents and reused documents in proportion to 
the relative amounts of documentation in these two 
categories. The defect discovery rate is assumed to 
be proportional to the current accumulated docu- 
ment hazard and the inspection efficiency. 

Document Correction: Defect corrections are pro- 
duced at a rate determined by the staff level and the 
attempted-fix rate given in the model; actual 
corrections take place according to the defect-fix 
adequacy, not to exceed the actual number of 
defects discovered (a goal-limited binomial situa- 
tion). Attempted fixes can also inject new defects 
and can change the overall amount of documenta- 
tion via the numbers of documentation units 
deleted, added, and changed. 

Code Construction: Production of code follows the 
same formulation as does document construction. 
However, the average pace at which faults are 
created is influenced not only by the usual fault 
density that may occur as a normal consequence of 
coding, but also by the density of undiscovered 
defects in documentation, and by the amount of 
missing documentation. Each fault injected 
increases the code hazard. But whereas document 
defects are only found by inspection, code faults 
may be found by both inspection and testing, and at 
different rates. 

Code Integration: Simulation of code integration is 
comparable in structure to document integration, 
except that code units replace document units and 
coding rates replace documentation rates. The fault 
injection rate is of the same form as that for code 
construction, above. Each fault increases the code 
hazard. 

Code Inspection: Code inspection mirrors the docu- 
ment inspection process, except that the number of 
faults discovered will not exceed the total number 
of as-yet undiscovered faults. The fault discovery 
rate is assumed to be proportional to the current 
accumulated fault hazard and the inspection 
efficiency. Since previously discovered faults may 
not yet have been removed at the time of discovery, 
the number of newly discovered faults is assumed 
to be in proportion to the number of as-yet 
undiscovered faults. 

Code Correction: Code correction simulation fol- 
lows the same algorithm given for document 
correction, translated to code units. Fault hazard is 
reduced upon correction of a fault, and increased if 
any new faults are injected by the correction pro- 
cess. Documentation changes are produced at 
assumed constant mean rates per attempted correc- 
tion. 

Test Preparation: Test preparation consists merely 
of producing a number of test cases in each d t  
slot in proportion to the test preparation rate, which 
is a constant mean number of test cases per work- 
day. 

(10) Testing: The testing activity simulation has two 
parts: If a test outage is in effect, the outage time 
indicator decrements and the time and effort incre- 
ment. If an outage is not in effect, failures occur at 
the modeled rate; the number observed is com- 
puted as a binomial process that is regulated by the 
probability of observation. The failure ra te  
function returns a value proportional to the current 
hazard level. The function additionally consumes 
computer resources and test cases, the latter at a 
mean constant rate. 

(1 1) Fault Ident$cation: The total number of failures 
analyzed may not exceed the number of failures 
observed. Failures are analyzed at a mean constant 
rate per workday. The identification of faults is 
limited in number to those still remaining in the 
system. The isolation process is regulated by the 
fraction of faults remaining undiscovered, the ade- 
quacy of the analysis process, and the probability 
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of faithful isolation. 

( 12) Fault Repair: The number of attempted repairs may 
not exceed the number of faults identified by 
inspections and testing, less those corrected after 
inspection, plus those identified for rework by vali- 
dation and retesting. Of those attempted, a 
select number will really be repaired, while the 
rest will mistakenly be reported as repaired. 
Repairs are assumed here to be made on faults 
identified for rework first. A select number of 
new faults may be created by the attempt, and code 
units may be altered (deleted, added, or changed). 

(13) Validation of Repairs: The validation of attempted 
repairs takes place at an assumed mean constant 
rate per workday. The number of faulty repairs 
detected is a select number determined by the 
probability that validation will recognize an 
unrepaired fault when one exists and the probabil- 
ity that unrepaired faults are among those 
attempted repairs being validated (the repair ade- 
quacy). 

(14) Retesting: Retesting takes place at a mean constant 
number of retests per workday and consumes com- 
puter resources at the scheduled rate per day. No 
new test cases are generated (or consumed), since 
the original test cases are assumed available for 
regression. 

3.3: Simulator Input and Output 

It is beyond the scope of this paper to describe 
each of the 70 input model parameters and the 90 out- 
put fact s parameters. Interested readers will find 
these described more fully in[3]. The input file addition- 
ally contains a list of staffing and computer resource 
packets, each of which allocates resources to specified 
activities and time slots. Slot times may overlap or 
leave gaps, at the discretion of the user. Such schedules 
are the natural outcomes of development process plan- 
ning and are of fundamental importance in shaping the 
reliability process. At least 14 schedule packets are 
needed to allocate resources and time slots to each of the 
14 assumed reliability process activities. More packets 
may appear when an activity repeats or has a non- 
constant resource allocation profile. 

Output values consist of all product, work, CPU, 
resource, fault, failure, and outage values. These are 
time-tagged in the form of a facts data structure and 
written to the output file at each dt time interval for 
later scrutiny (e.g., plotting, trending, and model read- 
justments) by other application programs. 

The reliability process embodied in the prototype 
is meant to be fairly comprehensive with respect to what 
really transpires during a software development. The 
simulator therefore requires parameters relating to the 
ways in which people and processes interact. The large 
number of parameters in the simulator might, at first, 
seem to present an overwhelming, impractical barrier to 
modeling, but it must be remembered that the true relia- 
bility process is even more complex. It was felt that the 
number of parameters used was the least that would be 
capable of reproducing the realism hoped for. Reducing 
the number of parameters might either reduce the fidel- 
ity of the simulation or the generality of the reliability 
process model. This belief may change after sufficient 
experimentation has taken place, whereupon selective 
alteration of the parameters and rates may be indicated. 

If projects do not have sufficient data about past 
projects to give values to certain parameters, then sensi- 
tivity analyses using SofrRel can indicate which are the 
most influential and thereby where a metrics effort may 
prove most useful in reliability management. Alterna- 
tively, users may simplify the model to focus only on 
one or two activities at a time by making some of the 
parameters inactive. This may be done by assigning 
typical or default values (usually 0 or 1) to them, 
thereby reducing the number of measured parameters to 
only those that are deemed pertinent and realistic within 
the project context. 

4: Applications: A Project Case Study 

This Section describes the application of SofrRel 
to a real-world project. Project data and parameters 
from a subsystem of the Galileo Flight Project at the Jet 
Propulsion Laboratory were collected as a case study for 
evaluating the simulation technique. The remainder of 
this Section describes the project, applies the simulation 
technique, and compares the results with those obtained 
from several traditional reliability models. 

4.1: Project Description 

Galileo is an outer planet spacecraft project that 
began at the start of fiscal year 1977, a mission that was 
originally entitled “Jupiter Orbiter and Probe,” or JOP. 
Unlike previous outer solar system missions, the Galileo 
orbiter was intended to remain in Jovian orbit for an 
extended interval of time. This would allow observa- 
tions of variations in planetary and satellite features over 
time to augment the information obtained by single- 
observation opportunities afforded by previous fly-by 
missions. Galileo was launched in October of 1989, and 
will reach the Jovian system in 1995. 
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There are two major on-board flight computers in 
the Galileo spacecraft: The Attitude and Articulation 
Control Subsystem (AACS), and the Command and 
Data System (CDS). A significant portion of each of 
these systems is embodied in software. This case study 
focuses on the CDS software reliability profile. 

The CDS flight software is characterized as real- 
time embedded software, written in 17,000 lines of 
assembly language code (16.5K lines new, 500 lines 
reused), with about 1400 pages of documentation (1300 
pages new, 100 pages reused), produced over a period of 
approximately 1500 days (300 weeks). The project 
recorded and tracked failures during the software testing 
period. 

4.2: Parameter Estimations and Results 

This Subsection presents a simulation of an end- 
to-end development project based on data from the 
Galileo CDS project. Some of the CDS project parame- 
ters were taken from project records; other values were 
estimated by personnel within the project; the remaining 
values were chosen by the authors as being probably 
typical of this project’s behavior, but for which there 
were no immediately available data. Believed-typical 
values were adopted, for example, for parameters 
related to the injection of faults in the correction and 
repair processes. None of the model input parameters 
was set to zero. 

Thus, even though few verifiable model param- 
eters were available outside the software testing phase, 
an entire plausible hypothetical model was nevertheless 
formed in order to illustrate simulation of an end-to-end 
reliability process. For lack of better development life 
cycle data, all CDS activities other than testing (e.g., 
construction, inspection, and anomaly removal) were 
presumed to take place serially, merely to observe what 
their simulated behaviors would be. This overall study 
also presumed that each activity took place without 
resource and schedule variations, in order to view typi- 
cal Markoff reliability behavior. The model parame- 
ters that were used are available from the authors upon 
request. 

Figures 2 through 5 show the simulated documen- 
tation, code, defect, and fault profiles of the software, 
sampled every 10 days. Of particular note are behaviors 
of the documentation, code, injected defects, and 
injected faults (precisely those activities where no pro- 
ject data exists). Because the numbers of units are com- 
paratively large, the relative irregularity levels are low, 
as predicted from (Eq. 3). Although there is no actual 
CDS data contesting this behavior, it seems doubtful that 
this almost-linear profile reflects actuality. 

If this doubt were confirmed, then an assumption 
of a homogeneous reliability process would clearly be 
proved invalid. A more realistic extension to the case 
study would be to introduce irregular schedules, since it 
is known that people rarely dedicate their time 
exclusively to one single activity at a time. If actual 
CDS schedule information were available and entered 
into the model, these processes could easily have 
appeared to be more irregular. 

Figure 2 shows that the volume of documentation 
units (DU-t) did reach its goal, but in this case, only 
about 63% of the documentation was actually inspected 
(DI-t), even though the model placed a goal of 95% 
on inspection. This is an instance where too little 
resource was allocated to the inspection process. More 
resources would have been required to reach the goal. 
The effects of correcting defects on page count are not 
visible. The second rise in documentation is due to the 
integration of the reused 100 pages. 

Figure 3 similarly shows that the volume of code 
units (CU-t) did reach its goal and that the 90% inspec- 
tion goal was met as well. The effects of correcting and 
repairing faults on code size, however, are again not 
visible. 

The injection, detection, and removal of defects 
(E-d, D ,  d), shown in Figure 4, are a little noisier 
than documentation and code production, but not much. 
All the detected defects were corrected (D = d), but a 
sizable number of defects were inserted during the 
correction period (days 520-580). Finally, more than 
100 defects were left in the documents. 

The fault activity is shown in Figure 5.  It exhibits 
the noisiest behavior of all, but is still fairly regular. 
The initial rise in injected faults (E-f) is due to con- 
struction; the second rise, due to integration, is not visi- 
ble; the third, a sharp rise again, is due to the imperfect 
fault correction process; and the final gradual rise is due 
to the imperfect fault repair process. By the end of the 
1500-day project, about 7 faults per kiloline of code (e) 
had been found in inspections and corrected (h), and 
about 22 faults per kiloline of code (f) had been 
uncovered by testing and removed (r); the fault density 
at delivery was about 0.2 faults per kiloline of code. 

Although the final fault discovery count is con- 
sidered to be accurate, the time profile of the simulation 
results do not appear to be as irregular as the actual pro- 
ject data. On the basis of this case study, it appears that 
the simulation of all reliability subprocesses will require 
the use of non-homogeneous event-rate models that 
reflect irregular workloads and schedules of life cycle 
activities. An example of this is given in the next Sub- 
section. 
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Figure 5: CDS Simulated Fault Accumulation 

4.3: Comparisons with Other Models 

To simulate the details of Galileo CDS testing 
activity, its testing phase was separated into five subac- 
tivities with constant staffing, but having irregular CPU 
and schedule allocations, as shown in Table 1. These 
schedule parameters were obtained by "eye-ball regres- 
sion" of the simulator output against project data. The 
fit appears adequate to describe the underlying nature of 
the failure process (an exact fit is not expected, since the 
failure process is considered random). 

staff CPU total begin end 
failures week week activity 

functional test 90 0 5 2.0 0.4 
60 5 13 2.0 0.4 feature test 

operation test1 150 13 23 2.0 1.2 
operation test2 25 23 33 2.0 1.0 
operationtest3 16 33 40 2.0 2.0 

Table 1: Schedule of the CDS Testing 

Figure 6 shows the field data and the results 
obtained from the piecewise-homogeneous simulation 
process, as well as those from three other models, 
Jelinski-Moranda Model(JM), Musa-Okumoto 
Model(MO), and Littlewood-Verrall Model(LV). For 
better visibility of process granularity, data is shown in 
the form of failures per week, rather than cumulatively. 
The JM, MO, and LV statistics were calculated to be 
"one-week-ahead'' predictions, in which all the failure 
data up to a given week were used to predict the number 
of failures for the next week. 

It can be seen from the figure that the simulation 
technique produced a very good early forecast that could 
have been used for tracking the reliability status during 
the entire testing phase. The forecast could have been 
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calculated prior to the start of testing from schedule and 
resource plans. The other models above were inade- 
quate to predict even one week ahead. 

30 
f i e l d  data - 
JM model 
MO model + 

LV model A 
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Figure 6: Various Predictions for CDS Failures per Week Data 

5: Conclusions 

Reliability modelers seldom seem to have the lux- 
ury of several realizations of the same failure process to 
test their hypotheses concerning the nature of a system’s 
reliability. Nor are they ever provided with data that 
faithfully match the assumed natures of their models. 
Nor are they able to probe into the underlying error and 
failure mechanisms in a controlled way. Rather, they 
are faced with the problem of not only guessing the 
forms and particulars of the underlying error and failure 
random processes from the scant, uncertain data they 
possess, but also with the problem of best forecasting 
future failures from this single data set. 

The assumptions of the simulation approach are 
certainly less restrictive than those underlying analytic 
models. The simulation approach solves software relia- 
bility prediction problems by producing data conforming 
precisely to the software failure assumptions. Simula- 
tion enables investigation of questions such as, “How 
does a project’s observed data compare with that 
emanating from a NHPP having the following charac- 
teristics? ...” and ”Which analytic prediction model is 
the best under the following assumptions? ...“ The Sof- 
tRel tool and its offspring offer significant assistance to 
researchers and practitioners in answering such ques- 
tions, in evaluating sensitivities of predictions to various 
error and failure modeling assumptions, and in forecast- 
ing software project status profiles, such as time-lines of 
work products and the progress of testing, fault isola- 
tion, repair, validation, and retest efforts. 

Simulation of a real-world project has proved the 
validity of the approach. It was shown that neither 

NHPP nor homogeneous Markoff event-count models 
adequately reproduced the statistical failure profile of an 
actual project. A non-homogeneous event-rate simula- 
tion model was demonstrated that produced very good 
early forecasts of reliability growth that would have 
proved adequate for process status assessment. 
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